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Recent advances in deep learning and neural networks have led to an increased interest in the application
of generative models in statistical and condensed matter physics. In particular, restricted Boltzmann machines
(RBMs) and variational autoencoders (VAEs) as specific classes of neural networks have been successfully ap-
plied in the context of physical feature extraction and representation learning. Despite these successes, however,
there is only limited understanding of their representational properties and limitations. To better understand the
representational characteristics of RBMs and VAEs, we study their ability to capture physical features of the
Ising model at different temperatures. This approach allows us to quantitatively assess learned representations
by comparing sample features with corresponding theoretical predictions. Our results suggest that the considered
RBMs and convolutional VAEs are able to capture the temperature dependence of magnetization, energy, and
spin-spin correlations. The samples generated by RBMs are more evenly distributed across temperature than
those generated by VAEs. We also find that convolutional layers in VAEs are important to model spin correlations
whereas RBMs achieve similar or even better performances without convolutional filters.

DOI: 10.1103/PhysRevResearch.2.023266

I. INTRODUCTION

After the successful application of deep learning and neural
networks in speech and pattern recognition [1], there is an
increased interest in applying generative models in condensed
matter physics and other fields [2,3]. For example, restricted
Boltzmann machines (RBMs) [4–6], as one class of stochastic
neural networks, were used to study phase transitions [7,8],
represent wave functions [9,10], and extract features from
physical systems [11,12]. Furthermore, variational autoen-
coders (VAEs) [13] have been applied to different physical
representation learning problems [14]. In addition to the ap-
plication of generative neural networks to physical systems,
connections between statistical physics and the theoretical
description of certain neural network models helped to gain
insights into their learning dynamics [11,15–17].

Despite these developments, the representational charac-
teristics and limitations of neural networks have been only
partially explored. To better understand the representational
properties of RBMs and VAEs, we study their ability to
capture the temperature dependence of physical features of the
Ising model. This allows us to quantitatively compare learned
distributions with corresponding theoretical predictions of
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a well-characterized physical system. We train both neural
networks with realizations of Ising configurations and use the
trained neural networks to generate new samples. Previous
studies utilized single RBMs for each temperature to learn the
distribution of Ising configurations that consist of a few dozen
spins [15,18,19]. Our work complements Refs. [15,18,19] in
three ways. First, we use system sizes that are about one
order of magnitude larger than in previous studies. This has
profound implications for monitoring the learning progress
of RBMs. For the system sizes we consider, it is computa-
tionally not feasible anymore to directly evaluate the partition
function as outlined in Ref. [18], and we therefore provide
an overview of loss-function approximations that allow us
to monitor RBMs during training. Second, instead of using
single machines for each temperature, we focus on the training
of one generative neural network for all temperatures and
use classification networks to determine the temperatures of
generated Ising configurations. Our results indicate that this
type of training can improve the quality of VAE samples
substantially. Third, in addition to RBMs, we also consider
nonconvolutional and convolutional VAEs and quantitatively
compare different neural network architectures in terms of
their ability to capture magnetization, energy, and spin-spin
correlations.

Our paper proceeds as follows. In Sec. II we give a brief
introduction to generative models and summarize the concepts
that are necessary to train RBMs and VAEs. To keep track of
the learning progress of both models, we provide an overview
of different monitoring techniques in Sec. III. In Sec. IV we
apply RBMs and VAEs to learn the distribution of Ising spin
configurations for different temperatures. We conclude our
paper and discuss our results in Sec. V.

2643-1564/2020/2(2)/023266(15) 023266-1 Published by the American Physical Society

https://orcid.org/0000-0003-1700-1897
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.023266&domain=pdf&date_stamp=2020-06-02
https://doi.org/10.1103/PhysRevResearch.2.023266
https://creativecommons.org/licenses/by/4.0/


FRANCESCO D’ANGELO AND LUCAS BÖTTCHER PHYSICAL REVIEW RESEARCH 2, 023266 (2020)

FIG. 1. Restricted Boltzmann machine. An RBM is composed of
one visible layer (blue) and one hidden layer (red). In this example,
the respective layers consist of six visible units {vi}i∈{1,...,6} and four
hidden units {hi}i∈{1,...,4}. The network structure underlying an RBM
is bipartite.

II. GENERATIVE MODELS

Generative models are used to approximate the distribution
of a data set D = {x1, . . . , xm} whose entities are samples
xi ∼ p̂ drawn from a distribution p̂ (1 � i � m). Usually, the
distribution p̂ is unknown and thus approximated by a gen-
erative model distribution p(θ ), where θ is a corresponding
parameter set. We can think of generative models as neural
networks whose underlying weights and activation function
parameters are described by θ . Once trained, generative mod-
els are used to generate new samples similar to the ones of
the considered data set D [11]. To quantitatively study the
representational power of generative models, we consider two
specific architectures: (1) RBMs and (2) VAEs. We introduce
the basic concepts behind RBMs and VAEs in Secs. II A and
II B.

A. Restricted Boltzmann machine

RBMs are a particular type of stochastic neural networks
and were first introduced by Smolensky in 1986 under the
name Harmonium [20]. In the early 2000s, Hinton developed
some efficient training algorithms that made it possible to
apply RBMs in different learning tasks [6,21]. The network
structure of an RBM is composed of one visible and one
hidden layer. In contrast to Boltzmann machines [4], no
intralayer connections are present in RBMs (i.e., the network
structure of RBMs is bipartite). We show an illustration of an
RBM network in Fig. 1.

