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Fractonic superfluids
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We propose a superfluid phase of “many-fracton system” in which charge and total dipole moments
are conserved quantities. In this work, both microscopic model and long-wavelength effective theory are
analyzed. We start with a second quantized microscopic model and formulate the coherent-state path-integral
representation. With repulsive interactions and positive chemical potential, we calculate various properties of the
resulting superfluid state and make comparison with a conventional superfluid. We deduce a highly nonlinear
Euler-Lagrange equation as well as two Noether currents. We also formulate time-dependent Gross-Pitaevskii-
type equations that govern hydrodynamical behaviors. We study the classical ground-state wave function,
the associated off-diagonal long range order (ODLRO), supercurrents, critical current, and unconventional
topological vortices. At length scale much larger than coherence length ξcoh, we derive the effective theory
of our microscopic model. Based on the effective theory, we analyze gapless Goldstone modes and specific
heat capacity at low temperatures as well as the fate of ODLRO against quantum fluctuations. Several future
directions, e.g., numerical analysis of Gross-Pitaevskii equations, fermionic fractons, fractonic superconductors,
and cold-atom experimental realization, are discussed.
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I. INTRODUCTION

Liquid helium-4 [1,2] is a typical quantum many-boson
system described by a Ginzburg-Landau theory. With in-
teractions between bosons, superfluidity is established with
formation of an off-diagonal long range order (ODLRO) [3]
and emergence of gapless Goldstone modes. Vortex config-
urations, which tend to eliminate ODLRO, is topologically
characterized by the winding number of the circulating super-
current. Superfluid is also a simple demonstration on Mermin-
Wagner (MW) theorem which states that continuous symme-
try cannot be spontaneously broken at any finite tempera-
tures (T ) in one-dimensional (1D) and 2D systems. At zero
temperature T = 0, true ODLRO is unstable against quantum
fluctuations unless the spatial dimension is no less than two.
Experimentally, achievements have been made on a variety
of physical properties of superfluidity; meanwhile, superfluids
serve as a platform for different fields, e.g., condensed matter,
nuclear physics and high-energy physics [4–16]. Especially,
one may consider a symmetric phase formed by condensing
symmetry defects in a superfluid or more general symmetry-
breaking phases. By delicately designing degrees of freedom
on symmetry defects, one may construct symmetry-protected
topological phases (SPT) [12–15,17].
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In this paper, we propose an unconventional superfluid
phase: fractonic superfluid, which was, surprisingly, moti-
vated from seemingly uncorrelated line of thinking—strongly
correlated topological phases of matter. Recently, there is
an ongoing focus issue—fracton topological order [18–20]
that supports topological excitations with restricted mobility.
In contrast to the more “familiar” topological order such
as the fractional quantum Hall effect, if one tries to move
a fracton—a pointlike immobile excitation—then additional
fractons have to be created nearby simultaneously. In other
words, fractons are totally immobile. Tremendous progress
has been made and vastly different research areas have been
unexpectedly connected in the context of fractons, such as
glassy dynamics, foliation theory, elasticity, dipole algebra,
higher-rank global symmetry, many-body localization, stabi-
lizer codes, duality, gravity, quantum spin liquid, and higher-
rank gauge theory, see, e.g., the review in Ref. [21] and
Refs. [18–20,22–64].

While fractons are originally defined as pointlike exci-
tations, one may also consider a many-fracton system—a
quantum many-body system directly made of fractons. Sup-
pose fractons are bosonic and simply represented by a scalar
field φ, one may ask: What kind of minimal microscopic
quantum models can capture the property of immobility?
Reference [43] recently proposed a non-Gaussian field theory
by requiring that both total charge and total dipole moments
be conserved, where the time derivative is second order and
the momentum-dependent term involves φ of at least fourth
order. This enhanced symmetry elegantly enforces the mobil-
ity restriction of single particles.

Alternatively, in this paper we consider a minimal model
given by a second quantized microscopic Hamiltonian H that
respects aforementioned symmetries. Then, the coherent-state
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path integral quantization sends H to L = iφ∗∂tφ − H after a
Wick rotation. It should be noted that the first-order derivative
with respect to time in the Lagrangian L is very subtle. With
this first-order derivative, one may legitimately interpret φ∗φ
as the particle number density, which is a common situation
in nonrelativistic microscopic models in condensed matter
physics and cold atom. Starting from this Lagrangian, we
consider a weak repulsive interaction in a grand-canonical en-
semble with positive chemical potential. The Euler-Lagrange
equation of this theory is highly nonlinear, which is expected
by observing that the Lagrangian as a functional of φ, ∂φ,
and ∂∂φ is intrinsically non-Gaussian. On the other hand, the
Noether currents associated to the two conserved quantities
are derived: charge current and dipole current. Using a hydro-
dynamic approach [1,2], we reformulate the Euler-Lagrange
equation as hydrodynamic equations which help understand
superfluidity.

We start with the normal state at T = 0 with a negative
chemical potential. When chemical potential is turned to
positive value, the energy functional drops down to minima
when φ belongs to plane-wave configurations, in contrast to
conventional superfluid where φ of minima is exactly constant
everywhere, i.e., momentum k = 0. This class of configura-
tions with lowest energy constitutes the classical ground-state
manifold of fractonic superfluid, and the corresponding time-
dependent Gross-Pitaevskii equations can be obtained in the
presence of such exotic boson condensate. In a conventional
superfluid, the charge (or more precisely, particle number)
current serves as supercurrent. It can flow dissipationlessly as
along as the current strength is below a critical value. The
closed line integral of the supercurrent is topological in a
sense that the numeric value of the integral only depends on
how many vortices are enclosed by the closed line, resulting in
a quantized value. Nevertheless, instead of charge current, in a
fractonic superfluid, we have to identify a many-body current
� as a supercurrent such that it is topological and can flow
dissipationlessly. In fact, both closed line integrals of the two
Noether currents mentioned above (charge and dipole current)

turn out to be not topological. The corresponding quantized
number monitored by

∮
� represents unconventional topolog-

ical vortices that are expected to proliferate at critical points.
Such a vortex shows interesting features and its dynamical
behaviours deserve further investigation.

