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Liquid crystal spherical caps in magnetic fields
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Spherical cap shaped liquid crystal drops have potential for use in tunable multifocal optical lenses. To achieve
this, one needs to understand the liquid crystal director structure in various external fields. We present detailed
experimental and theoretical studies of the director structure in magnetic fields of less than 1 mm diameter
nematic liquid crystal drops on glass surfaces (x-y plane), forming spherical cap shape with average molecular
directions initially perpendicular to the boundaries. We show that at sufficiently high magnetic fields a Néel
wall-type metastable inversion wall forms in the middle of the drop and then moves outward when the field
is applied in x direction. Applying fields above a critical angle between the plate of the spherical cap and the
magnetic field, a uniform director structure forms. Drops with uniform director structure can be used as tunable
optical lenses, where the focal length can be controlled by light polarization, viewing angle, magnetic, or electric
fields. We also propose a theory that explains the texture variation in small magnetic fields and accounts for the
formation and motion of the inversion wall. The theory explains the physical origin of the movement and gives
the right magnitude of the speed at the first 10–15 min of the motion.
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I. INTRODUCTION

Optical lenses with spherical cap shapes have been pol-
ished and carefully fabricated since 750 BC and became es-
sential for telescopes, microscopy, and photography. Tunable
liquid microlenses capable of adjusting the focal length and
position have been discovered only at the beginning of the
21st century [1–5].

Optical lenses made from birefringent materials
(anisotropic materials characterized with two different
refractive indices) also have a wide range of applications,
including image processing [6], common-path profilometry
systems [7,8], multifocal intraocular elements [9], and
compact-disk readers [10]. Traditionally, these birefringent
lenses are made from crystals such as quartz, which provides
excellent uniformity and transparency in the UV-visible
range, but it is not tunable and requires precise fabrication.
To tune optical axis and effective birefringence, nematic
liquid crystal (NLC) is an excellent choice as it can be easily
switched with magnetic or electric fields [11]. The latter
property is utilized in the multibillion-dollar liquid crystal
display (LCD) technology marketed these days as LED and
QLED displays.
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Concepts of switchable LC microlenses can be classified
to two main categories [12]. In the first one, the LC films
have uniform thickness h and the director field, i.e., optic axis,
is spatially varied by electric fields applied across the film
substrates. This leads to a gradient of effective refractive index
neff that results in a bent optical path [13–18]. In the second
class, glass lenses are blended with switchable liquid crystals
that enable changing either the surrounding refractive index of
a convex glass lens [19–23] or by switching the polarization
of the incoming light with an LC polarization rotator placed
in front of a polymerized birefringent LC lens [24]. Recently,
liquid crystals with tunable lens shapes have also been demon-
strated either by using microfluidic techniques [25,26], by
chiral additive [27], or light [28].

However, to the best of our knowledge, so far, no studies
described the director structure of lens-shaped fluid liquid
crystals in external fields. This is a specially complicated case,
as not only the film thickness varies, but also because the
liquid crystal might be imposed to two different boundary
conditions at the flat LC-solid and at the curved LC-isotropic
medium interfaces [29]. In addition, the elastic anisotropy
and the external fields also complicate the description. For
example, when the LC director is aligned uniformly along the
flat surface (planar anchoring), a “bipolar” state may form in
which the director field has two surface point defects.

In this paper we describe experimental and theoretical
studies of the director structure of lens-shaped nematic liquid
crystal drops in various magnetic fields. The LC drops with
free surface are placed on flat transparent substrates in the
x-y plane that align the director perpendicular to the plane.
As the director is also perpendicular to the air-LC interface,
at small contact angles, the LC lens is quasi-isotropic with a
focal length independent of the polarization orientation, but
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FIG. 1. Schematics of the custom-made polarizing optical mi-
croscopy system and a LC drop in a heat stage placed between the
poles of an electromagnet.

dependent on the viewing angle. We show that, even under
low magnetic fields, the director structure can be distorted
and gradually leading to a defect wall that moves toward the
periphery. We will also show that eventually, or by varying
the direction of the magnetic field, the LC inside the drop
can be aligned uniformly parallel to the magnetic field. The
uniform director structure of such a drop may either be fixed
by a polymer network and the focal length can be switched by
a polarization rotator element or the focal length can be tuned
by magnetic field.