Mathematically, we describe the visible layer by a vector
v = (v1, . . . , vm)T , which consists of m visible units. Each
visible unit represents one element of the data set D. Similarly,
we represent the hidden layer by a vector h = (h1, . . . , hn)T ,
which is composed of n hidden units. To model the distribu-
tion of a certain data set, hidden units serve as additional de-
grees of freedom to capture the complex interaction between
the original variables. Visible and hidden units are binary
[i.e., vi ∈ {0, 1} (1 � i � m) and h j ∈ {0, 1} (1 � j � n)]. We
note that there also exist other formulations with continuous
degrees of freedom [22]. In an RBM, connections between
units vi and h j are undirected, and we describe their weights
by a weight matrix W ∈ Rm×n with elements wi j ∈ R. Fur-
thermore, we use b ∈ Rm and c ∈ Rn to account for biases in
the visible and hidden layers. According to these definitions,
there is an energy

E (v, h) = −bT v − cT h − vT W h (1)

associated with every configuration (v, h). The probability of
the system to be found in a certain configuration (v, h) is
described by the Boltzmann distribution [4,11]

p(v, h) = 1

Z
e−E (v,h), (2)

where Z = ∑
{v,h} e−E (v,h) is the canonical partition function.

The sum
∑

{v,h} is taken over all possible configurations
{v, h}.

Due to the absence of intralayer connections in RBMs,
hidden (visible) variables are mutually independent given the
visible (hidden) ones. Therefore, the corresponding condi-
tional probabilities are [23]

p(v|h) =
m∏

i=1

p(vi|h) and p(h|v) =
n∏

j=1

p(h j |v), (3)

where

p(h j = 1|v) = σ

(
c j +

m∑
i=1

wi jvi

)
, (4)

p(vi = 1|h) = σ

⎛
⎝bi +

n∑
j=1

wi jh j

⎞
⎠, (5)

and σ (x) = 1/[1 + exp(−x)] denotes the sigmoid function.
We now consider a data set D that consists of N i.i.d. re-

alizations {x1, . . . , xN }. Each realization xk = (xk1, . . . , xkm)T

(1 � k � N) in turn consists of m binary elements. We asso-
ciate these elements with the visible units of an RBM. The
corresponding log-likelihood function is [23]

logL(x, θ ) = log p(x1, . . . , xN ; θ ) = log
N∏

k=1

p(xk ; θ )

=
N∑

k=1

log p(xk ; θ ) =
N∑

k=1

log
∑
{h}

e−E (xk ,h)

Z

=
N∑

k=1

log

⎡
⎣ 1

Z
ebT xk

n∏
j=1

(
1 + e(c j+

∑m
i=1 wi j xki )

)⎤⎦

= −N log(Z ) +
N∑

k=1

bT xk

+
N∑

k=1

n∑
j=1

log
(
1 + e(c j+

∑m
i=1 wi j xki )

)
, (6)

where the parameter set θ describes weights and biases and
the partition function is

Z =
∑
{h}

ecT h
m∏

i=1

(
1 + ebi+

∑n
j=1 wi j h j

)
. (7)

Based on Eq. (6), we perform a maximum-likelihood estima-
tion of RBM parameters. We may express the log-likelihood
function in terms of the free energy F = − log Z [24].
This yields logL = NF − ∑N

k=1 Fc(xk ), where Fc(xk ) =
− log (

∑
{h} e−E (xk ,h) ) is the (clamped) free energy of an RBM

whose visible states are clamped to the elements of xk [25].
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FIG. 2. Block Gibbs sampling in an RBM. We show an example of an RBM with a visible layer that consists of six visible units and a
hidden layer that consists of four hidden units. Because of the bipartite network structure of RBMs, units within one layer can be grouped
together and updated in parallel (block Gibbs sampling). Initially visible units (green) are determined by the data set. Hidden (red) and visible
(blue) units are then updated in an alternating manner.

To train an RBM, we have to find a set of parameters θ

that minimizes the difference between the distribution pθ of
the machine and the distribution p̂ of the data. One possibility
is to quantify the dissimilarity of these two distributions in
terms of the Kullback-Leibler (KL) divergence (i.e., relative
entropy) [4]

DKL( p̂(x)||pθ (v)) =
∑

x

p̂(x) log
p̂(x)

pθ (v)
� 0. (8)

For continuous distributions, the sum in Eq. (8) has to be
replaced by a corresponding integral. As an alternative to
KL-divergence minimization, it is possible to minimize the
negative log likelihood. This optimization problem can be
solved using a stochastic gradient descent algorithm [26], so
that the model parameters are iteratively updated:

θ t+1
i = θ t

i − η
∂R(D, θ t )

∂θ t
i

, (9)

where R(D, θ ) denotes the loss function (i.e., negative log
likelihood or KL divergence) and η is the corresponding
learning rate. In the case of an RBM, the derivatives of the
loss function are

∂R(D, θ )

∂θ
= Ex∼p̂(x)

[
∂E

∂θ

]
− Ev∼p(v)

[
∂E

∂θ

]
, (10)

∂R(D, θ )

∂wi j
= 〈p̂(h j = 1|x)xi〉x∼p̂(x)

−〈p(h j = 1|v)vi〉v∼p(v), (11)

∂R(D, θ )

∂b j
= 〈xi〉x∼p̂(x) − 〈vi〉v∼p(v), (12)

∂R(D, θ )

∂ci
= 〈p̂(h j = 1|x)〉x∼p̂(x) − 〈p(h j = 1|v)〉v∼p(v),

(13)

where 〈·〉 indicates the ensemble average over different real-
izations of the quantities of interest. According to Eqs. (11)
to (13), weights and biases are updated to minimize the
differences between data and model distributions.

The bipartite network structure of RBMs allows us to
update units within one layer in parallel [see Eqs. (4) and (5)].
We illustrate this so-called block Gibbs sampling procedure in
Fig. 2. After a certain number of updates of the visible and
hidden layers, the model distribution pθ equilibrates. It has
been shown empirically [6] that a small number of updates
may be sufficient to train an RBM according to Eqs. (11) to
(13). This technique is also known as k-contrastive divergence
(CD-k), where k denotes the number of Gibbs sampling

steps. An alternative to CD-k methods is persistent contrastive
divergence (PCD) [27]. Instead of using the environment data
as initial condition for the sampling process (see Fig. 2),
PCD uses the final state of the model from the previous
sampling process to initialize the current one. The idea behind
PCD is that the model distribution changes only slightly after
updating the model parameters θ according to Eq. (9) when
using a small learning rate. For further details on the RBM
training process, see Sec. IV A.