The Goldstone bosons associated to spontaneous broken
symmetries in the many-fracton system are analyzed, whose
dispersion relations give rise to exotic temperature depen-
dence of specific heat capacity cv as long as ODLRO is
assumed. Since quantum fluctuations are not treated seriously,
ODLRO of classical ground states is self-consistently estab-
lished, regardless of dimensions. For this purpose, one can
integrate out massive amplitude fluctuations, resulting in an
effective field theory for phase fluctuations or the gapless
Goldstone bosons based on our microscopic many-fracton
model. In the “isotropic case,” the effective theory respects
the Lifshitz spacetime symmetry and relates to nonrelativistic
gravity studied before [65–67]. Once quantum fluctuations
are taken into account, Goldstone bosons and ODLRO are
ultimately unstable in 1D and 2D. In 1D, the correlation at
long distance decays exponentially, which indicates a spectral
gap is formed; in 2D, it decays in a power law. Compared
to the conventional superfluid phase, all these dimension-
dependence properties of ODLRO arise as a result of highly
non-Gaussianality of many-fracton systems. A summary of
comparison is given in Table I.

This paper is organized as follows. In Sec. II, we introduce
a microscopic Hamiltonian in Eq. (1) and it conserves total
dipole moments as well as a charge. We derive the Euler-
Lagrange equation and Noether currents. A Gross-Pitaevskii-
type equation is also formulated to govern hydrodynamic
behavior. Section III starts with a Mexican-hat potential to
determine a fractonic superfluid phase in any spatial dimen-
sions with the ground-state wave functions in Eq. (34) from
a hydrodynamic method. From the many-body current �

in Eq. (23) that appears as the supercurrent, we define a
new vector field U in Eq. (48) whose vorticity turns out
to be topological. In Sec. IV, we concentrate on quantum

TABLE I. Comparison between conventional and fractonic superfuild phases. For simplicity, in this table, only isotropic case Ki j = 1
2 κ

(κ > 0) of the microscopic model (1) is taken into account.

Conventional superfluid Fractonic superfluid

Order parameter 〈�̂(x)〉 √
ρ0eiθ0

√
ρ0ei(θ0+∑

i βix
i )

Noether current Charge current J = ρ0∇θ Charge current J (20), dipole currents D(a) (22)

Plane-wave dispersion Dispersive Dispersionless

Ground state exp[
∫

dd x
√

ρ0eiθ0�̂†(x)]|0〉 exp[
∫

dd x
√

ρ0ei(θ0+∑d
i βix

i )�̂†(x)]|0〉
Topological number 
 = ∮

C v · dr 
 = ∮
C U · dr

Supercurrent Charge current Many-body current � in Eq. (23)

Critical current |J|max = 2
√

6
9

√
μ3

g2κ
(�s )max = 3

√
3κμ2

16
√

g3
in Eq. (44)

Coherence length ξcoh 2π
√

κ/(4ρ0g) 2π 4
√

κ/4g in Eq. (56)

Goldstone mode ω ∝ |k| ω ∝ |k|2

Stable dimension at T = 0 d > 1 d > 2
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fluctuations or gapless Goldstone modes. With an effective
theory for Goldtone modes, we calculate correlators of order
parameters, and we give a temperature dependence of specific
heat capacity. Last, Sec. V summarizes the main results and
puts forward further perspectives. A general many-fracton
model is discussed in the Appendix at the end of the paper.

II. MICROSCOPIC MODEL

In this section, we introduce a microscopic model and
derive the Euler-Lagrange equation and the Noether currents,
from which we recognize a Gross-Pitaevskii equation. All
effective theory analysis in the remaining sections can be
traced back to their microscopic origin introduced below.

A. Model Hamiltonian

In a nonrelativistic field theory, a single particle fails to
propagate and may be eventually localized if its effective
mass Meff is too large. In other words, the usual kinetic term

1
2Meff

�†(−∇2)� vanishes. Nevertheless, it will be seen clear
that mobility of bound-state excitations can be independent
on single particle mobility. Let us consider a nonquadratic
Hamiltonian. One realization is a model H = ∫

dd xH(�̂†, �̂)
in d- (spatial) dimensional manifold M, where H reads

H =
d∑

i, j

Ki j (�̂
†∂i∂ j�̂

† − ∂i�̂
†∂ j�̂

†)(�̂∂i∂ j�̂ − ∂i�̂∂ j�̂)

+
d∑
i

Gi : (∂iρ̂ )2 : +V (�̂†, �̂), (1)

where :: denotes the normal ordering. �̂†(x) and �̂(x)
are bosonic creation and annihilation operators and ρ̂(x) =
�̂†(x)�̂(x) is a density operator. These operators satisfy the
standard communication relations

[�̂(x), �̂†(y)] = δd (x − y), (2)

[�̂(x), ρ̂(y)] = �̂(x)δd (x − y), (3)

[�̂†(x), ρ̂(y)] = −�̂†(x)δd (x − y), (4)

where x is a spatial coordinate and we neglect it in the
following for symbol convenience. The potential V (�̂†, �̂)
incorporates interactions that do not involve any spatial gra-
dient. We mainly consider the simplest form of V (�̂†, �̂)

V (�̂†, �̂) = −μ�̂†�̂ + g

2
�̂†�̂†�̂�̂, (5)

where μ is the chemical potential and g > 0 describes onsite
repulsive interaction. Hereafter, no Einstein summation rule is
assumed. The coupling constants Ki j > 0 and Gi � 0 ensure
a lower bound for a physically acceptable Hamiltonian H.
The Gi term is also a potential term. Besides, no rotational
invariance is assumed since anisotropy of Ki j is allowed. The
Hamiltonian in Eq. (1) is possible to be realized in cold
atomic gas subjected to an optical lattice by simulating the
correlated hopping of two bosons [68,69]. Hamiltonian H
obeys a conservation law of total dipole moments as well as a
global U (1) symmetry. So we have two types of conserved

quantities. One is the global U (1) charge Q̂ = ∫
dd x ρ̂ and

the others are the total dipole moments of d components
Q̂(a) = ∫

dd x ρ̂xa, a = 1, 2, . . . , d, where the integral is over
the d-dimensional spatial manifold M. We denote a group
generated by both Q̂ and Q̂(a) (a = 1, 2, . . . , d ) as G [70].
We denote a subgroup with a single generator Q(a) as U (1)a.
An element U = exp [−i(λQ̂ + ∑

a λaQ̂(a) )] in G leads to a
transformation of the field φ as φ′ = UφU † = φei(λ+∑

a λaxa )

with d + 1 real parameters λ and λa (a = 1, . . . , d ). The
group G is not an internal symmetry because Q̂(a) does not
commute with the translational or rotational symmetry.

