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The composite cosmological objects—Kibble-Lazarides-Shafi (KLS) walls bounded by strings and cosmic
strings terminated by Nambu monopoles—could be produced during the phase transitions in the early universe.
Recent experiments in superfluid 3He reproduced the formation of the KLS domain walls, which opened the
new arena for the detailed study of those objects in a human controlled system with different characteristic
lengths. These composite defects are formed by two successive symmetry breaking phase transitions. In the first
transition the strings are formed, then in the second transition the string becomes the termination line of the KLS
wall. In the same manner, in the first transition monopoles are formed, and then in the second transition these
monopoles become the termination points of strings. Here we show that in the vicinity of the second transition the
composite defects can be described by relative homotopy groups. This is because there are two well-separated
length scales involved, which give rise to two different classes of the degenerate vacuum states, R1 and R2,
and the composite objects correspond to the nontrivial elements of the group πn(R1, R2). We discuss this on
example of the so-called polar distorted B phase, which is formed in the two-step phase transition in liquid 3He
distorted by aerogel. In this system the string monopoles terminate spin vortices with an even winding number,
while KLS string walls terminate on half-quantum vortices. In the presence of magnetic field, vortex skyrmions
are formed, and the string monopole transforms to the nexus. We also discuss the integer-valued topological
invariants of those objects. Our consideration can be applied to the composite defects in other condensed matter
and cosmological systems.
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I. INTRODUCTION

The combined topological objects, such as strings termi-
nated by Nambu monopoles [1] and Kibble-Lazarides-Shafi
(KLS) walls bounded by strings [2,3], typically appear at
two successive symmetry breaking phase transitions [4]. An
example is provided by the axion solution to the strong CP
problem [5–8], where two different phase transitions occur as
the universe cools down. In the first one the cosmic strings
are formed. Then when the cosmic temperature reaches the
quantum chromodynamics (QCD) scale, domain walls are
formed, while cosmic strings become attached to these walls.

Similar formation of the combined objects in successive
phase transitions has been observed in the nanoconfined su-
perfluid 3He (in the so-called nafen) [9]. The confined geom-
etry provides variety of new phenomena in this spin-triplet
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p-wave superfluid. Some new phases, which can never be
stable in bulk 3He, are stabilized by the nanoconfinement.
Among them the polar phase has been predicted [10,11] and
experimentally identified [12]. Later it became clear that the
main reason of the dominations of the polar phase in nafen
is the extension of the Anderson theorem [13] to the polar
phase with columnar impurities: The transition temperature to
the polar phase is practically not suppressed by the strands
of nafen [14–16], as distinct from the other superfluid phases.
Similar extension of the Anderson theorem was also discussed
in connection with multiorbital superconductors [17]. Another
signature of the Anderson theorem is the observation that the
Dirac nodal line in the spectrum of Bogoliubov quasiparti-
cles in the polar phase is not suppressed by nafen strands
[18], giving rise to the detected T 3 dependence of the gap
amplitude.

In the polar phase the half-quantum vortices (HQVs) have
been observed [19]. Originally the HQVs were predicted
to exist in the chiral superfluid 3He-A [20,21], but for 40
years they escaped observation because in this phase they are
energetically unfavorable compared to the singly quantized
vortices. Now the HQVs are easily created in 3He-A: The
HQVs are first formed in the polar phase, where they are
energetically favorable, and then they survive after the phase
transition from polar phase to the A phase due to strong
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pinning [9]. The structure, spin dynamics, and spin polariza-
tion of HQV in the A phase were theoretically studied during
the last few decades [22–24]. Both the polar phase and 3He-A
are superfluids with the so-called equal spin pairing [25]. In
such systems the HQV can be considered as the vortex in
one spin component, and in the chiral superfluid 3He-A such
vortex contains a single (isolated) Majorana zero mode in its
core [26–28].

Both in the bulk B phase and in the polar distorted B phase
in nafen, the HQVs are not supported by topology. However,
earlier it was shown that the nonaxisymmetric core of the
singly quantized vortex [29,30], which was observed in bulk
superfluid 3He-B [31], can be considered as a pair of HQVs
connected by the KLS wall [32,33]. This wall is rather short:
only of few coherence length size. The similar wall between
HQVs appears in the polar distorted B phase in nafen after
transition from the polar phase. But due to strong vortex
pinning in nafen, the KLS wall bounded by pinned vortices
does not shrink and keeps its macroscopic size. This allows
experimental detection and identification of such composite
objects [9].

Strictly speaking, the wall bounded by strings is not a topo-
logical object, since after the second transition the topological
charge of the string does not exist anymore. In the same way
the string terminated by monopole is not topological. Here
we show that under certain conditions these combined objects
become topological, being described by relative homotopy
groups. Originally the classification in terms of the relative
homotopy groups has been used if there is the hierarchy of the
energy scale or length scales in the physical system [34–36],
when each energy scale has its own well-defined vacuum
manifold Ri—the space of the degenerate states. Here are
some examples.

(i) The spin-orbit interaction in superfluid 3He is small, and
we have the order parameter vacuum manifold R1 at short
distances where the spin-orbit interaction can be neglected,
and the submanifold R2 ⊂ R1 at large distances, where the
space of the order parameter is restricted by spin-orbit in-
teraction [34]. The relative homotopy groups πn(R1, R2) give
different types of the topologically stable combined objects.
The π1(R1, R2) describes the planar topological solitons ter-
minated by strings. Examples are combined spin-mass vor-
tices with soliton tail observed in superfluid 3He-B [37],
and solitons terminated by half-quantum vortices observed
in spinor Bose condensate with quadratic Zeeman energy
[38,39]. The π2(R1, R2) describes linear topological solitons
and skyrmions terminated by monopoles.