B. Variational autoencoder

A variational autoencoder (VAE) is a graphical model
for variational inference and consists of an encoder and a
decoder network. It belongs to the class of latent variable
models, which are based on the assumption that the unknown
data distribution p̂ can be described by random vectors z ∈
Rd and an appropriate prior p(z) in a low-dimensional and
unobserved (latent) space. For a given prior p(z), we need a
corresponding probabilistic model pθ (x, z) with parameter set
θ to describe the data-generation process. To infer pθ (x, z),
we need to maximize the marginal log likelihood log pθ (x)
that we can rewrite as follows [28]:

log pθ (x) = log
∫

pθ (x, z) dz = log
∫

pθ (x|z)p(z) dz

= log
∫

pθ (x|z)p(z)
qφ (z|x)

qφ (z|x)
dz

� Ez∼qφ (z|x)[log pθ (x|z)] − DKL[qφ (z|x)||p(z)]

:= E (x, θ, φ), (14)

where we applied Jensen’s inequality in the fourth step. The
integration over the latent variable z in the second step is usu-
ally intractable, and we therefore introduced the approximate
posterior distribution qφ (z|x) with parameter set φ and use
the variational-inference principle to obtain a tractable bound
of the marginal log likelihood, the so-called evidence lower
bound (ELBO) [13]. We use p(z) = N (0, I) as the latent
variable prior and E (x, θ, φ). The ELBO is a tractable lower
bound of the log likelihood and can thus be maximized to
infer pθ (x|z). The term E[log pθ (x|z)] may be interpreted as a
reconstruction error, because maximizing it makes the output
of the decoder more similar to the input of the encoder and the
term DKL[qφ (z|x)||p(z)] ensures that the latent representation
is Gaussian such that data points with similar features have a
similar Gaussian representation.

So far, we outlined the general idea behind latent variable
models, but we still need to specify the approximate
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FIG. 3. Variational autoencoder. A VAE is composed of two
neural networks: the encoder (yellow) and decoder (green). In this
example, each network consists of an input and an output layer (mul-
tiple layers are also possible). The dotted black arrow between the
two networks represents the reparameterization trick [see Eq. (17)].
Each unit in the input layer of the decoder requires a corresponding
mean μ and variance σ as input.

(variational) posterior qφ (z|x) and model likelihood
log pθ (x|z). A common choice for the approximate posterior
is a factorized Gaussian distribution

qφ (z|x) = N (z|μ, diag(σ2)) =
d∏

j=1

N
(
z j |μ j, σ

2
j

)
, (15)

where μ = μ(x) and σ = σ(x) denote mean and standard
deviation vectors of the model. Given the binary nature of our
data, we describe the model likelihood pθ (x|z) by a Bernoulli
distribution with Pr(xi = 1) = pi:

log pθ (x|z) = log
m∏

i=1

pxi
i (1 − pi )

1−xi

=
m∑

i=1

xi log pi + (1 − xi ) log(1 − pi ). (16)

Standard inference frameworks would determine the varia-
tional parameters per sample {μk, σk, pk} (1 � k � N). In-
stead, variational autoencoders utilize encoder and decoder
networks to infer qφ (z|x) and pθ (x|z) (see Fig. 3). The en-
coder maps the input data to the variational parameters of
the approximate posterior [i.e., xk −→ {μk (x), σk (x)}], and
the decoder maps a certain point in the latent parameter
space to the corresponding likelihood [i.e., z −→ p(z)]. This
procedure allows us to amortize the cost of inference by
learning only the parameters of the two neural networks.

To summarize, a VAE is based on an encoder network that
outputs the parameters (μ(x), σ(x)) of the latent Gaussian
representation qφ (z|x) of p(z|x). The second neural network
in a VAE is a decoder that uses samples of the Gaussian
qφ (z|x) as input to generate new samples according to the
distribution pθ (x|z) (see Fig. 3). We estimate all parameters
by maximizing the ELBO using backpropagation [13] and
therefore need a deterministic and differentiable map between
the output of the encoder and the input of the decoder w.r.t.

μ and σ. To calculate the corresponding derivatives in the
ELBO, we need to express the random variable z as some
differentiable and invertible transformation g of an other aux-
iliary random variable ε [i.e., z = g(μ, σ, ε)]. We employ the
so-called reparameterization trick [13] that uses g(μ, σ, ε) =
μ + σ � ε such that

z = μ + σ � ε, (17)

where ε ∼ N (0, I) and � is the elementwise product.
To learn the distributions of physical features of the Ising

model for different temperatures (i.e., classes), we use a con-
ditional VAE (cVAE) [29] (see Sec. IV B for further details).
The advantage of cVAEs over standard VAEs is that they
allow to condition the encoder and decoder on the label of
the data. We use l to denote the total number of classes and
c ∈ {1, . . . , l} is the label of a certain class. The data in a
certain class is then distributed according to p(z|c) and the
model distributions of the cVAE are given by qφ (z|x) and
pθ (x|z, c). These modified distributions are used in the ELBO
of a cVAE. From a practical point of view, we have to provide
extra dimensions in the input layers of the decoder of cVAEs
to account for the label of a certain class.

C. Comparison of the two models

In Secs. II A and II B, we outlined the basic ideas behind
RBMs and VAEs and discussed how they can be used as
generative neural networks that are able to extract and learn
features of a data set. Both models have in common that they
create a low-dimensional representation of a given data set and
approximate the underlying distribution minimizing the error
in the reconstruction [see Eqs. (8) and (14)].