II. EXPERIMENTAL SETUP

A custom designed polarizing optical microscope made of
nonmagnetic materials was used that was placed between the
poles of an electromagnet. The schematics of the setup can be
seen in Fig. 1. The optical train of the microscope was vertical
(z), the drop was illuminated either by white or 633 nm wave-
length monochromatic light, and the homogeneous magnetic
field (H) could be applied horizontally in x direction; thus
objects in the x-y plane could be observed. The sample was
placed between crossed polarizers that are rotated ±45◦ with
respect to the x axis. The temperature of the sample holder
could be controlled with better than ±0.1 ◦C precision. The
hot stage was rotatable around the y axis. The angle of the
base plate with respect to the x direction is denoted by β.
The maximum magnetic field slightly above 104 Oe could be
achieved. Micrographs could be recorded with an Optronics
Microfire color CCD camera.

All measurements were done using the standard liquid
crystal 4′-octyl-4-biphenylcarbonitrile (8CB) in the nematic
phase at 39.8 ◦C, 0.5 ◦C below the isotropic-nematic phase
transition. Liquid crystal droplets were put in the isotropic
phase on glass substrates coated with JALS204 (a type of
polyimide from JSR Co., Japan) polymer layers providing
molecular orientation perpendicular (homeotropic) to the sur-
face.

III. RESULTS

Just as isotropic liquids, fluid liquid crystals can also form
spherical cap (lens) shapes by placing them on a flat substrate
when the diameter of the drop is smaller than the capillary
length Lc = √

γ /ρg [30], which for the studied 8CB is about
1.8 mm. With a good approximation, their contact angle θ can
be given by Young’s equation [31]: cos θ = (γSA − γSL )/γLA,
where γSA, γSL, and γLA are the surface tensions at the solid-
air, solid-liquid, and liquid-air interfaces, respectively. For
liquid crystals where the director is perpendicular to the solid
substrate, γSL does not depend on the lateral direction, and the
shape of the projection of the drop on the substrate is circular.
For the JALS204 homeotropic surface alignment coating we
used, the contact angle was found to be θ ≈ 20◦. Without
external fields, such a small angle results in a fairly dark
texture between crossed polarizers [see Fig. 2(a)] with four
roughly equal intensity brighter spots situated symmetrically
along the center lines at x and y directions [see texture in the
inset of Fig. 2(a) taken with longer exposure time]. For the
majority of liquid crystals, except for dimers [32], and a few
other examples [33,34], the director is perpendicular to the
air and the director structure is smooth, except for a defect
ring around the drop [see sketch of the director structure
in the x-z plane in Fig. 2(a)]. Applying a field along x, it
breaks the cylindrical symmetry of the droplet and gradually
realigns the director along x.