(ii) Another example of the two-manifold system is when
the boundary conditions restrict the order parameter on the
boundary, with R1 being the space in bulk and R2 ⊂ R1 is sub-
space on the boundary restricted by the boundary conditions.
This gives the topological classification of the topological
objects on the surface of an ordered system [40], such as
boojum [41].

(iii) The two-scale system also emerges when there is the
hidden symmetry, which may soften the cores of topological
defects [42].

In our case of two successive transitions, two energy
scales arise in the vicinity of the second transition. There,
the coherence length related to the first symmetry breaking

G → H1 is much smaller than the coherence length related
to the second symmetry breaking H1 → H2. This gives rise
to two well-defined vacuum manifolds, R1

∼= G/H2 and R2
∼=

H1/H2, and allows us to apply the relative homotopy groups
πn(R1, R2) for classification of the combined objects: string-
monopole objects (analogs of Nambu monopoles); wall-string
objects (analogs of KLS wall); nexus [43], etc. That is be-
cause the order parameter fields are mapped into different
degenerate vacuum manifolds at different spatial regions,
thus the homotopy classes of order parameters constitute
πn(R1, R2) [44]; see details in Appendix A. In superfluid
3He, these topological objects live in the vicinity of transition
between the polar phase and the polar distorted B phase
(PdB).

This paper is organized as follows. In Sec. II we consider
the conventional scheme of the symmetry breaking and the
vacuum manifolds of different superfluid phases appeared in
the successive transitions. The topological defects in these
phases, which emerge due to symmetry breaking and are
described in terms of the conventional homotopy groups of
vacuum manifolds, are considered in Sec. III. In Sec. IV we
discuss combined topological objects in the vicinity of the
second transition, where the order parameter could be mapped
into two different vacuum manifolds with different coherence
lengths. We use the relative homotopy groups and correspond-
ing exact sequence of homomorphisms to describe the classes
of combined objects, which are topologically stable in the
vicinity of the transition. Based on the exact sequence of
the homotopy groups, we find the topological stability of the
string monopole (string terminated on monopole) and of the
KLS string wall (KLS wall bounded by string). The latter has
been observed in recent experiments [9]. In Sec. V we discuss
vortex skyrmions emerging in the presence of magnetic field,
and the nexus object. In Sec. VI we summarize our results
and discuss the role of these objects in formation of the
numerous superfluid glass states, which may exist in aerogel
[45–47].

II. CONVENTIONAL SYMMETRY BREAKING SCHEME
AND VACUUM MANIFOLDS

The continuous phase transition is understood as sponta-
neous symmetry breaking by order parameters about a pri-
mary symmetry group G. In 3He liquid at low temperature,
the order parameters space consists of two three-dimensional
vector spaces and the phase space. Thus the order parameter
is represented by the complex-valued dyadic tensor Aαi [25],
which transforms under the action of spin, orbital, and phase
rotations of the group G. Stabilizer of those actions forms
the residual symmetry group H of superfluid phase of 3He.
In our case, the symmetry group G of normal liquid 3He in
the “nematically ordered” aerogel with the uniaxial anisotropy
is different from that in the bulk 3He [25]. The uniaxial
anisotropy in the orientation of aerogel strands in nafen re-
duces the symmetry under the SOL(3) group of rotations in the
orbital space to the OL(2) subgroup [9]. If the tiny spin-orbit
interaction is neglected, the normal phase vacuum has the
following symmetries:

OL(2) × SOS (3) × U (1) × T × P, (1)
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where SOS (3) is the group of spin rotations; U (1) is the global
gauge group, which is broken in superfluid states; T is time
reversal symmetry; P is parity; OL(2) ∼= SOL(2) � CL

2x where
CL

2x is π rotation in orbital space.
In what follows, we ignore the time reversal symmetry,

since it is not broken in the polar and in PdB phases, and also
ignore the parity P which is reduced to Peiπ in all p-wave
superfluid phases, where eiπ is the π rotation in phase space.
Also, because we focus on the topological objects related to
the spin and U (1) gauge parts of the order parameter, the Z2

symmetry coming from CL
2x could be neglected in the rest of

the parts. Then the relevant starting group G of the symmetry
breaking scheme in this paper is

G ∼= SOL(2) × SOS (3) × U (1). (2)

Starting from this normal phase vacuum, we discuss three
types of phase transition: (a) from the normal phase to the
polar phase; (b) from the polar phase to the PdB phase; and
(c) the possible direct transition from the normal phase to
the PdB phase. In this section we consider the topological
objects related to these symmetry breaking scenarios, using
the conventional homotopy group approach.