One major difference between the two models is that the
compression and decompression is performed by the same
network in the case of an RBM. For a VAE, however, two net-
works (encoder and decoder) are used to perform these tasks.
A second important difference is that the latent distribution is
a product of Bernoulli distributions for RBMs and a product
of Gaussians for VAEs. Therefore, the representational power
of RBMs is restricted to 2m, where m is the number of hidden
units. In the case of VAEs, it is Rd where d is the dimension of
the latent space. The greater representational power of a VAE
may be an advantage, but it could also result in overfitting the
data.

III. MONITORING LEARNING

To monitor the learning progress of RBMs and VAEs,
we can keep track of the reconstruction error (i.e., the
squared Euclidean distance between the original data and its
reconstruction). Another monitoring approach uses the binary
cross-entropy (BCE) [30]

R(x) = −
m∑

i=1

xi log pi(x) + (1 − xi ) log[1 − pi(x)], (18)

where xi ∈ {0, 1} and pi(x) is the reconstruction probability
of bit i. In the following subsections, we describe additional
methods that allow us to monitor approximations of log
likelihood [see Eq. (6)] and KL divergence [see Eq. (8)].
Approximations are important since log likelihood and KL
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divergence can be calculated exactly only for small system
sizes. In Ref. [18], the partition function of RBMs has been
computed directly since the considered system sizes contained
only a few dozen spins.

A. Pseudo-log likelihood

One possibility to monitor the learning progress of an RBM
is the so-called pseudo-log likelihood [31]. We consider a
general approximation of an m-dimensional parametric dis-
tribution:

p(x; θ ) =
m∏

i=1

p

⎛
⎝xi

∣∣∣∣
i−1⋂
j=1

x j ; θ

⎞
⎠

≈
m∏

i=1

p(xi|x1, . . . , xi−1, xi+1, . . . , xm; θ )

=
m∏

i=1

p(xi|x−i; θ ) := P (x; θ ), (19)

where x−i is the set of all variables apart form xi. We now take
the logarithm of P (x; θ ) and obtain the pseudo-log likelihood

logP (x; θ ) =
m∑

i=1

log p(xi|x−i ). (20)

Based on Eq. (20), we conclude that the pseudo-log likelihood
is the sum of the log probabilities of each xi conditioned on all
other states apart from xi. The summation over all states xi can
be computationally expensive, so we approximate logP (x; θ )
by the log-likelihood estimate [32]

log P̃ (x; θ ) = m log p(xi|x−i ), i ∼ U (0, m), (21)

where we sample uniformly to efficiently approximate the
pseudo-log likelihood. For RBMs, the approximated pseudo-
log likelihood is

log P̃ (x; θ ) = m log

(
e−Fc (x)

e−Fc (x̃) + e−Fc (x)

)
, (22)

where x̃ corresponds to the vector x but with a flipped ith
component. Equation (22) follows from the identity

p(xi|x−i ) = p(xi, x−i )

p(x−i )
= p(xi, x−i )∑

xi∈{0,1} p(xi, x−i )

= p(x)

p(x̃) + p(x)
= e−Fc (x)

e−Fc (x̃) + e−Fc (x)
. (23)

B. Estimating KL divergence

In most unsupervised learning problems, except some syn-
thetic problems such as Gaussian mixture models [33], we do
not know the distribution underlying a certain data set. We are
given only samples and can therefore not directly determine
the KL divergence [see Equation 8]. Instead, we have to
use some alternative methods. According to Ref. [34], we use
the nearest-neighbor (NN) estimation of the KL divergence.
Given two continuous distributions p and q and N and Ñ
corresponding i.i.d. m-dimensional samples {x1, . . . , xN } and

{y1, . . . , yÑ }, we want to estimate DKL(p||q). For two con-
sistent estimators [35] p′ and q′, the KL divergence can be
approximated by

DKL(p||q) =
∑

x∼p(x)

p(x) log
p(x)

q(x)

≈ 1

N

N∑
i=1

log
p′(xi )

q′(xi )
. (24)

We construct the consistent estimators as follows. Let ρk (xi )
be the Jaccard distance [36] between xi and its k-NN in the
subset {x j} for j 
= i and νk (xi ) the Jaccard distance between
xi and its k-NN in the set {yl}. We obtain the KL divergence
estimate

D̂(p||q) = m

N

N∑
i=1

log
νk (xi )

ρk (xi )
+ log

Ñ

N − 1
. (25)

In the context of generative models this means that we can
calculate the KL divergence in terms of the Jaccard distances
ρk (xi ) and νk (xi ).

IV. LEARNING THE ISING MODEL

We now use the generative models of Sec. II to learn the
distribution of Ising configurations at different temperatures.
This enables us to examine the ability of RBMs and cVAEs to
capture the temperature dependence of physical features such
as energy, magnetization, and spin-spin correlations. We first
focus on the training of RBMs in Sec. IV A and in Sec. IV B
we describe the training of cVAEs. However, before focusing
on the training, we give a brief overview of some relevant
properties of the Ising model.

The Ising model is a mathematical model of magnetism
and describes the interactions of spins σi ∈ {−1, 1} (1 � i �
m) according to the Hamiltonian [37]

H({σ }) = −J
∑
〈i, j〉

σiσ j − H
∑

i

σi, (26)

where 〈i, j〉 denotes the summation over nearest neighbors
and H is an external magnetic field. We consider the ferro-
magnetic case with J = 1 on a two-dimensional lattice with
32 × 32 sites. In an infinite two-dimensional lattice, the Ising
model exhibits a second-order phase transition at T = Tc =
2/ log(1 + √

2) ≈ 2.269 [37,38]. To train RBMs and cVAEs,
we generate 20 × 104 realizations of spin configurations at
temperatures T ∈ {1.5, 2, 2.5, 2.75, 3, 4} using the M(RT)2

algorithm [37,39]. In previous studies, RBMs were applied to
smaller systems with only about 100 spins to learn the distri-
bution of spin configurations with one RBM per temperature
(see Refs. [15,18] for further details).