By performing the coherent-state path integral quan-
tization, we can construct a partition function Z =∫
DφDφ∗ei

∫
dd xdtL with Lagrangian L from H in Eq. (1) as

L = iφ∗∂tφ − H(φ∗, φ), (6)

where φ(x, t ) is the eigenvalue of annihilation operator �̂(x)
on a coherent state

�̂(x)|φ(x, t )〉 = φ(x, t )|φ(x, t )〉 (7)

and φ∗(x, t ) is its complex conjugate. It should be noted that
a Wick rotation has been applied from imaginary time to real
time, which is convenient for the physics of zero temperature.
The subtle “first-order time derivative” term in Eq. (6) is
ultimately determined by Hamiltonian (1) and commutation
relations listed in Eqs. (2), (3), and (4), which can be ver-
ified by performing the standard canonical quantization. We
regard Eqs. (1) and (6) as the microscopic model of fractonic
superfluids.

B. Euler-Lagrange equation and Noether theorem

The Noether theorem states that a classical action that
respects a continuous symmetry is associated to a conserved
charge. A continuity equation can be deduced from the action.
Below we will derive the Euler-Lagrange equation as well
as Noether currents from the Noether theorem. Due to the
non-Gaussian nature of the microscopic model, the derivation
below will demonstrate several exotic features that do not
appear in usual Gaussian models.

First, we derive the Euler-Lagrange equation.
Generally the stationary condition of an action S =∫

dd xdtL[∂tφ, ∂iφ, ∂i∂ jφ, φ] meets the Euler-Lagrange
equation. Here for the notational convenience, we do not
explicitly show the dependence on φ∗ and its derivative terms
in L. A variation δφ leads to δS

δS =
∫

dd xdtδL[∂tφ, ∂iφ, ∂i∂ jφ, φ]

=
∫

dd xdt

[
δL
δφ

− ∂t
δL

δ∂tφ
−

d∑
i

∂i
δL
δ∂iφ

+
d∑

i, j

∂i∂ j
δL

δ∂i∂ jφ
δφ

⎤
⎦ + c.c. (8)

Here the variation does not depend on space-time coordinates,
δ∂iφ = ∂iδφ, δ∂i∂ jφ = ∂i∂ jδφ, etc., and c.c. means complex
conjugate.
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To a surface term, vanishing of Eq. (8) requires the Euler-
Lagrange equation,

∂t
δL

δ∂tφ
= δL

δφ
−

d∑
i

∂i
δL
δ∂iφ

+
d∑

i, j

∂i∂ j
δL

δ∂i∂ jφ
. (9)

One remark is that we take ∂i∂ jφ and ∂ j∂iφ as different
variables if i 	= j during variational processes,

δ∂i∂ jφ(x, t )

δ∂m∂nφ(x′, t ′)
= δimδ jnδ(x − x′)δ(t − t ′). (10)

In sharp contrast to the usual Euler-Lagrange equations,
there are three terms in the right-hand side of Eq. (9) where the
third term arises from the non-Gaussionality. Plugging Eq. (6)
into Eq. (9) renders

i∂tφ =
d∑

i, j

Ki j∂i∂ j[φ
∗(φ∂i∂ jφ − ∂iφ∂ jφ)]

+ 2Ki j∂i[∂ jφ
∗(φ∂i∂ jφ − ∂iφ∂ jφ)]

+ Ki j∂i∂ jφ
∗(φ∂i∂ jφ − ∂iφ∂ jφ)

−
d∑
i

2Gi∂
2
i ρ φ − μφ + gρφ, (11)

where we have considered a Mexican-hat potential in Eq. (6):

V (φ) = −μ|φ|2 + g

2
|φ|4. (12)

It is the path-integral representation of the operator form
V (�̂†, �̂) in Eq. (5).

Solving Eq. (11) in a brute-force manner, both numerically
and analytically, is not easy due to its high nonlinearity. Nev-
ertheless, one may quickly verify the existence of immobile
fractons just by taking a plane-wave ansatz,

φ = N exp(iωt − ik · x), (13)

where N is a proper normalization factor. The flat dispersion
relation ω = 0 indicates that a single particle is nonpropagat-
ing. Such kinds of particles with fully restricted mobility are
dubbed fracton in the literature of fracton topological order.

Now we are in a position to calculate the Noether currents
associated with the two conserved quantities. We consider
on-shell variations where fields φ and φ∗ are constrained to
satisfy Euler-Lagrange equations while the variations δφ and
δφ∗ are arbitrary. A symmetry transformation

φ → φ′ = φ + δφ = φ + αF (φ) (14)

has a parameter α that is independent of space-time
coordinates and keeps the Euler-Lagrange equation invariant
while it does not involve changes in the coordinates in
any way. The Noether theorem states that even when α

depends on coordinates α = α(x, t ), the variation action
δS = ∫

dd xdtL[∂tφ
′, ∂iφ

′, ∂i∂ jφ
′, φ] − L[∂tφ, ∂iφ, ∂i∂ jφ, φ]

should also vanish,

δS =
∫

dd xdt
δL

δ∂tφ
δ∂tφ +

d∑
i

δL
δ∂iφ

δ∂iφ +
d∑

i, j

δL
δ∂i∂ jφ

δ∂i∂ jφ + δL
δφ

δφ

=
∫

dd xdt (−α)∂t

(
δL

δ∂tφ
F

)
−

d∑
i

α

⎡
⎣∂i

(
δL
δ∂iφ

F

)
+

d∑
i, j

∂i

(
δL

δ∂i∂ jφ
∂ jF + δL

δ∂ j∂iφ
∂ jF

)
−

d∑
i, j

∂i∂ j

(
δL

δ∂i∂ jφ
F

)⎤⎦, (15)

where the Euler-Lagrange equation in Eq. (9) is applied. The
variation δS appears as an integral over a total derivative

δS = α

∫
dd xdt

(
∂tρ +

d∑
i

∂iJi

)
. (16)

We arrive at conserved charge Q and current densities Ji

Q = −
∫

dd x
δL

δ∂tφ
F + c.c. =

∫
dd xρ,

Ji = −
⎛
⎝ δL

δ∂iφ
−

d∑
j

∂ j
δL

δ∂i∂ jφ

⎞
⎠F −

d∑
j

δL
δ∂i∂ jφ

∂ jF + c.c.