A. Transition from normal phase to polar phase

The order parameter in the p-wave spin-triplet superfluids
is the dyadic tensor Aαi, which transforms as a vector under
spin rotation (the Greek index) and as a vector under orbital
rotations (the Latin index). In the polar phase it has the
form:

AP
αi = �Pd̂α ẑie

i�, (3)

where � is the phase, d̂α (≡ d̂) and ẑi are unit vectors of spin
and orbital uniaxial anisotropy, respectively, and �P is the gap
amplitude. The residual symmetry group of the polar phase,
the symmetry group of the order parameter (3), is

HP
∼= SOL(2) × SOS (2) � ZS−�

2 ⊂ G. (4)

Here ZS−�
2

∼= {1,CS
2xeiπ }, where CS

2x is the π rotation of the
vector d̂ about perpendicular axis and eiπ is the phase rotation
by π , i.e., � → � + π . Then the vacuum manifold of the
polar phase is given as

RP
∼= G/HP

∼= (S2 × U (1))/Z2. (5)

The coherence length ξ = vF /�P in the polar phase is the
smallest length scale in our problem, which determines the
size of singular (hard core) topological defects in the polar
phase.

B. From polar phase to PdB phase

Let us now consider the second symmetry breaking phase
transition: from the polar phase vacuum with fixed d̂ and
� to the PdB phase. In the vicinity of this transition the
order parameter (3) acquires the symmetry breaking term with
amplitude q � 1:

APdB
αi = ei��P

[
d̂α ẑi + q

(
ê1
α x̂i + ê2

α ŷi
)]

. (6)

Here ê1, ê2, and d̂ form the triad of orthogonal vectors
in spin space. The corresponding coherence length of the

second transition ξ/q is large in the vicinity of this transi-
tion. This provides the hierarchy of the length scales, ξ and
ξ/q � ξ .

The residual symmetry subgroup of the PdB phase in the
symmetry breaking from the polar phase is

HPdB
∼= SOJ (2) ⊂ HP, (7)

where SOJ (2) represents the common rotations of spin and
orbital spaces. The manifold of the vacuum states, which
characterizes the second symmetry breaking is

R2 ≡ RP→PdB
∼= HP/HPdB

∼= (
SOL(2) × SOS (2) � ZS−�

2

)/
SOJ (2)

∼= SOL−S (2) × ZS−�
2 . (8)

Here SOL−S (2) is the broken symmetry with respect to relative
rotations of spin and orbital spaces.

C. From normal phase to PdB phase

Here we consider the situation deep inside the PdB phase,
where the parameter q is not necessarily small. In this general
case there is only a single length scale which is relevant,
and thus this situation becomes similar to that of the direct
transition from the normal state to the PdB phase, G → HPdB.
The order parameter Eq. (6) of the PdB phase could be written
as

APdB
αi = ei�

[
�‖d̂α ẑi + �⊥

(
ê1
α x̂i + ê2

α ŷi
)]

, (9)

where �⊥ � �‖. The corresponding residual symmetry sub-
group is in Eq. (7), and the vacuum manifold of PdB phase in
this scenario of symmetry breaking is

R1 ≡ Rnormal→PdB
∼= G/HPdB

∼= SOL−S (3) × U (1). (10)

III. TOPOLOGICAL OBJECTS DUE TO SYMMETRY
BREAKING TRANSITIONS FROM DIFFERENT VACUA

In this section we consider the topologically stable defects,
which emerge at each of three symmetry breaking transitions
discussed in Sec. II.

A. Defects in polar phase due to transition from the normal
phase vacuum

The polar phase vacuum manifold Eq. (5) has the homo-
topy groups,

π1(RP) ∼= Z̃, π2(RP) ∼= Z, π0(RP) ∼= 0. (11)

The group π1(RP) ∼= Z̃ = {n/2|n ∈ Z} includes the integers
of the group Z via the inclusion map: n ∈ Z ↪→ n ∈ Z̃, which
describes the conventional quantized vortices with the inte-
ger winding number, and also the set of half-odd integers,
i.e., {n + 1/2|n ∈ Z}. The set of half-odd integers describes
vortices containing HQV, which has one-half circulation of a
conventional quantized vortex. The HQVs with the topolog-
ical charges N = ±1/2 are the analogs of the cosmological
Alice strings.

The group π2(RP) = Z describes the hedgehogs
(monopoles) in the d̂ field; see Fig. 1. The core size of vortices
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FIG. 1. Topological defects in the polar phase, which exist in
addition to the conventional vortices of group Z with integer cir-
culation quanta. (a) d̂-vector monopole and antimonopole described
by the homotopy group π2(RP ) with topological charges N2 = ±1
correspondingly. Their core sizes are on the order of the coherence
length ξ . The green arrows depict the configuration of d̂ vectors.
(b) Half-quantum vortex (HQV) described by the Z2 subgroup of
π1(RP ) with core size ∼ξ . This object also got the name “Alice
string,” because the d̂ monopole transforms to the antimonopole after
going around the HQV, in the same manner as it happens for the
charge going around the Alice string [49]. The red circle shows
the path. Both defects lose topological stability after transition to
the PdB phase. The HQV becomes the termination line of the KLS
wall bounded by string, and the monopole hedgehog becomes the
termination point of spin vortices.

and monopoles is on the order of the coherence length ξ .
The topological classification of hedgehogs is modified
by the phenomenon of influence of the homotopy group
π1(R) on the group π2(R) [48]. The monopole transforms to
antimonopole when circling around the Alice string (HQV),
and thus in the presence of HQVs the hedgehogs (monopoles)
of the group Z is reduced to the group Z2.

In the polar phase, the HQVs have been identified in
NMR experiments [19]. By applying magnetic field tilted
with respect to nafen strands, one creates the soliton attached
to the HQVs, which produces the measured frequency shift
in the NMR spectrum. Hedgehogs (monopoles) are still not
identified in superfluid 3He.