We also consider the training of one RBM per temper-
ature and compare the results with those obtained by a
single RBM and cVAE that were trained for all tempera-
tures. If RBMs and cVAEs are able to learn the distribu-
tion of Ising configurations {σ } at a certain temperature, the
model-generated samples should have the same (spontaneous)
magnetization, energy, and spin-spin correlations as the
M(RT)2 samples. We compute the spontaneous magnetization
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FIG. 4. Evolution of physical features during training. We show the evolution of the magnetization M(T ) (a), energy E (T ) (b), and
correlation function G(r, T ) (c) for the training of a single RBM at T = 2.75. Dashed lines and shaded regions indicate the mean and standard
deviation of the corresponding M(RT)2 samples and different colors in the plot of G(r, T ) represent different radii r.

according to

MS (T ) = lim
H→0+

〈
1

m

m∑
i=1

σi

〉
. (27)

Furthermore, we determine the spin-spin correlations between
two spins σi and σ j at positions ri and r j :

G(ri, r j ) = 〈(σi − 〈σi〉)(σ j − 〈σ j〉)〉 = 〈σiσ j〉 − 〈σi〉〈σ j〉.
(28)

We use translational-invariance and rewrite Eq. (28) as

G(ri, r j, T ) = G(r, T ) = 〈sisi+r〉 − M2
S (T ), (29)

where r = |ri − r j | is the Euclidean distance between spins
σi and σ j . The correlation function G(r, T ) quantifies the
influence of one spin on another at distance r.

A. Training RBMs

We consider all 20 × 104 samples for T ∈
{1.50, 2.0, 2.5, 2.75, 3.0, 4.0} and first train one RBM per
temperature using the ADAM optimizer [40] with a five-step
PCD approach (see Sec. II A). For all machines, we use the
same network structure and training parameters and set the
number of hidden units to n = 900. The number of visible
units is equal to the number of spins (i.e., m = 322 = 1024).
We initialize each Markov chain with uniformly at random
distributed binary states {0, 1}, train over 200 epochs, and
repeat this procedure 10 times. We set the learning rate to
η = 10−4 and consider minibatches of size 128. In addition,
we encourage sparsity of the weight matrix W by applying L1
regularization with a regularization coefficient of λ = 10−4.
That is, we consider an additional contribution −λ||W ||1 in
the log likelihood and use

logL′(x, θ, λ) = logL(x, θ ) − λ||W ||1 (30)

instead of Eq. (6). Thus, minimizing − logL′(x, θ, λ) means
that we are also minimizing the 1-norm ||W ||1 (i.e., the
maximum absolute column sum) of the weight matrix W . We
initialize all weights in W according to a Gaussian distribution

with the glorot initializer [41] and biases b and c with uni-
formly distributed numbers in the interval [0,0.1]. In Fig. 4 we
show the evolution of magnetization, energy, and correlations
during training of an RBM for Ising samples at T = 2.75.
We observe that it takes about 1500 epochs of training to
properly capture magnetization fluctuations, energy, and spin
correlations.

In addition to using one RBM per temperature, we also
train one RBM for all temperatures. We use the same samples
and training parameters as before. However, we add additional
visible units to encode the temperature information of each
training sample. For the training of this RBM, we start from a
random initial configuration, train over 400 epochs, and repeat
this procedure 10 times.

To monitor the training progress, we tested the considered
models every 20 epochs on 10% of the data by monitoring
reconstruction error, binary cross-entropy, pseudo-log likeli-
hood, and KL divergence and its inverse (see Sec. III). We
compute reconstruction error and binary cross-entropy based
on a single Gibbs sampling step. For the KL divergence,
we generated 12 × 103 samples by performing 103 sampling
steps and keeping the last 102 samples. We repeated this
procedure 20 times for each temperature and averaged over
minibatches of 256 samples to have better estimators.

B. Training cVAEs

We train one cVAE for all temperatures and consider an
encoder that consists of three convolutional layers with 32, 64,
and 64 kernels (or filters) of size 3 [42] and a rectified linear
unit (ReLU) as activation function. Each convolutional layer
is followed by a maxpool layer to downsample the “pictures.”
In a maxpool layer, only the maximum values of subregions
of an initial representation are considered. To regularize the
cVAE, we use batchNormalization [43] and a dropout rate of
0.5 [44]. The last layer is a fully connected flat layer with
400 units (200 mean and 200 variance) to represent the 200
dimensional Gaussian latent variable z.

For the decoder, we use an input layer that consists of
200 units to represent the latent variable z and concatenate
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FIG. 5. Physical features of RBM and convolutional VAE Ising samples. We use RBMs and convolutional cVAEs to generate 20 × 104

samples of Ising configurations with 32 × 32 spins for temperatures T ∈ {1.5, 2, 2.5, 2.75, 3, 4}. We show the magnetization M(T ), energy
E (T ), and correlation function G(r, T ) for neural network and corresponding M(RT)2 samples. In panels (a)–(c), we separately trained one
RBM per temperature, whereas we used a single RBM for all temperatures in panels (d)–(f). In panels (g)–(i), we show the behavior of M(T ),
E (T ), and G(r, T ) for samples that are generated with a convolutional cVAE that was trained for all temperatures. Error bars are smaller than
the markers.

it with the additional temperature labels. We upsample their
dimension with a fully connected layer of 2048 units that are
reshaped to be fed into three deconvolutional layers. The num-
ber of filters in these deconvolutional layers are 64, 64, and 32
with filter size 3 and each deconvolutional layer is followed
by an upsampling layer to upsample the dimension of the
“pictures.” The last layer of the encoder is a deconvolutional

layer with one single filter to have a single sample as output.
We train the complete architecture over 103 epochs using the
ADAM optimizer [40] and a learning rate of η = 10−4. During
training, we keep track of the ELBO [see Eq. (14)] and the KL
divergence and its inverse (see Sec. III) for 10% of the data.