(17)

and the conservation law

∂tρ +
d∑
i

∂iJi = 0. (18)

Back to our model in Eq. (6), for a global U (1) symmetry,
we take F (φ) = iφ and F (φ) = ixaφ for U (1)(a) and we can
obtain charge and current densities,

Q =
∫

dd x φ∗φ, (19)

Ji = i
d∑
j

Ki j∂ j[φ
∗2(φ∂i∂ jφ − ∂iφ∂ jφ) − c.c.], (20)

Q(a) =
∫

dd x xaφ∗φ, (21)

D(a)
i = i

d∑
j

Ki jx
a∂ j[φ

∗2(φ∂i∂ jφ − ∂iφ∂ jφ) − c.c.]

− i
d∑
j

Ki jδ
j
a[φ∗2(φ∂i∂ jφ − ∂iφ∂ jφ) − c.c.]. (22)
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Therefore, we have two types of spatial currents: Ji and D(a)
i .

Nevertheless, they are not totally independent. The first term
in current D(a)

i in Eq. (22) that equals xaJi comes from motions
of each single particle at x with current Ji and the extra
term comes from the pure effect during many-body hopping
processes. It motivates us to isolate the many-body current �,

�ia = xaJi − D(a)
i . (23)

The many-body current � is symmetric under its index and it
has relation with charge current Ji = ∑d

a=1 ∂a�ia. This rela-
tion implies a generalized conversation law ∂tρ + ∂i∂a�ia =
0. As we will see in Sec. III that the current � plays a vital
role.

C. Time-dependent Gross-Pitaevskii-type equations

Below we will deduce equations that govern hydrodynamic
behaviors of the superfluid, which are summarized as a time-
dependent Gross-Pitaevskii equation set. We now rewrite
Eq. (11)

i∂tφ = Ĥφ, (24)

where Ĥ behaves as a single-particle Hamiltonian that reads

Ĥ =
d∑

i, j

Ki j∂i∂ j[φ
∗(−∂iφ∂ j + φ∂i∂ j )]

+ 2Ki j∂i[∂ jφ
∗(φ∂i∂ j − ∂iφ∂ j )]

+ Ki j∂i∂ jφ
∗(φ∂i∂ j − ∂iφ∂ j )

−
d∑
i

2Gi∂
2
i ρ − μ + gρ. (25)

Equation (24) has a similar form as a time-dependent Gross-
Pitaevskii equation in a conventional superfluid phase where
g characterizes a hardcore interaction. Differently, the kinetic
term is nonlinear due to refinement from the symmetry group
G. One way to understand Eq. (24) is to derive a hydrody-
namic equation by decomposing φ = √

ρeiθ where the real
fields ρ and θ are density and phase operators, respectively.
So the Gross-Pitaevskii equation is equivalent to two partial
derivative equations,

∂ρ

∂t
=2

d∑
i, j

Ki j∂i∂ j (ρ
2∂i∂ jθ ), (26)

∂θ

∂t
= − 1

2ρ3

d∑
i, j

Ki j[(∂iρ∂ jρ)2 − 2ρ∂iρ∂ jρ∂i∂ jρ]

− 1

2ρ

d∑
i, j

Ki j
[
(∂i∂ jρ)2 − ∂2

i ρ∂2
j ρ
]

− 1

2

d∑
i, j

Ki j
[
4ρ(∂i∂ jθ )2 + ∂2

i ∂2
j ρ
]

+
d∑
i

Gi∂
2
i ρ + μ − gρ. (27)

Equation (26) is a continuity equation and the dynamics of θ

is very complicated. The solution towards Eqs. (26) and (27)
resembles a fluid with conserved dipole moments.

The hydrodynamic velocity vi is defined as

Ji = ρvi, (28)

where ρ is the charge density. From Ji in Eq. (20), we find that

vi = −
d∑
j

2Ki j
(
2∂ jρ∂i∂ jθ + ρ∂i∂

2
j θ
)
. (29)

The “velocity” v
(a)
i with a relation D(a)

i = ρv
(a)
i can also be

deduced from Eq. (22) as

v
(a)
i = 2Kiaρ∂i∂aθ + vix

a. (30)

It is easy to extract two continuity equations

∂ρ

∂t
+

d∑
i

∂i(ρvi ) = 0, (31)

∂ρ (a)

∂t
+

d∑
i

∂i
(
ρv

(a)
i

) = 0. (32)

Numerical simulations to Eqs. (26) and (27) may show in-
teresting features, which can help us get insight into the GP
equation in Eq. (24), and it deserves future investigations.
Before moving to next section, we should emphasize that all
equations, currents, and charges are not specified to a certain
phase of the microscopic model. In the next section, we will
focus on the superfluid phase.

III. FRACTONIC SUPERFLUIDITY

We have discussed basic properties like Noether currents
and Gross-Pitaevskii equation in a many-fracton model in
Eq. (1). The main feature is its non-Gaussian form resulting
from a dipole-moment conservation symmetry G. In this sec-
tion, we discuss in details the fractonic superfluidity arising
from our microscopic model.

A. ODLRO and order parameter

Superfluidity can occur in a conventional bosonic system
with a potential V (φ) in Eq. (12). In this section, we consider
a superfluid phase in a fracton system in the microscopic
model (1).

Classically, the energy density E for the steady system in
Eq. (1) has the form as

E =
d∑

i, j

Ki j |φ∂i∂ jφ − ∂iφ∂ jφ|2

+
d∑
i

Gi(∂iρ)2 − μ|φ|2 + g

2
|φ|4 (33)

and the field configuration φ at its minimum depends on the
chemical potential. If μ < 0, then the potential V (φ) has a
minimal value at ρ = 0. It is a normal phase. If μ > 0, then
the potential V (φ) reaches a minimal value at |φ| = √

ρ0 ≡√
μ

g . The vacuum now possesses a finite particle density and

023267-5



JIAN-KENG YUAN, SHUAI A. CHEN, AND PENG YE PHYSICAL REVIEW RESEARCH 2, 023267 (2020)

thus a large number of degeneracies. In the second quantiza-
tion language, the ground-state manifold can be represented
with a creation operator �̂† along with phase parameters θ0

and βi (i = 1, . . . , d ),∣∣GSθ0
βi

〉 = ⊗
x

∣∣GSθ0
βi

〉
x, (34)

where |GSθ0
βi
〉x describes particles at position x,

∣∣GSθ0
βi

〉
x = 1

C
exp[

√
ρ0ei(θ0+

∑d
i βixi )�†(x)]|0〉, (35)

with C = e
1
2 ρ0 as the normalization factor. For two such

ground states |GSθ0
βi
〉 and |GSθ ′

0
β ′

i
〉 with �θ0 = θ0 − θ ′

0, �βi =
βi − β ′

i , from their inner product,

∣∣〈GSθ ′
0

β ′
i

∣∣GSθ0
βi

〉∣∣2
=
{

exp(−2ρ0V ) if �βi 	= 0 ∃i
exp[−2ρ0V (1 − cos �θ0)] if �βi = 0 ∀i

,

(36)

we can conclude that they are orthogonal in the thermody-
namic limit V → ∞, where V is the volume of the spatial
manifold M. The ground state in Eq. (34) comprises equal-
weight superposition over all possible numbers of particles
that is modulated by a phase factor and it characterizes
condensation of a macroscopically large number of particles
at a state with momentum k = (β1, . . . , βd ) by observing
|GSθ0