The texture starts changing with the field in a way that the
two spots on the y axis (where x = 0) become weaker, while
those on the x axis get brighter. This can be understood by
considering that at y �= 0 the director has y component, which
increases with y. A magnetic field applied along the x direc-
tion leads to an increase of the x component of the director
while reducing the y and z components. As the twist angle
inside the drop reaches 45◦, the projection of the director to
the base plate becomes parallel to one of the polarizers and the
transmitted intensity vanishes. As seen in Fig. 2(b) for a 490
μm diameter drop, at H ∼ 1 kOe the spots on the y axis almost
disappear, while the other two spots brighten. The positions
of these spots are approaching the center at increasing fields,
marking the places where the optical paths p have maxima.
Above H1 ∼ 1.3 kOe, an increasing number of fringes appear
around colored spots [see Fig. 2(c)]. In this stage, the director
becomes almost parallel to the magnetic field inside the drop
except for the center line where it stays homeotropic, and
near the boundaries within a range determined by the mag-
netic coherence length that decreases at increasing fields (see
Discussion). Increasing the fields further, the fringes become
half circles separated by a central defect wall that spans
between the drop boundaries perpendicular to the magnetic
field [Fig. 2(d)]. At constant fields [10 kOe for the case shown
in Fig. 2(e)] the defect wall moves gradually away the center
line. Note that the direction of the movement (left or right)
depends on the sign of the angle between the base plate and
the magnetic field. Even less than 0.01◦ inversion in the angle
can cause different movement directions. At constant tilt the
wall always moves in the same direction. Finally, after about
100 min, the defect wall reaches the edge and stops [Fig. 2(f)].
In this stage the fringes are almost circular, and the director
structure is uniformly parallel to the magnetic field. Note that,
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FIG. 2. Top view of textures between crossed polarizers at ±45◦ with respect to the magnetic field of a 490 μm diameter drop at 39.8 ◦C
illuminated by white light (top images) and the approximate director structures at side view (bottom drawings) at different magnetic fields
(a)–(c) and at different times (d)–(f). The inset in (a) shows the same drop with a higher exposure.

except for a small bulging in the y direction, the base of the
drop remains circular, indicating that the alignment at the
surface is still perpendicular to the substrate, i.e., γSL has only
one value corresponding to that of the homeotropic alignment.
Such a circular shape provides ideal birefringent lens condi-
tions. Cooling the sample to the SmA phase, while the 10 kOe
field is maintained, the alignment reverts to homeotropic as in
Fig. 2(a), proving that the anchoring is unbroken even at 10
kOe fields.

The magnetic field dependence (up to 1 kOe) of the average
peak position and the x dependence of the measured transmit-
ted monochromatic light intensity at y = 0 are shown in Fig. 3
for a 912 μm dimeter drop. At increasing fields, the peak
positions shift toward the center without a sharp threshold as
it will be discussed later.

At fields above 1 kOe, the director rearrangement has been
characterized by counting the number of interference fringes
seen in Fig. 2(c). The number of the dark and bright fringes
when a 912 μm diameter sample is viewed through a red
filter (λ = 633 nm) is shown at increasing (red squares) and
decreasing (blue dots) fields in the main pane of Fig. 4. After
the first fringe appears at ∼0.9 kOe, the number of fringes
increases strongly up to 1.5 kOe, then gradually saturates.
Keeping in mind that there is a director distortion even below
the appearance of the first fringe (see Fig. 3 and indicated by
dotted line in Fig. 4), the behavior is typical for a Fredericks-
type transition with a pretilt. On decreasing fields, there is a
small hysteresis that might be related to dynamics or some

impurities. The inset of the figure shows the top view of
the drop at 6 kOe with 22 fringes and illustrating the way
the fringes counted. In this particular drop there was a dust
particle in the middle of the drop that pinned the movement of

FIG. 3. Magnetic field dependence of the peak position from the
center along the magnetic field of a 912 μm diameter droplet at
39.8 ◦C. The inset shows the x dependence of the intensity along a
center line parallel to the magnetic field at various magnetic fields in
kOe units.
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FIG. 4. Main pane: number of measured bright and dark fringes
as the function of the magnetic field of a 912 μm diameter spherical
cap at 39.8 ◦C. The inset shows a drop with a dust particle in the
center at 6 kOe field with 22 fringes and illustrating the way the
fringes are counted.

the defect wall. In the absence of any visible dust, the defect
wall position in the middle becomes unstable and it is always
moving toward one side.

The movement of the defect wall seen in Figs. 2(d)–2(f)
is depicted in Fig. 5 for a 490 μm diameter drop, where
we plotted the time dependence of the position of the defect
wall for different angles −3◦ < β < +3◦ between the base
of the drop and the magnetic field. In these experiments
the magnetic field was ramped up to 10 kOe in 100 s, and
the time dependence of the position was measured choosing
t = 0 when the field reached 10 kOe. For β ∼= 0, the wall
forms nearly at the center of the drop [x(0) ≈ 0], while for
β �= 0,|x(0)| > 0 and moves to the same direction. Tilting the
sample to the opposite direction the sign of x(0) and x(t )
changes, too. In Fig. 5 we depicted x(t ) for four different

FIG. 5. Time dependence of the position of the defect wall for
a 490 μm diameter drop at 39.8 ◦C at different angles between the
sample plate and the magnetic field. The inset shows the average
speed as the function of angle with fit line corresponding to an
exponential function.