We also consider nonconvolutional VAE architectures in
Appendix A. However, in the absence of convolutional layers,
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FIG. 6. Relative frequencies of samples at different temperatures.
We show the relative frequencies of samples that are obtained by
starting trained RBMs (a) and convoluational cVAEs (b) from ran-
dom initial configurations. The data are based on 20 × 104 samples
for each temperature.

we found that some physical features are not well captured
anymore (see Appendix A for further details).

C. Training classifier

In the case of single RBMs and cVAEs that we train for
all temperatures, we have to use a classifier to determine the
temperature of the generated samples. We consider a classi-
fier network that consists of two convolutional layers with,
respectively, 32 and 64 filters and four fully connected layers
of [256,128,64,32] units with a ReLU activation function and
stride 2 convolution. Similar to Eq. (30), we regularize all
layers using a L2 regularizer with a regularization coefficient
of 0.01. The last layer is a softmax fully connected layer
that outputs the probability of a sample to belong to each
temperature class, and we determine the sample temperature
by identifying the highest probability class. We trained the
model for 100 epochs with the ADAM optimizer [40] and a
learning rate of 10−4. We monitor both the test loss (i.e.,
categorical cross-entropy) and accuracy. With this model,
we achieve a test accuracy of 89% for the considered six
temperature classes.

D. Generating Ising samples

After training both generative neural networks with
20 × 104 realizations of Ising configurations at different

temperatures [45], we can now study the ability of RBMs
and cVAEs to capture physical features of the Ising model. To
generate samples from an RBM, we start 200 Markov chains
from random initial configurations whose mean corresponds
to the mean of spins in the data at the desired temperature.
This specific initialization together with the encoding of cor-
responding temperature labels helps sampling from single
RBMs that were trained for all temperatures. We perform
103 sampling steps, keep the last 102 samples, and repeat
this procedure 2 × 102 times for each temperature. The total
number of samples is therefore 20 × 104. For the trained
cVAE, we sample from the decoder using 20 × 103 200-
dimensional vectors with normally distributed components
for each temperature. We concatenate these vectors with the
respective temperature labels and use them as input of the
decoder. For the single RBM and cVAE that we trained for all
temperatures, we use the classifier (see Sec. IV C) to identify
the temperature of the newly generated patterns.

We show the distribution of RBM and cVAE samples
over different temperature classes in Fig. 6. For both neural
networks, the relative frequency of samples with temperature
T � 2.5 is larger than for lower temperatures. In addition,
the results of Fig. 6 suggest that the considered convolutional
cVAE has difficulties to generate samples for T ≈ Tc ≈ 2.269.
Nonconvolutional VAEs suffer from the same problems and
also have difficulties to properly capture physical features (see
Appendix A). Interestingly, we do not observe this issue for
the RBM samples in Fig. 6.

In general, patterns at criticality are difficult to learn and
generate since they exhibit long-range correlation effects. One
possibility to enforce the generation of VAE samples at Tc

is to determine the latent representation of samples at the
critical temperature and use slightly perturbed versions of
these samples as input in the decoder.

Next, we determine magnetization, energy, and correlation
functions of the generated samples at different temperatures
(see Fig. 5). In the top panel of Fig. 5, we observe that RBMs
that were trained for single temperatures are able to capture
the temperature dependence of magnetization, energy, and
spin correlations. In the case of single RBMs and convolu-
tional cVAEs that were trained for all temperatures, we also
find that the aforementioned physical features are captured
well. However, our results indicate that nonconvolutional
VAEs have difficulties in capturing magnetization, energy, and
spin correlations (see Appendix A for further details).

Convolutional layers have been proven effective in image
classification [46–48] and generation [49]. The advantage of
convolutional architectures is their ability to model coarse-
grained (“global”) and fine-grained (“local”) features of a
given data set. The application of convolutional layers al-
lows us to account for the two-dimensional structure of the
input data and corresponding (local) interactions of spatially
neighboring spins by dividing the original 32 × 32 lattice
into smaller overlapping regions. These regions provide the
basis for a partitioned feature extraction/reconstruction that
preserves local spatial properties of the data [50]. The max-
pooling operations that we use in our convolutional VAE
compress the input data and preserve their two-dimensional
structure. For the outlined reasons, convolutional VAEs have
a clear advantage over nonconvolutional VAEs in terms of
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FIG. 7. Evolution of energy during training of a convolutional
VAE. We show the evolution of the energy E (T ) for the training of
a single convolutional VAE at T = 2.75 (blue line). The dashed red
line indicates the mean energy of the corresponding M(RT)2 samples.
The yellow line shows the mean energy of the convolutional cVAE
trained on all temperatures for 1000 epochs.

local feature extraction. This is particularly evident when
comparing their ability to capture spin-spin correlations and
energy [see Fig. 5 (bottom) and Appendix A].

Interestingly, the RBMs we consider are able to capture
correlation effects without additional convolutional layers. In
general, such performance differences originate from several
factors including: (1) the intrinsic properties of the chosen
model (e.g., network structure, data representation, etc.) and
(2) the underlying optimization algorithm. Thus, even if con-
volutional layers provide an efficient way to capture local
information, this does not imply that nonconvolutional models
cannot achieve the same results. In our case, both models rely
on a maximum-likelihood parameter estimation. However, in
the case of VAEs, we can maximize only the ELBO [see
Eq. (14)] without any guarantee that this function shares the

FIG. 8. Snapshots of Ising configurations. We show snapshots
of Ising configurations for T ∈ {1.5, 2.5, 4}. The configurations in
the top, middle, and bottom panels are based on M(RT)2, RBM, and
convolutional cVAE samples, respectively.

same local maxima with the actual likelihood. For RBMs,
our results suggest that contrastive-divergence learning can
find solutions that preserve spatial information without using
convolutional layers.

In our analysis, we also noticed another important differ-
ence between the learning dynamics of RBMs and VAEs.
Restricted Boltzmann machines produce similar results inde-
pendent of whether they were trained on single or multiple
temperatures (see Fig. 5) whereas cVAEs exhibit a better per-
formance if trained on all temperatures (see Fig. 7). Patterns
at low and high temperatures are easier to learn and seem to
serve as reference points for the encoder during the training of
VAEs on all temperatures. This type of training may be useful
in other VAE-learning applications.