B. Defects in PdB phase due to transition
from normal phase vacuum

The vacuum manifold R1 of the PdB phase in Eq. (10) has
homotopy groups,

π1(R1) ∼= Z × Z2 , π2(R1) ∼= 0 , π0(R1) ∼= 0. (12)

From all the defects of the polar phase with coherence length
size ξ in Sec. III A, only the integer-quantized vortices of
group Z survive in the PdB phase. The other hard core defects
(HQVs and hedgehogs) are not supported by topology any
more. However, the new topological object appears—the Z2

spin vortex, which becomes topologically stable in the PdB

phase. This spin vortex is similar to that which has been
observed in the bulk B phase [37].

C. Defects in PdB phase due to transition
from polar phase vacuum

The vacuum manifold R2 of the PdB phase emerging at
the transition from the polar phase in Eq. (8) has homotopy
groups:

π1(R2) ∼= Z, π2(R2) ∼= 0, π0(R2) ∼= Z2. (13)

These homotopy groups are responsible for the topological
defects formed in the symmetry breaking transition from the
fixed degenerate vacuum of the polar phase (with d̂ = const
and � = const) to the PdB phase. Let us consider them
separately.

1. Spin vortices

The homotopy group π1(R2) ∼= Z describes the spin vor-
tices with 2πn1 rotation of vectors ê1 and ê2 about the fixed d̂
vector of the polar phase. The winding number is

n1 = 1

2π

∮
dxi ê1 · ∇iê2. (14)

In the vicinity of the transition, these spin vortices have the
soft core of size of the coherence length, which corresponds
to the transition from the polar to the PdB phase. This is
ξ/q � ξ . As distinct from the topological defects in the polar
phase, which have the “normal” core, the spin vortices in the
PdB phase with R2 have the “polar” core (quotation marks
mean that in multicomponent systems the order parameter is
not necessarily equal to zero on the axis of the topological
defects). Proliferation of spin vortices in PdB marks the
transition to the polar phase.

As follows from Sec. III B, deep in the PdB phase only
the Z2 spin vortices survive. The other spin vortices lose the
topological stability and thus can live only in the vicinity of
the transition from the polar phase vacuum. Far from transi-
tion between polar to PdB phase, their topological stability
can be restored by applying the magnetic field. In this case
spin vortices have the d̂ skyrmions in the core, if the winding
number is even (say, doubly quantized spin vortices). The
skyrmions in the d̂ field are described by the relative π2 group
and thus are the combined topological objects. All this is
discussed in detail in Secs. IV and V.

2. The fate of monopoles and half-quantum
vortices in the PdB phase

Since in the PdB phase π2(R1) ∼= π2(R2) ∼= 0, the polar
phase hedgehog (monopole) is topologically unstable. It be-
comes the termination point of the spin vortex with two quanta
(or the nexus with two singly quantized spin vortices), as
discussed in detail in Sec. IV. As a result the d̂ hedgehog
becomes the analog of the Nambu monopole, which termi-
nates the electroweak cosmic string [1]; see Fig. 2(b). The
analog of the electroweak string in the PdB phase is served
either by the doubly quantized spin vortex with n1 = 2, or by
the pair of n1 = 1 spin vortices. In the presence of magnetic
field, the hedgehog (monopole) separates the string on one

023263-4



STRING MONOPOLES, STRING WALLS, VORTEX … PHYSICAL REVIEW RESEARCH 2, 023263 (2020)

FIG. 2. Illustration of topology describing the combined defects,
which emerge in the two-step transition: from the normal state
to the polar phase and then from the polar phase to the polar
distorted B phase. (a) KLS string wall. In general the KLS wall
is nontopological, but it acquires the nontrivial topology in the
vicinity of the second phase transition. In this limit case there are
two well-separated length scales: the coherence length ξ of the first
transition, which determines the size of the hard core of string (the
black dot), and the much larger coherence length ξ/q � ξ of the
second transition, which determines the soft core size of the wall
(the pink region). The hierarchy of scales gives rise to two types of
the degenerate vacua in the PdB phase, R1 and R2. The R1 vacua
include all the degenerate vacua of the PdB phase, while the R2

vacua are those, which are obtained from the fixed order parameter
of the polar phase, i.e., at fixed d̂ and � in Eq. (3). This is the region,
where the asymptotic condition |δd̂| � 1 is achieved. The blue line
shows the characteristic border between the regions of two classes
of vacuum spaces. The topology of the string wall is determined by
the relative homotopy group π1(R1, R2), in which the green loop is
mapped to the space R1, with the ends of the loop mapped to R2.
(b) The string monopole is described by the relative homotopy group
π2(R1, R2). In this case the black dot shows the core of the hedgehog
in the d̂ field and the pink region is the core of 4π spin vortex, which
is terminated by the hedgehog. The green two-loop edge is mapped
to the space R1, with its one-loop edge mapped to R2.

side of the monopole and the skyrmion on the other side of the
monopole.

3. The fate of half-quantum vortices in the PdB phase
and the KLS wall

A similar situation takes place with the HQVs, which are
not topologically stable in the PdB phase. They become the
termination lines of the KLS cosmic walls, as discussed in
Sec. IV; see Fig. 2(a). In 3He experiments, after transition
from the polar phase to the PdB phase in the presence of
HQVs, the KLS walls appear between the neighboring vor-
tices, and in spite of the tension of domain walls, the HQVs
remain pinned by the nafen strands [9].