βi
〉 = exp[

√
ρ0eiθ0�̂†(k)]|0〉, where �̂†(k) is the Fourier

transformation of �̂†(x). We call state |GSθ0
βi
〉 in Eq. (34) as a

fractonic superfluid phase. The most significant feature of the
state (34) is the formation of an ODLRO. If we calculate the
correlation function in the classical level, then

C(x) = 〈
GSθ0

βi

∣∣�̂†(x)�̂(0)
∣∣GS θ0

βi

〉 = ρ0e−i(
∑d

i βixi ), (37)

whose amplitude does not decay at large distances. Equiv-
alently, an order parameter can be determined with finite
expectation value on the ground state,

〈�̂(x)〉 = 〈
GSθ0

βi

∣∣�̂(x)
∣∣GS θ0

βi

〉 = √
ρ0ei(θ0+

∑
i βixi ). (38)

B. Supercurrent and its critical value

Currents can suppress superfluidity. In a conventional su-
perfluid phase, frictionless charge current can exist if super-
fluidity is not totally destroyed. In other words, superfluidity
can survive as long as the system has a finite order parameter
or particle density ρ0 for the minimal total energy. We can
expect a critical current as the maximum one that a conven-
tional superfluid phase can sustain. Similar discussion can be
applied to a fractonic superfluid phase. Here we investigate the
critical current in a fractonic superfluid phase in an isotropic
case Ki j = 1

2κ .
The ground state in Eq. (34) can be considered as the

one that minimizes the energy density E in Eq. (33) under
a specified boundary condition on the net phase change. For
example, a wave function |GSθ0

βi
〉 minimizes E in Eq. (33)

under the boundary conditions

�iθ = βiL i = 1, . . . , d, (39a)

�i∂ jθ = 0 i, j = 1, . . . , d, (39b)

where �iθ (�i∂ jθ ) is the net difference of field θ (∂ jθ ) along
xi direction with L as the system size. A possible suppressing
factor is equivalent to twisting the boundary conditions in
Eqs. (39a) and (39b). For example, the net change of ∂ jθ can
be twisted to a finite value, which will invalidate the form of
field θ = θ0 + ∑d

i=1 βixi in Eq. (34). Our aim is to determine
the order parameter and currents under a twisted boundary
condition. Minimizing the energy density E in Eq. (33) re-
quires uniformity of |∇2θ (x)| and we denote ν = |∇2θ (x)|.
Based on it, in a superfluid phase with μ > 0, E in Eq. (33)
can be written as

E = 1

2
κρ2|ν|2 − μρ + g

2
ρ2, (40)

where ρ is particle density of condensate field or order param-
eter �̂ and we assume it uniform in space ∇ρ = 0. Minimize
E with respect to ρ, and we obtain the particle density

ρ0 = μ

κν2 + g
, (41)

which is suppressed by ν as compared with its value in the
ground state (34). Plugging ρ0 into the charge currents in
Eq. (20), we find that the charge current J vanishes Ji =
0. Nevertheless, the dipole currents D(a) or the many-body
current � in Eq. (23) which after condensation reads

�ia = −2ρ2
0 Kia∂i∂aθ after condensation, (42)

takes a finite value:

�s = κρ2
0ν, (43)

where �s =
√∑d

i,a=1 |�ia|2. At ν =
√

g
3κ

, �s reaches its

maximum (�s)max,

(�s)max = 3
√

3κμ2

16
√

g3
. (44)

We conclude that (�s)max plays the similar role as the critical
charge current of a conventional superfluid phase. It means
that a fractonic superfluid phase can survive when no induced
charge currents appear and �s is smaller than (�s)max in
Eq. (44) and that the many-body currents can flow dissipa-
tionlessly. For the diagonal case Ki j = 1

2κδi j under a proper
boundary condition, we can obtain the same results as the
isotropic case. Therefore, the many-body current � is the
supercurrent of the fractonic superfluid phase.

C. Topological vortices

A conventional U (1) superfluid has vortex excitations and
their topological nature can be characterized by vorticity as a
close line integral over charge currents that are proportional
to ∇θ . It is a different story for a fractonic superfluid phase
due to its complicated form in Eq. (1). Instead, a many-body
current � in Eq. (23) that arises from purely two-particle
correlated hopping directly gives vortex’s topological number.
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Given a ground-state wave function in Eq. (34) for a
fractonic phase, we are ready to discuss its topological nature.
Our guiding rule is to relate vortex degree of freedom as
the singular component of field θ to a winding number. The
velocities in Eqs. (29) and (30) reduce to simpler forms after
condensation with a uniform density distribution ρ = ρ0,

vi = −2ρ0

d∑
j

Ki j∂i∂
2
j θ after condensation, (45)

v
(a)
i = xavi + 2Kiaρ0∂i∂aθ after condensation. (46)

Topological number in a conventional superfluid is embedded
in current vorticity. A vorticity can be expressed as a winding
number around the vortex core. Nevertheless, for general Ki j ,
vorticities of v and v(a) are no longer topologically invariant.
In other words,

∮
C v · dr and

∮
C v(a) · dr depend on local

geometry of a closed path C since vi and v(a)
i are not closed if

using the terminology of differential forms.
As stated in Sec. II B, the current � arises from a purely

many-body effect. By contracting one of the two indexes of �

in Eq. (42) after condensation, we can construct a new vector
field U

Ui =
d∑

a=1

K−1
ia xa�ia = −

d∑
a=1

2ρ2
0 xa∂i∂aθ. (47)

The prefactor K−1
ia is introduced to absorb anisotropy in Ki j

and xa is to decrease degree of derivative. If some Ki j vanish,
then the definition of � should be understood by taking the
limit Ki j → 0. Thus, Eq. (47) works for general Ki j . The
vorticity 
 associated with U can be calculated directly,


 =
∮

C
U · dr

= −
d∑

a=1

∮
C

[∇(
xa2ρ2

0∂aθ
) − (∇xa)2ρ2

0∂aθ
] · dr

= 2ρ2
0

∮
C

∇θ · dr = 2ρ2
0 2πN, (48)

where C is a closed loop in d spatial dimensions and N is a
summation over winding numbers of vortices surrounded by
the loop C. Therefore, 
 can be utilized to characterize the
topological nature of vortices. The vanishing of the first term
in the second line of Eq. (48) is due to smoothness of ∂aθ

although θ is a multivalued function, since the microscopic
model in Eq. (1) appears in a flat-band platform. From the
construction of � in Eq. (23), we can conclude that topologi-
cal properties arise from a purely many-body effect.