For a more visual comparison, we show snapshots of
Ising configurations in the original data and compare them
to RBM and VAE-generated spin configurations in Fig. 8.
We also visualize the differences between original data and
model-generated Ising samples in terms of two-dimensional

TABLE I. Wasserstein distance between neural-network and training data magnetization and energy distributions. Wasserstein distance
W [51] between the magnetization and energy distributions of M(RT)2 samples and corresponding RBM and cVAE samples. Smaller values
of W indicate a higher similarity of distributions.

Temperature W (MRBM|MM(RT)2 ) W (McVAE|MM(RT)2 ) W (ERBM|EM(RT)2 ) W (EcVAE|EM(RT)2 )

T = 1.50 0.002 0.0003 0.006 0.002
T = 2.00 0.014 0.0054 0.06 0.02
T = 2.50 0.099 0.0471 0.02 0.06
T = 2.75 0.042 0.0402 0.01 0.04
T = 3.00 0.024 0.0225 0.04 0.04
T = 4.00 0.021 0.0243 0.13 0.02
Mean 0.034 0.023 0.045 0.029
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FIG. 9. Physical features of nonconvolutional VAE Ising samples. We use nonconvolutional cVAEs to generate 20 × 104 samples of
Ising configurations with 32 × 32 spins for temperatures T ∈ {1.5, 2, 2.5, 2.75, 3, 4}. We show the magnetization M(T ) (a), energy E (T )
(b), and correlation function G(r, T ) (c) for neural-network and corresponding M(RT)2 samples. The nonconvolutional cVAE was trained for
all temperatures. Error bars are smaller than the markers.

energy-magnetization scatter plots and magnetization distri-
butions in Appendix B. We observe that the magnetization
distributions of the training data are qualitatively well cap-
tured by the corresponding neural-network-generated mag-
netization distributions. To make a quantitative comparison
between model and training data distributions, we determine
their corresponding Wasserstein distances W [51]. Smaller
values of W indicate a higher similarity of two distributions.
Based on the results that we show in Table I, we conclude
that, in terms of a smaller Wasserstein distance, the considered
cVAEs are able to capture the magnetization (and energy)
distributions of the training data better than the considered
RBMs. We, however, note that the mean values may be better
captured by RBMs than cVAEs for certain temperatures (see
Fig. 5).

As a further extension of our framework, we also study the
ability of RBMs and cVAEs to capture magnetization, energy,
and spin correlations of Ising systems with heterogeneous
coupling distributions (see Appendix C). Using the example
of an Ising model with a Gaussian coupling distribution, we

find that both neural networks are also able to qualitatively
reproduce the temperature dependence of the mentioned ther-
modynamic quantities. Our results indicate that RBMs per-
form slightly better than cVAEs in this task for the considered
network architecture and training parameters. We note that
alternative approaches such as teacher-student frameworks
also can be used to generate spin configurations after inferring
spin couplings from a given training data set (the inverse Ising
problem) [2,52]. Teacher-student frameworks are useful tools
if the model family is known and, in the case of the Ising
model, system sizes are small enough if spin couplings are
heterogeneous. In contrast, the RBMs and cVAEs that we
consider in this paper are applicable to homogeneous and
heterogeneous Ising systems.

V. CONCLUSIONS AND DISCUSSION

In comparison with other generative neural networks, the
training of RBMs is challenging and computationally expen-
sive [53]. Moreover, conventional RBMs can handle only

FIG. 10. Two-dimensional visualization of Ising samples. We show the distribution of 20 × 104 Ising samples for temperatures T ∈
{1.5, 2, 2.5, 2.75, 3, 4}. The data in panels (a)–(c) are based on M(RT)2, RBM, and convolutional cVAE samples, respectively.
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FIG. 11. Distribution of magnetization at different temperatures. We show the distribution of 20 × 104 Ising samples for temperatures
T ∈ {1.5, 2.0, 2.5, 2.75, 3, 4}. The data are based on M(RT)2 (yellow), RBM (blue), and convolutional cVAE (red) samples, respectively.
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binary data and generalized architectures are necessary to
describe continuous input variables [22]. For these reasons
and the good performance that convolutional models have
demonstrated in image classification [46–48] and generation
[49], RBM-based representation learning is being more and
more replaced by models like VAEs and generative adversarial
networks (GANs) [54–56]. However, performance assess-
ments of RBMs and VAEs are mainly based on a few common
test data sets (e.g., MNIST) that are frequently used in the
deep learning community [11]. This approach can provide
only limited insights into the representational properties of
neural network models.

To better understand the representational characteristics
of RBMs and VAEs, we studied their ability to learn the
distribution of physical features of Ising configurations at
different temperatures. This approach allowed us to quantita-
tively compare the distributions learned by RBMs and VAEs
in terms of features of an exactly solvable physical system.
We found that physical features are well captured by the
considered RBM and VAE models. However, samples gener-
ated by the employed VAE are less evenly distributed across
temperatures than is the case for samples that we generated
with an RBM. In particular, close to the critical point of the
Ising model, the considered VAEs has difficulties to generate
corresponding samples. In addition, our results also showed
that convolutional layers improve the performance of VAEs
in terms of their ability to capture magnetization, energy, and
spin correlations (see Appendix A for more information on
nonconvolutional VAEs). Such layers are useful to model and
preserve local information [57]. Interestingly, RBMs achieve
a similar or even better performance without additional convo-
lutional layers. One possible reason for the observed behavior
is that the training of VAEs relies on maximizing the ELBO
[see Eq. (14)], which may not share the same local maxima
with the actual log likelihood. Another distinctive feature
between the considered models is that RBMs show a similar
performance independent of whether they were trained on
one or all temperatures, whereas the performance of VAEs
improves if trained on all temperatures. Due to long-range
correlation effects in the vicinity of the critical temperature,
features of Ising configurations at criticality are more difficult
to capture than at low and high temperatures. In the case of
VAEs that were trained on all temperatures, low- and high-
temperature samples seem to provide reference points that
facilitate feature extraction at criticality. To summarize, in
the context of physical feature extraction, our results suggest
that RBMs are still able to compete with the more recently
developed VAEs.