In general the KLS wall is not topologically stable, and can
be stabilized only due to symmetry reasons [50]. However, in
the vicinity of the transition to PdB phase from the polar phase
vacuum, the KLS wall becomes topological. The topological
domain wall of the thickness ξ/q is described by the nonzero
element of the homotopy group π0(RP→PdB) ∼= Z2. An exam-
ple of such a wall is the domain wall between the domains
with Aαi = �PDiag(1, q, q) and Aαi = �PDiag(1, q,−q).

IV. COMBINED OBJECTS

A. Combined objects and classification by
relative homotopy groups

As mentioned before, in the vicinity of the second tran-
sition, the system has two different length scales, ξ and
ξ/q � ξ . This leads to the new classes of objects, which
combine the topology of both vacuum spaces R1 and R2.
Such combined objects are described by the relative homotopy
groups [34,40,42,44],

πn(R1, R2). (15)

In particular, some elements of group π1(R1, R2) describe
the string wall in Fig. 2(a) (the wall bounded by strings, such
as the KLS wall [2]), while the nontrivial elements of the
group π2(R1, R2) describe string monopoles in Fig. 2(b) (such
as the string terminated by the Nambu monopole [1]). These
combined objects are topologically stable only in the vicinity
of the second transition, and they lose topological stability
when two length scales become comparable.

This combined topology can be illustrated by the following
example of the string wall. At small distances ξ � r � ξ/q
from the core of HQV, the HQV is described by the homotopy
group π1(RP ). However, at larger distances r � ξ/q, the
HQV becomes the termination line of the wall, which is
described by the π0(R2) topology; see Fig. 2(a). This figure
demonstrates distributions of the degeneracy spaces R1 and
R2, which are involved in the topology of the combined object.

The similar physics takes place for string monopoles. At
small distances ξ � r � ξ/q from the core of the hedgehog,
it is described by the homotopy group π2(RP ), while at larger
distances r � ξq, the monopole becomes the termination
point of spin vortices described by the π1(R2) topology; see
Fig. 2(b). Such combinations of πn+1 and πn groups needed
for the description of the object with two different length
scales and two different dimensions are the relative homotopy
groups.

The relative homotopy groups πn(R1, R2) can be found
from the following consideration. Since R1 = G/HPdB and
R2 = HP/HPdB, one has R1/R2 = (G/HPdB)(HP/HPdB) =
G/HP = RP, and thus all the elements of the relative homo-
topy groups πn(R1, R2) are determined by the elements of
conventional homotopy groups πn(RP ) of the polar phase (we
thank the referee for this comment):

πn(R1, R2) ∼= πn(RP ). (16)

This relation demonstrates that in the vicinity of the phase
transition from the first (polar) phase to the second (PdB)
phase, all the topological objects of the first phase described
by the group πn(RP ) retain their topological charges in the
second phase. Some of these defects remain free, while the
others become the parts of the composite defects—the string
monopole and for the KLS string wall in Secs. IV B and IV C,
respectively.

Equation (16) does not resolve between the free and the
composite objects of the second phase. The full classification
of the topological objects in the second phase depends not
only on R1/R2, but also on the details of the mappings in
the exact sequence of homomorphisms, which is calculated
in Appendixes A and B. The mapping diagram of the exact
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FIG. 3. Illustration of the exact sequence of homomorphisms to
the calculation of the relative homotopy groups πn(R1, R2). This
demonstrates that the elements of the πn(R1, R2) group have two
sources: from the kernel of the mapping πn−1(R2) → πn−1(R1) and
from the factor group of πn(R1) over the image of the mapping
πn(R2) → πn(R1). The black arrows represent the image of homo-
morphisms, while the blue arrows represent the kernal of every ho-
momorphsim. This mapping diagram prescribes the relation between
the elements of the composite topological defects. In particular, it
shows that the relative homotopy group π2(R1, R2) is determined by
the kernel of the mapping π1(R2) → π1(R1) = 2Z ∼= Z. It demon-
strates that the nontrivial monopoles are termination points of spin
vortices with the total winding number being even. As we will see in
the next section, this mapping relation is identical to that describing
vortex skyrmions. On the other hand, the relative homotopy group
π1(R1, R2) ∼= Z̃ is determined by both sources: Z2 which is the
kernel of the homomorphism π0(R2) → π0(R1) and by the quotient
group of π1(R1) over the image of homomorphism between π1(R2)
and π1(R1). As a result, there are two different kinds of phase
vortices that terminate and do not terminate the KLS wall. Those
two classes of vortices consist of the two cosets of quotient Z̃/Z ∼=
Z2. Correspondingly, these are the vortices with half-odd integer
circulation numbers and the vortices with integer circulation quanta.

sequence in Fig. 3 depicts the relation between different
topological objects in R1 and R2.

B. Wall bounded by string—KLS string wall

The relative homotopy group is

π1(R1, R2) ∼= π1(RP ) ∼= Z̃. (17)

This shows that the topological charges of vortices in the
second (PdB) phase are the same as in the first (polar) phase.
In both phases they form the group of integer and half-
odd integers N . However, the physical realizations of these
vortices are different in the two phases. Vortices with integer
N remain free, while vortices with half-odd integers, N = k +
1/2, terminate the wall bounded by string—the KLS string
wall. Figure 4 illustrates the configuration of the composite
object. This kind of topologically protected KLS string wall
induces the cosmological catastrophe in the axion solution of
the strong CP problem [6–8].