FIG. 6. Time dependence of the position of the defect wall for
490 μm diameter drop at 39.8 ◦C at different magnetic fields. The
inset shows the time dependences of the displacement of the defect
wall at 10 kOe as measured and as calculated by the theory to be
discussed in Sec. IV C.

tilt angles. It can be seen that x(t ) is almost proportional
to the time, with dx(t )/dt increasing slightly at t > 5000 s.
The movement is slowest for β ∼= 0 and increases quickly at
increasing angles. The angle dependence of the average speed
is shown in the inset. One can see that the speed increases
exponentially from v ≈ 0.036 μm/s at β ≈ 0◦ to 1.15 μm/s
for β = 2.6◦. For β = 2.6◦, the wall forms near to the edge
of the droplet (about 200 μm from the center). At larger tilt
angles, there is no defect wall formation.

The time dependences of the distance of the defect walls
from the middle were also measured at different constant
magnetic fields for β ≈ 0 and are plotted in Fig. 6. In the 7–10
kOe range, the speed of the wall is essentially the same up to
about 5500 s, when the wall reaches the edge of the droplet
for 10 kOe [shown in Fig. 2(f)], but stops at 225 μm for 7, 8,
and 9 kOe. Interestingly, decreasing the fields below 7 kOe,
the initial speed of the wall increases, but the wall stops at
smaller distances: ∼120 μm for 3 kOe, ∼180 μm for 4 kOe,
and ∼210 μm for 5 kOe.

The inset shows the time dependences of the displacement
of the defect wall at 10 kOe as measured, and as calculated by
the theory to be discussed in Sec. IV C.

IV. DISCUSSION

To model the behavior of the pattern in different magnetic
fields, in Fig. 7 we sketch the geometry of the spherical cap
and the director structure of the liquid crystal in different cross
sections and different conditions.

A. Transmittance in zero magnetic field

From Fig. 7(a) we can write that ro cos[α(x)] = ro − ho +
h(x) and sin[α(x)] = x/ro. Since α � θo = 20◦, with good
approximation h(x) � ho − x2/ro and α(x) � x/ro.
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FIG. 7. Cross sections of the liquid crystal spherical cap in
different planes and different states. (a) x-z plane at the center line
of the drop at zero magnetic field, with the director distribution
magnified (blue) along z. (b) x-z plane showing the geometry of
the defect wall (directors in orange, magnifier in green) at higher
magnetic fields. Light blue shaded area indicates the glass plate;
(c) x-y plane showing the geometric relation between a(x) and ao.
(d) y-z plane showing the relation between h(x) and a(x); (e) x-t
plane showing the time dependence of the defect wall’s position (blue
dashed box) in x direction.

The x dependence of the transmittance T(x) between
crossed polarizers can be written as

T (x) = sin2(2�)sin2

(
π

λ

∫ h(x)

0

neff (x, z)dz

)
. (1)

Here 
neff is the effective birefringence and � is the angle
between director and the polarization of the incoming light of
wavelength λ.

In the cross section along x, the projection of the director in
the plane of the light polarization makes � = ±45◦ with the
polarizers; therefore, the first term in Eq. (1) is equal to one
and the transmittance is determined solely by the retardation
term. It is also well known [11] that 
neff depends on the
angle α(x, z) between the transmitted light (z direction) and
the director as


neff (x, z) = ne√
1 + ν cos2α(x, z)

− no, (2)

where no (ne) is the ordinary (extraordinary) refractive index
and ν = (n2

e − n2
o)/n2

o. Without external field, the z depen-
dence of the director linearly increases from zero at the bottom
of the cell up to α(x) at the top [see Fig. 2(a)], and the
integral in Eq. (1) can be replaced with the average value

n̄ = 
n(α/2).