Possible directions for future research include the study
of representational characteristics of RBMs, VAEs, and other
generative neural networks by applying them to alternative
physical systems (e.g., disordered magnetic systems [58])
[59]. Furthermore, it might be useful to explore connections
between the learning capabilities of generative neural net-
works and corresponding phase-space approximation meth-
ods for Ising-like systems such as cluster variational approxi-
mation methods (CVAMs) [60–62].

Future studies may also focus on a comparison between the
sampling performance of neural networks and conventional

methods. It could be of interest to compare the training
and sampling performance between maximum-entropy mod-
els and generative neural networks [2]. In the case of one
RBM (or cVAE) that was trained for all temperatures, the
sampling always involves a classification, and it might be
the case that one has to discard many samples until one has
generated a sample with the desired temperature. Even if the
physical features are well captured, this kind of sampling is
not as efficient as M(RT)2, cluster algorithms, or histogram
methods. If one uses single machines for each temperature,
the sampling process is more efficient. For cVAEs, one just
has to generate different vectors with normally distributed
components, and for RBMs the sampling is based on parallel
updates of the visible units.

All codes and further detailed descriptions are available on
GitHub [63].
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APPENDIX A: NONCONVOLUTIONAL
VARIATIONAL AUTOENCODER

In addition to the convolutional architecture of cVAEs that
we described in Sec. IV B, we also considered their nonconvo-
lutational counterparts. We used an encoder that is composed

FIG. 12. Gaussian coupling distribution. Gaussian distribution
of Ising spin couplings [see Eq. (26)]. The mean and standard
deviation of the Gaussian distribution are both equal to one.
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FIG. 13. Physical features of RBM and convolutional VAE Ising samples for heterogeneous couplings. We use RBMs and convolutional
cVAEs to generate 20 × 104 samples of Ising configurations with 32 × 32 spins for temperatures T ∈ {10−6, 0.5, 1, 1.5, 2, 3} and a Gaussian
coupling distribution whose mean and standard deviation are equal to one. We show the magnetization M(T ), energy E (T ), and correlation
function G(r, T ) for neural network and corresponding M(RT)2 samples. In panels (a)–(c), we used a single RBM for all temperatures; in
panels (d)–(f), we show the behavior of M(T ), E (T ), and G(r, T ) for samples that are generated with a convolutional cVAE that was trained
for all temperatures. Error bars are smaller than the markers.

of an input layer with 1024 units, one fully connected hidden
layers with 700 units, and a sigmoid activation function. As
for the convolutional VAEs, we also used dropout to avoid
overfitting. The output layer has 400 units and represents a
200-dimensional Gaussian latent variable z. We use a decoder
with a symmetrical architecture composed of an input layer
that consists of 200 units to represent the latent variable z.
There are six additional units that we use to encode the tem-
perature of Ising samples. The remaining layers in the decoder
are one fully connected hidden layer with 700 units and a
sigmoid activation function. The output layer is sigmoidal and
consists of 1024 units.

We trained the nonconvolutational cVAE in the same way
as the convolutational cVAE (see Sec. IV B). We then gen-
erated samples and determined their temperatures with the
classifier that we describe in Sec. IV C. In Fig. 9 we show the
resulting temperature dependence of magnetization, energy,
and spin correlations. We observe that energy and correlations
are not captured as well as for convolutational architectures
and RBMs (see Fig. 5).

APPENDIX B: ENERGY AND MAGNETIZATION
SCATTER PLOTS

We generated 20 × 104 samples with the RBMs and con-
volutional cVAEs that we trained for all temperatures T ∈
{1.5, 2, 2.5, 2.75, 3, 4}. After determining the temperatures of
the generated samples (see Sec. IV C), we compute different
physical features including energy E (T ) and magnetization
M(T ). We show the two-dimensional scatter plots of E (T )
and M(T ) in Fig. 10. The left panel of Fig. 10 shows the distri-
bution of E (T ) and M(T ) in the original data. We find that the
RBMs we consider have problems to reproduce the behavior
at high temperatures (e.g., for T = 4, see middle panel of
Fig. 10). As also apparent in Fig. 6, the convolutational cVAE
has difficulties to generate samples at temperatures close to
Tc (e.g., for T = 2.5). These observations are also reflected in
the magnetization distributions that we show in Fig. 11. As
outlined in the main text and Table I, the considered cVAEs
are able to capture the magnetization distributions better
than the considered RBMs in terms of smaller Wasserstein
distances W [51]. Still, the magnetization mean values of the
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considered RBMs are better aligned with the corresponding
training data mean values for certain temperatures than is the
case for the considered cVAEs (see Fig. 5).

APPENDIX C: HETEROGENEOUS COUPLINGS

We also apply RBMs and cVAEs to an Ising model with
spin couplings that are distributed according to a Gaussian
distribution whose mean and standard deviation are both
equal to one (see Fig. 12). We use the RBM and cVAE

architectures of Sec. IV and generated 20 × 104 M(RT)2 sam-
ples for temperatures T ∈ {10−6, 0.5, 1, 1.5, 2, 3} to train the
two neural networks. Training protocols are also as outlined in
Sec. IV. Only in the case of the RBM, we train over 90 epochs
instead of 200 epochs, as in Sec. IV, and repeat this procedure
10 times. After training both neural networks, we generated
20 × 104 Ising configurations. We show the corresponding
results in Fig. 13 and observe that both neural networks are
able to qualitatively capture the temperature dependence of
magnetization, energy, and spin correlations.
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