Pictorially, Figs. 1(a) and 1(b) show the configurations
of U of a single vortex and a pair of vortex and antivor-
tex, respectively, for simplicity, in two spatial dimensions.
In Fig. 1(a) U circulates around the vortex core marked
by a black point. Since we are only concerned about the
topological nature, we choose θ field of a single vortex as
θ = arctan x2/x1 that belongs to the same topological sector
with exact vortex solutions to Gross-Pitaevskii equation in
Eq. (24). The configurations of different vector fields in
Eqs. (45), (46), and (47) are plotted in Fig. 2. Obviously,

FIG. 1. Illustration of vector field U in Eq. (47) for (a) a single
vortex θ = arctan x2

x1 and (b) a pair of vortex and its antivortex, for
simplicity, in two spatial dimensions. The color and direction of
arrow denote the strength (red>blue) and direction of U.

charge currents no longer wind around the vortex core, which
is different from a conventional superfluid phase. Different
choices of Ki j induce different charge current configurations
in Figs. 2(d), 2(g) and 2(j). Especially, when θ configuration
appears as an exact solution to Gross-Pitaevskii equation in
Eq. (24) for isotropic Ki j in Fig. 2(a), charge currents vanish,
which sharpens the failure of extracting topological number
from charge currents. In Fig. 3, the configurations of different
vector fields in Eqs. (45), (46), and (47) of a pair of vortex and
antivortex [Fig. 1(b)] are depicted. The current distributions
in Fig. 3 will be helpful in the analysis of interaction between
vortices, which is left to future work.

In conclusion, we identify a fractonic superfluid phase.
Different from a conventional superfluid phase, the topolog-
ical vortices are characterized by the many-body current �

from the pure effect of two particles’ correlated hopping and
the corresponding supercurrents turn out to be the many-body
currents �. Although for simplicity only vortex configurations
in two spatial dimensions is discussed, a vortex in three
spatial dimensions that has a line as its core has a similar
structure. In Sec. IV, we will consider quantum fluctuations
against stability of a fractonic superfluid phase. Although
quantum fluctuation can destroy superfluidity in a purely two
dimensional system, a fractonic superfluid phase may still
stay stable in a quasi two spatial dimensions by the interlayer
coupling.

IV. QUANTUM FLUCTUATIONS

Quantum fluctuations can cause instability of a superfluid
phase (i.e., ODLRO established in classical analysis). In this
section we target on this problem. We first derive an effective
theory for phase fluctuations based on our microscopic many-
fracton model in Eq. (1) and then deal with stability of a
fractonic superfluid phase.

A. Effective theory of the microscopic model:
Coherence length and effective Lagrangian

To include quantum fluctuations, without loss of general-
ity, we start with one classical field configuration φ0(x, t ) =√

ρ0. Around it, φ(x, t ) = √
ρ0 + ρ(x, t )eiθ (x,t ) where two

real fields ρ(x, t ) and θ (x, t ) represent density and phase
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FIG. 2. Illustration of hydrodynamic fields in fractonic superfluid in the presence of a single vortex, for simplicity, in two spatial
dimensions. The direction of an arrow denotes direction of fields and color characterizes strength. The vortex core in a vortex configuration of �

in Eq. (47) is marked by a black dot. The three columns from left to right depict velocity fields v in Eq. (45), v(1) and v(2) in Eq. (46), respectively.

The four rows from top to bottom correspond to different coupling constants: isotropic Ki j = 1
2 κ , intermediate Ki j = ( 0.5κ 0.25κ

0.25κ 0.5κ
), diagonal

Ki j = 1
2 κδi j , and Ki j = (1.5κ κ

κ 0.5κ
) with a positive constant κ . The vector fields � in these cases share the same configuration as in Fig. 1(b).

The charge current for isotropic Ki j vanishes in (a) where θ is an exact solution to Gross-Pitaevskii equation in Eq. (24). The vorticities of

charge and dipole velocity fields are not topological. All the velocity fields are obtained under the same field θ = arctan x2

x1 with winding
number N = 1.
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FIG. 3. Illustration of hydrodynamic fields in fractonic superfluid in the presence of a pair of vortex-antivortex, for simplicity, in two spatial
dimensions. The direction of an arrow denotes direction of fields and color characterizes strength. The vortex core in a vortex configuration
of � in Eq. (47) is marked by a black dot. The three columns from left to right depict velocity fields v in Eq. (45), v(1) and v(2) in Eq. (46),
respectively. The four rows from top to bottom correspond to different coupling constants as those in Fig. 2. The two vortices have the winding
number 1 (left) and −1 (right).
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fluctuations respectively. We have removed the Greek letter
δ in δρ for notation simplicity. We remark that the field θ is
angular valued and should be defined mod 2π . To the second
order, we can derive the effective Lagrangian corresponding
to the microscopic model in Eq. (1),

L = −ρ∂tθ −
d∑

i, j

Ki j

[
ρ2

0 (∂i∂ jθ )2 + 1

4
(∂i∂ jρ)2

]

−
d∑
i

Gi(∂iρ)2 − g

2
ρ2. (49)

The density fluctuation field ρ should satisfy a condition as
an auxiliary field δL

δρ
= 0. The solution takes the form in the

momentum space as

ρ(ω, k) = −iωθ (ω, k)

g + 1
2

(∑d
i, j Ki jk2

i k2
j

) + 2
(∑d

i Gik2
i

) . (50)

In the long-wave length limit,

g � 1

2

⎛
⎝ d∑

i, j

Ki jk
2
i k2

j

⎞
⎠ + 2

(
d∑
i

Gik
2
i

)
, (51)

which requires an upper bound for momentum |k| � 2πξ−1
coh.