In general, in the vicinity of the second phase transition
the topological objects of the first phase remain topological
in the second phase. Some of these defects remain free, while
the others become the part of the composite objects with the
same topological invariants. The separation between these two
groups of objects is determined by the mappings in the exact
sequence of homomorphisms.

FIG. 4. Illustration of the KLS string wall. The wall is topologi-
cally protected if the order parameter takes values from disconnected
parts of R2. In this case it is the combined object—the HQV, which
terminates the KLS wall. The pink region is the topological KLS wall
with thickness ξ/q, while the black small dot is the HQV string, in
which the diameter is ξ . The spin tripods show the configurations of
order parameter around the HQV string. The flipping of the tripods
on two sides of the KLS wall demonstrates the domain wall feature.

C. Strings terminated by monopole—string monopole

The relative homotopy group,

π2(R1, R2) ∼= π2(RP ) ∼= Z, (18)

describes monopoles (hedgehogs) of the d̂ field. They survive
in the vicinity of the second transition as the topological
objects which terminate the spin vortices. The corresponding
composite object—the string monopole—has two topological
charges, n2 and n1, which are related as

n2 = 1

8π
ei jk

∫
S2

dSk d̂ · (∇id̂ × ∇ j d̂) = 1

2
n1. (19)

Here S2 is the surface encircling monopole and the group
Z is the group of integers n2—the topological charges of
the hedgehog. The n1 is the winding number of spin vor-
tices in Eq. (14). The equation n1 = 2n2 in (19) shows that
the monopole can be the termination point of spin vortices
with the even total charge n2. This situation is similar to
the monopole in the chiral A phase [51–53], which ei-
ther terminates a single vortex with n1 = 2, or forms the
nexus with two singly quantized vortices with n1 = 1 + 1 =
2, or with four HQVs with n1 = 1/2 + 1/2 + 1/2 + 1/2 =
2. Those vortices, which connect with monopoles (n2 > 0)
or antimonopoles (n2 < 0) allow the existences of complex
monopole-antimonopole networks [4,54–56].

Figure 5 illustrates the configuration of the string
monopole, which consists of the hedgehog with n2 = 1 and
two strings—spin vortices each with n1 = 1. The spin vortices
have a soft core with size ξ/q.

V. SKYRMIONS AND NEXUS IN THE PRESENCE
OF MAGNETIC FIELD

In the presence of magnetic field H, a new length scale
appears in the PdB phase—the magnetic length ξH ∝ |H|−1.
The magnetic length ξH is the longest length scale if we
neglect the spin-orbit coupling. In this case, one obtains the
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FIG. 5. Illustration of string monopole in the PdB phase. The
monopole in the d̂-field has topological charge n2 = 1 and hard core
of the coherence length size ξ (black dot). This string monopole
terminates two spin vortices with the soft core size ξ/q and with the
total topological charge n1 = 1 + 1 = 2 = 2n2 according to Eq. (19).
(a) Texture of d̂ vector string monopole with n2 = 2 terminating
two spin vortices. The green arrow corresponds to d̂ vector. The
red region is the soft core of spin vortex of size ξ/q. (b) The
cross sections of two spin vortices with n1 = 1 each. In these cross
sections, ê1 and ê2 vectors rotate around d̂ vector by 2π for every
spin vortex. The core size of every spin vortex is ξ/q. The blue line
is the field line of total ê vectors rotation, while the green lines are ê
vectors field lines of every spin vortex.

two-scale system of type (i) in Introduction. In the region
with length scale larger than ξH , the magnetic anisotropy
locks the directions of d̂ vector in the plane perpendicular
to H to minimize the magnetic energy, which is proportional
to |H · d̂|2. The degenerate space of the order parameter is
reduced from R1

∼= SOL−S (3) × U (1) in Eq. (10) to RH
1 =

S1 × S1 × U (1) in the regions which are larger than ξH . The
first S1 is the manifold of in plane d̂ vector, while the second
S1 is the manifold of rotations of ê1 and ê2 about the d̂-axis.
Then the second relative homotopy group of combined objects
with length scale ξH is π2(R1, RH

1 ) ∼= Z × Z. However, for
q � 1, the gradient energy of the d̂-textures is much larger
than that of the textures in ê1 and ê2 fields [25]. That is why
we consider only the S1 manifold of ê1 and ê2, and neglect the
S1 manifold of d̂. Then the relative second homotopy group
which we need in this case is

π2(R1, S1 × U (1)) ∼= Z. (20)

These results for the relative homotopy group have been con-
firmed by calculations using the exact sequence, see details in
Appendixes A and B. The mapping diagram of exact sequence
is shown in Fig. 6.