ξcoh is the coherence length of the fractonic superfluid and
is determined when the right-hand side and left-hand side in
Eq. (51) equal. So we can safely make the approximation:
ρ(ω, k) = − iωθ (ω,k)

g . Therefore, we obtain an effective La-
grangian for field θ ,

L = 1

2g
(∂tθ )2 − ρ2

0

d∑
i, j

Ki j (∂i∂ jθ )2. (52)

In Eq. (52) since the Gi term is less relevant, we have
neglected it. The same dispersion relation for the field θ can
be given through a classical analysis and we will not go into
details. There are two issues to be addressed here. First, the
effective theory in Eq. (52) is valid only when the length
scale is much larger than the coherence length ξcoh. Thus, the
prediction power of the effective theory becomes questionable
for length scale smaller than or comparable to ξcoh. Second,
θ is in fact an angular-valued field and is defined mod 2π .
Now we just treat as a real valued field, which is enough
for description of the fixed point physics of the fractonic
superfluid phase.

Although the broken symmetry G has d + 1 generators, we
only have one gapless mode θ in Eq. (52). Notice that any
vacuum with a broken U (1) charge symmetry also is one for
symmetry generated by Q(a) and the main effect of a charge
Q(a) is to impose a strong constraint on current Ji so that the
Goldstone mode has a higher-order dispersion relation.

B. Stability of ODLRO: Correlation functions and specific heat

We are ready to include the effect of quantum fluctuations
on correlation C(x) in Eq. (37). The correlator C(x) is related
to an equal-time Green function of the Golstone mode θ(x, 0),

C(x) = ρ0e− 1
2 〈[θ (x,0)−θ (0,0)]2〉, (53)

TABLE II. Comparison between correlators in Eq. (53) of con-
ventional superfluid and isotropic fractonic superfluid at zero tem-
perature after quantum fluctuations are included. d is spatial di-
mension. The effective theories are given by Eqs. (59) and (57),
respectively. The former has c = √

κgρ0 and coherence length ξcoh =
2π

√
κ/(4ρ0g) while the latter with isotropic coupling constant Ki j =

1
2 κ has c = √

κgρ2
0 and coherence length ξcoh = 2π 4

√
κ/4g. A many-

fracton system is fully disordered (marked by ×) in d = 1 and
algebraically ordered (AO) in d = 2. It has a stable ODLRO, i.e.,
a true superfluid (marked by �), when d � 3 at zero temperature.
Here γ is the Euler’s constant.

d Conventional system Many-fracton system

1 ρ0e− γ g
4πc (πr/ξcoh )−

g
2πc AO ρ0e− g

2c (πr−ξcoh/π
3
2 ) ×

2 ρ0e− g
2πc ξ−1

coh � ρ0e− γ g
4πc (r/ξcoh )−

g
2πc AO

�3 ρ0e−g π
d−3

2
2(d−1)c ξ1−d

coh � ρ0e− g
c

π
d
2 −2

2(d−2) ξ2−d
coh �

where the equal-time Green function can be calculated in the
momentum space:

〈[θ (x, 0) − θ (0, 0)]2〉

=
∫

dd kdω

(2π )d+1
(2 − 2e−ik·x )〈θ (ω, k)θ (−ω,−k)〉. (54)

Equation (54) is hard to deal with exactly for a general Ki j . In
the following, we consider two specified cases.

1. Isotropic case Ki j = 1
2 κ for any i, j

We introduce a factor 1
2 in Ki j to simplify our expressions.

In this case, the Goldstone mode θ has a quadratic dispersion
relation,

ω =
√

κgρ2
0 |k|2 ≡ c|k|2, (55)

and it recovers a rotational symmetry. The coherence length
ξcoh is determined by equation g = 1

4κ ( 2π
ξcoh

)
4
, where the Gi

term is less relevant for the upper bound of momentum. So
we have

ξcoh = 2π

(
κ

4g

) 1
4

. (56)

The Lagrangian

L = 1

2g
(∂tθ )2 − 1

2g
c2(∇2θ )2 (57)

possesses a Lifshitz spacetime symmetry and is related to
nonrelativistic gravity [65–67].

The asymptotic behavior of C(x) has been listed in Table II.
We can find that only when our space dimension d > 2 does a
superfluid survive quantum fluctuations. The correlator C(x)
approaches zero in dimension d = 1 and 2 in large distance.
We point out that C(x) decays in a power-law pattern in
d = 2, which is similar to a conventional superfluid in d = 1.
Another aspect of the higher-order dispersion in Eq. (55) is

023267-10



FRACTONIC SUPERFLUIDS PHYSICAL REVIEW RESEARCH 2, 023267 (2020)

specific heat capacity:

cv = (T/c)
d
2

�d−1

2(2π )d
�

(
d

2
+ 2

)
ζ

(
d + 2

2

)
, (58)

where �d−1 is surface area of unit (d − 1) sphere and ζ (s) is
the Riemann ζ function. From Eq. (58), cv is proportional to
T

d
2 in d space dimensions. When a spatial dimension is lower

than 3, the specific heat capacity is physically meaningless.
The result in Eq. (58) for d = 3 is valid under our assumption
of existence of Goldstone mode at finite temperature. On the
other hand, for a conventional superfluid with Lagrangian
L = iφ∗∂tφ − 1

2κ|∇φ|2 − V (φ) with V (φ) in Eq. (12), the
effective theory for the Goldstone mode is

L = 1

2g
(∂tθ )2 − 1

2g
c2(∇θ )2, (59)

where Goldstone mode has a linear dispersion relation ω =√
kgρ0|k| ≡ c|k| and quantum fluctuation will kill a super-

fluid phase in one spatial dimension at zero temperature.
Table II makes a comparison between a conventional and
fractonic superfluid phase. Interestingly, Ref. [61] discussed a
similar effective Lagrangian from a different higher-derivative
model where excitons [71] form a condensate. In our con-
text, the effective Lagrangian in Eq. (57) is a description of
fractonic superfluids in the isotropic case, whose microscopic
origin is given by Eq. (1) and the order parameter is given by
〈�̂〉 in Table I.

2. Diagonal case Ki j = 1
2 κδi j

Now the Goldstone mode θ has a dispersion spectrum

ω =
√

κgρ2
0

√√√√ d∑
i

k4
i ≡ c

√√√√ d∑
i

k4
i . (60)

It does not have a rotational symmetry. We can arrive at the
same conclusion as the isotropic case.

The above analysis just demonstrates that a superfluid
phase or ODLRO cannot survive against quantum fluctuation
when the spatial dimension is lower than three at zero tem-
perature. In particular, in d = 2 quantum fluctuations only
allow an algebraic order. However, similar to superconduc-
tivity in 2D materials, interlayer couplings or a quasi-2D
system can stabilize the fractonic superfluid against quantum
fluctuations. Thermal effect may destroy a fractonic superfluid
phase and the related results will be present in future work. In
Appendix A, we aim to discuss general many-fracton models.

V. CONCLUSION

In this paper, we have studied a many-fracton model in
the microscopic Hamiltonian (1) that lacks of mobility of a

single particle. The model in Eq. (1) conserves both charge
and total dipole moments. We have derived nontrivial Euler-
Lagrange equation and the Noether currents. By taking a
Mexican-hat potential, we deduce a time-dependent Gross-
Pitaevskii-type equations. We finally end up with fractonic
superfluidity from both classical and quantum levels of length
scale much larger than coherence length ξcoh, including super-
current, topological vortices, ODLRO stability against gapless
Goldstone modes and specific heat in low temperatures. The
Hamiltonian in Eq. (1) is expected to be realized in cold
atomic gas subjected to an optical lattice [68,69], especially
when a trap is considered, and opens a new horizon to search
for exotic phases of matter. There are many interesting direc-
tions for future investigation. For example, we can discuss a
fractonic superconducting phase by allowing a fracton field �̂

in Eq. (1) to satisfy anticommutation relations with possible
pairing field �i j ∼ �̂∂i∂ j�̂ − ∂i�̂∂ j�̂. And then, the BEC-
BCS crossover of a fracton system may show interesting
physical consequence. Despite of highly nonlinearity, numer-
ically solving the Gross-Pitaevskii equations will be very
attractive. One can consider fractonic versions of other types
of ordered phases, such as nematic and stripe orders and dis-
cuss their competitions. One may also consider a symmetric
phase formed by condensing unconventional vortices in the
fractonic superfluid. By decorating on-site symmetry charge
on vortices, one may construct SPTs with both higher rank
symmetry and usual on-site symmetry, following the similar
methods in usual SPT constructions [12–15,17].
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APPENDIX: GENERAL MANY-FRACTON MODELS

We can generalize the many-fracton model in Eq. (1) into
a large class. We begin with a Hamiltonian H = ∫

dd xHN

where the Hamiltonian density HN reads

HN =
d∑

i1i2···iN+1

Ki1i2···iN+1 (�̂†)N+1
(∇i1i2···iN+1

log �̂†
)
�̂N+1

× (∇i1i2···iN+1
log �̂

) + V(�̂†, �̂), (A1)

where ∇i1i2···in = ∂i1∂i2 · · · ∂in and the summation for each
index is over all spatial dimensions. The coupling constant
Ki1i2···iN+1 can be anisotropic and it is fully symmetric with its
indexes. When N = 0, Eq. (A1) reduces to a Gaussian theory
and when N = 1, it reduces to the many-fracton model in
Eq. (1) except Gi term. Here some models are listed

H0 =
d∑
i

Ki∂i�̂
†∂i�̂ + V(�̂†, �̂), (A2)

H2 =
d∑

i, j,k

Ki jk[2∂i�̂
†∂ j�̂

†∂k�̂
†− 3�̂†∂i�̂

†∂ j∂k�̂
†+ (�̂†)2∂i∂ j∂k�̂

†]· [2∂i�̂∂ j�̂∂k�̂− 3�̂∂i�̂∂ j∂k�̂+ �̂2∂i∂ j∂k�̂]+ V (�̂†, �̂),

(A3)
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H3 =
d∑

i, j,k,l

Ki jkl [6∂i�̂
†∂ j�̂

†∂k�̂
†∂l�̂

† − 12�̂†∂i�̂
†∂ j�̂

†∂k∂l�̂
† + 4(�̂†)2∂i�̂

†∂ j∂k∂l�̂
†

+ (�̂†)2(3∂i∂ j�̂
†∂k∂l�̂

† − �̂†∂i∂ j∂k∂l�̂
†)][6∂i�̂∂ j�̂∂k�̂∂l�̂ − 12�̂∂i�̂∂ j�̂∂k∂l�̂

+ 4�̂2∂i�̂∂ j∂k∂l�̂ + �̂2(3∂i∂ j�̂∂k∂l�̂ − �̂∂i∂ j∂k∂l�̂)] + V(�̂†, �̂). (A4)

Under the standard coherent-state path integral, we can
write down the Lagrangian L = iφ∗∂tφ − H(φ∗, φ). Al-
though log φ is a multivalued function and has singularity,
the kinetic term turns out to be well defined. The system in
Eq. (A1) is invariant under a transformation

φ → exp(iδθ )φ, (A5)

where δθ is polynomials of degree N of local coordinates

δθ =
∑
i1···iN

Di1i2···iN xi1 xi2 · · · xiN +· · ·+
∑

i

Dix
i + D, (A6)

where Di1···il is a symmetric real tensor of rank-l with respect
to spatial indexes. And the related conserved charges have the
form as

Q[C(xa )] =
∫

dd xρC(xa), (A7)

where C(xa) is as a homogeneous polynomials with degree-
p and p � N . We dub a symmetry generated by charges in

Eq. (A7) as a rank-Nsymmetry [51,70]. In this sense, a global
U (1) is a rank-0 symmetry and G for Hamiltonian in Eq. (1)
is a rank-1 symmetry.

Now we focus on an isotropic coupling constant
Di1i2···iN+1 = 1

2κ . If we take a Mexican-hat potential chemi-
cal potential μ > 0, then we have degenerate vacuum with
finite uniform density distribution ρ = ρ0. Through the same
processes, we can derive an effective theory for the quantum
fluctuation field θ after condensation,

L = 1

2g
(∂tθ )2 − 1

2g
c2(∇N+1θ )2. (A8)

The effective theory describes Goldstone mode θ with a
dispersion relation ω =

√
κgρN+1

0 |k|N+1 ≡ c|k|N+1. The cal-
culation on the correlator C(x) shows that C(x) decays to
zero when spatial dimension is lower than d < N + 2 at zero
temperature. In particular, C(x) decays in a power-law pattern
at zero temperature at spatial dimension d = N + 1.
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[65] P. Hořava, Membranes at quantum criticality, J. High Energy
Phys. 03 (2009) 020.
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