The relative homotopy group π2(R1, S1 × U (1)) describes
the composite object in the PdB phase in the presence of mag-
netic field. This object is the spin vortex with an even winding
number, which has the soft core of size ξH represented as
skyrmion (see Fig. 7). The topological charge of skyrmion is

n2 = 1

8π
ei jk

∫
D2

dSk d̂ · (∇id̂ × ∇ j d̂) = 1

2
n1, (21)

where D2 is the cross section of skyrmion and n1 is the
winding number of spin vortices in Eq. (14). Equation (21) is
the analog of the Mermin-Ho relation in 3He-A [57]. Equation
(21) is identical to Eq. (19) because of π2(R1, S1 × U (1)) ∼=

FIG. 6. Mapping diagram of exact sequence between R1 and
S1 × U (1). The black arrows represent the image of homomor-
phisms, while the blue arrows represent the kernal of every homo-
morphsim. This diagram shows that the skyrmions soften the core of
Z spin vortices with size ξ/q to size ξH in the presence of magnetic
field. In regions larger than ξH, vortex skyrmions can be connected
with spin vortices via string monopole, if their total topological
charge is even according to Eq. (21). This is because π2(R1, R2) ∼=
π2(R1, S1 × U (1)). There are also phase vortices described by Z, but
here we ignore them because they do not influence the connection
between the spin vortices and skyrmions.

π2(R1, R2). Due to this relation the vortex skyrmion can be
connected to Z spin vortices with core size ξ/q via the string
monopole. Such composite objects, where the monopole con-
nects several linear objects is called nexus. It demonstrates the
interplay between π1 and π2 topologies.

Originally vortex skyrmions formed by orbital and phase
degenerate parameters have been suggested in 3He-A by An-
derson and Toulouse [58] and by Chechetkin [59]. The lattice
of vortex skyrmions in rotating 3He-A has been discussed
in Ref. [60]. These objects have been identified in different
experiments made under rotation [61,62]. The dynamics of

FIG. 7. Illustration of the nexus object in the presence of mag-
netic field. The nexus connects spin vortices with core size ξ/q and
the vortex skyrmion with core size ξH , where ξH � ξ/q. (a) The
texture configuration of the nexus object with n2 = 1 and n1 = 2. The
green arrows are the d̂ vectors and the pink regions are core regions
of defects. The black dot is the core of the string monopole with size
ξ , while the pink regions are the cores of spin vortices with size ξ/q.
The green arrows represent the distribution of d̂ vectors. The vortex
skyrmion with core size ξH transforms to two spin vortices via the
nexus. (b) The cross section of two spin vortices. Every spin vortex
has the 2π rotation of ê1 and ê2 vectors around the fixed d̂ vector.
The blue arrows represent the field of the ê1 vector.
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the vortex skyrmions provides an effective electromagnetic
field, which induces the observed effect of chiral anomaly
experienced by fermionic excitations (Weyl fermions) living
in the soft core of a vortex skyrmion [63].

VI. CONCLUSION AND DISCUSSION

Here we discussed the topology, which emerges in two-step
phase transition in the vicinity of the second transition. An
example is provided by the second-order phase transition from
the normal 3He to the polar phase followed by the second-
order phase transition from the polar phase to the PdB phase
experimentally observed in superfluid 3He in nafen [9]. Here
the composite object—the analog of the KLS wall bounded
by cosmic string—has been observed. We demonstrated that
in the vicinity of the second transition, such composite object
is described by the relative homotopy groups. The reason for
that is the existence of the two well-separated length scales.
The smaller length scale determines the core size of the half-
quantum vortex (the analog of Alice cosmic string). It is the
coherence length ξ related to the symmetry breaking phase
transition from the normal liquid to the polar phase. The larger
length scale ξ/q � ξ determines the soft core size of the
KLS wall terminated by this string. It is the coherence length
related to the second symmetry breaking phase transition—
the transition form the polar phase to the PdB phase.

The two-scale composite defects are described by relative
homotopy groups πn(R1, R2). Here R1 is the vacuum manifold
of the PdB phase, while R2 is also the vacuum manifold of
the PdB phase, but at a fixed value of the order parameter of
the polar phase before the transition to the PdB phase. The
observed KLS wall terminated by the half-quantum vortex
is determined by the nontrivial element of π1(R1, R2). The
other composite object, which is still waiting for its obser-
vation, is the monopole (hedgehog), which terminates the
string (the spin vortex). Its topology is determined by the
nontrivial element of π2(R1, R2). The core of the monopole
is of coherence length size ξ , while the spin vortices have
the soft core of size ξ/q � ξ . The relative homotopy groups
πn(R1, R2) are calculated using the exact sequence of the
group homomorphisms.

The topology of these combined objects demonstrates new
application of the relative homotopy groups. Earlier the rel-
ative homotopy groups have been applied for classification
of topological defects on the surface of the ordered system
[40], and for classification of topological solitons terminated
by point or linear defects [34].

We also considered the more complicated object—the
nexus, which combines the monopole, the string terminated
by monopole, and skyrmion (topological soliton) terminated
by the same monopole. Such object in the PdB phase arises

in the presence of magnetic field, which provides another
length scale. The situation becomes even richer, when the
spin-orbit interaction is included, which provides the fourth
length scale and extends the multiscale topology. The objects
combining vortices and skyrmions were recently considered
for superconductor-ferromagnet heterostructures, in which the
existence of Majorana bound states were suggested [64,65].

Typically the state of the system with topological defects
represents the excited state of the system. However, the
topological defects can form the ground state. Earlier it was
suggested that the suppression of the B phase on the boundary
of superfluid 3He may lead to formation of the stripe phase
in superfluid 3He-B under nanoscale confinement in a slab
geometry [66]. On a microscopic level, this inhomogeneous
phase is thought as the periodic array of the KLS domain
walls between the degenerate states of the B phase; see
Refs. [32,50]. The possible observation of such spatially mod-
ulated phase has been reported [67,68]. A similar situation
may take place in another kind of confined geometry, in
nafen. The strands of nafen could play the same role as the
boundaries in the slab confinement. The suppression of the
order parameter near the strands may result in the spontaneous
proliferation of the composite defects leading to the stripe
phases or stripe glasses.
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APPENDIX A: EXACT SEQUENCES: WITH AND
WITHOUT MAGNETIC FIELD

1. No magnetic field

The exact sequence of (relative) homotopy groups means
that the image of any homomorphism xn

∗ : A → B (the sets
of the elements of group B into which the elements of A
are mapped) is the kernel of the next homomorphism xn+1

∗ :
B → C (the sets of the elements of B which are mapped
to the zero element of C) i.e., im xn

∗ ∼= kerxn+1
∗ , with n ∈

Z [69]. The relative homotopy classes of πk+1(R1, R2) are
mapped to the homotopy classes of πk (R2) by mapping the
k-dimension subset of the k + 1 sphere, which surrounds the
defects, into R2. This mapping between two homotopy classes
with different dimensions is called boundary homomorphism
∂∗ [69]. Boundary homomorphism shows how topological
objects with different dimensions connect to each other. In the
PdB phase the exact sequence of homomorphisms is

π2(R2)
i∗

π2(R1)
j∗
π2(R1, R2)

∂k
∗

π1(R2)
m∗

π1(R1)
n∗

π1(R1, R2)
∂p
∗

π0(R2)
q∗

π0(R1)
r∗

π0(R1, R2)

0
i∗ 0

j∗
Z

∂k
∗

Z
m∗

Z × Z2
n∗

Z̃
∂p
∗

Z2
q∗ 0

r∗ 0

(A1)
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where the ∂k
∗ and ∂

p
∗ are boundary homomorphisms. This gives the following relative homotopy groups: π2(R1, R2) ∼= Z,

π1(R1, R2) ∼= Z̃ and π0(R1, R2) ∼= 0. The ∂k
∗ maps the homotopy classes of string monopoles to the homotopy classes of spin

vortices. The ∂
p
∗ maps the homotopy classes of the KLS string wall to homotopy classes of the domain wall. The kernels and

images of every relative homotopy group are analyzed in Appendix B.

2. In the presence of magnetic field

In the presence of magnetic field the corresponding exact sequence is

π2(S1 × U(1))
i∗

π2(R1)
j∗

π2(R1, S
1 × U(1))

∂k
∗

π1(S1 × U(1))
m∗

π1(R1)

0
i∗ 0

j∗
Z

∂k
∗

Z × Z
m∗

Z2 × Z

(A2)

i.e., π2(R1, S1 × U (1)) = 2Z ∼= Z. We found ker ∂k
∗ ∼= 0 and

im ∂k
∗ = 2Z ∼= Z. That means that only those objects are topo-

logical protected, which have an even total winding number of
spin rotation. These objects are the d̂-vector skyrmions. Since
π2(R1, S1 × U (1)) ∼= π2(R2, R1), these d̂ skyrmions can ter-
minate on the d̂ monopole, which in turn is the end point
of spin vortices with the total even number of spin rotation.
As a result one obtains the composite effect—the nexus in
Fig. 7.

APPENDIX B: RELATIVE HOMOTOPY GROUPS

1. π2(R1, R2 )

The objects described by the π2(R1, R2) are monopoles of
the d̂ vector, because the manifold of the degenerate states
of the d̂ vector is S2 ∼= SOS (3)/SOS (2), and we have the
mapping from S2 in real space to the S2 manifold of d̂
vectors.

The boundary homomorphism ∂k
∗ maps S1 ⊂ S2 to R2.

Then the im ∂k
∗ describes all classes of string defects termi-

nated by the monopoles. We found im ∂k
∗ = 2Z ∼= Z which

is the set of even numbers. This means that only the spin
vortices with the total even winding number can form the
string monopole. This situation is similar to the monopole
connected with four half-quantum vortices in the A phase,
where the total winding number is 2 [51]. The topologically
trivial monopole cannot connect with the string defects be-

cause of ker∂k
∗ ∼= 0. Actually this trivial class is identical to

π2(R1) because ker j∗ ∼= im i∗ ∼= 0.

2. π1(R1, R2 )

The relative homotopy group is π1(R1, R2) ∼= Z̃. From
kerq∗ ∼= im ∂

p
∗ ∼= π0(R2) ∼= Z2, we know there are domain

walls bounded by string defects. The set of half-odd integers
of the group Z̃, which come from im ∂

p
∗ describes the domain

wall terminated by string defects—the KLS wall terminated
by HQV or by any vortex with half-odd integer winding num-
ber N = k + 1/2. The vortices, which come from ker∂ p

∗ ∼= Z
are vortices with the integer winding number. These vortices
are free.

3. π1(R1, S1 × U (1))

From the exact sequence in Eq. (A2) it follows that
π2(R1, S1 × U (1)) = 2Z ∼= Z. This group describes the lin-
ear skyrmions in the d̂ vector, which are the linear analogs
of the original pointlike skyrmion [70,71]. The spin texture
inside the cross section D2 of the skyrmion corresponds to
continuous mapping to SOS (3), which is implemented by
choosing first a direction of d̂ and then making the SOS (2)
rotation of ê1 and ê2 around this direction. This skyrmion
also represents the spin vortex with an even winding number,
because of im ∂k

∗ ∼= 2Z and ker∂k
∗ ∼= 0.
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