We therefore get that

T (x) = sin2

(
π
n[α(x)/2]h(x)

λ

)
. (3)

Taking no ∼ 1.55 and 
neff ∼ 0.11 at 0.5 ◦C below the
clearing point [35], we can estimate that 
n[a(x)/2] <

10−4. Taking into account that a(x)/r(x) = sin θ (x) and
h(x) = r(x) − ao/ tan(θo) [see Fig. 7(d)] and a2(x) = a2

o − x2

[see Fig. 7(c)] we get that the height of the drop at the
middle is ho = ao/ sin θo − ao/ tan θo, which for the 2ao =
912 µm diameter drop in Figs. 3 and 4, and θo = 20◦ gives
ho = 84.5 μm. These values give that the phase shift is much
smaller than 0.1, explaining the fairly dark texture observed at
zero magnetic field [see Fig. 2(a)].

B. Transmittance in magnetic field

In the case of a nematic fluid with positive diamagnetic
susceptibility anisotropy, sandwiched between two plates par-
allel to the x-y plane with homogeneous initial director field
along z, one expects the transition occurs sharply above the
Fredericks threshold field given in CGS units as

Hbo = π

ho

√
K33


χ
. (4)

Here the subscript b stands for bend director deformation, K33

is the bend elastic constant, 
χ is the diamagnetic suscepti-
bility of the material, and ho is the distance between bounding
plates. (Note that some expressions given here in CGS units
[e.g., Eq. (4)] are also given in SI units in the Appendix.) As
the height of the droplet decreases radially from the center,
so the threshold field increases. Additionally, the transition is
sharp only at x = 0, where α(0) = 0, and becomes smoother
at increasing distance from the center. Finally, for y > 0,
all three director deformations are involved and coupled to
the magnetic field; therefore, a three-dimensional description
should be considered for a precise description of the director
deformation. Such a complicated theoretical description is out
of the scope of the present paper and may be the subject of
further theoretical studies. Below we present a simplified but
rather effective model.

Looking at Fig. 4, where the peak position is plotted as the
function of small magnetic field for a 2ao = 912 μm drop, we
can see a smooth Fredericks transition at Hbo(0) ∼ 0.9 kOe.
From Eq. (4), the above Hbo and ho values give K33/
χ = 5.8.
At the measured 39.8 ◦C K33 ∼ 0.4 μdyne [36], which gives

χ ∼ 7 × 10−8 CGS. This agrees well with measurements
close to the N-I transition [37,38].

Above Hbo, the position of the highest intensity spots is
moving toward the center as shown in Fig. 3. As the optical
path difference

γ (x, H ) =
∫ h(x)

0

neff (x, z, H )dz (5)

reaches one, a dark spot appears on both sides of the center
along the magnetic field, and as γ (x) reaches to higher inte-
gers, an increasing number of dark and bright fringes appear,
as shown in Fig. 2(c).

To calculate the magnetic field dependence of γ (x, H ), one
has to solve the Euler-Lagrange equation

d

dz

(
∂ ftot

∂ (∂�/∂z)

)
+ d

dx

(
∂ ftot

∂ (∂�/∂x)

)
− ∂ ftot

∂�(x, z)
= 0. (6)

Here � is the angle between the director and the z axis
and ftot = fel + fmag is the free energy density taking into
account the Frank elastic free energy density fel and the
contribution from the magnetic interaction fmag. Assuming no
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twist deformation in the x-z cross section at the center of the
drop (y = 0), and taking into account that 0.5 ◦C below the I-N
transition the splay (K11) and the bend (K33) elastic constant
are nearly equal (K11 = K33 = K ∼ 0.3 µdyne) [36], we get
that

fel ≈ 1

2
K

[(
∂�

∂x

)2

+
(

∂�

∂z

)2
]
. (7)

The magnetic energy density can be written as [11] fmag =
f o
mag − 1

2
χ sin2� · H2, where f o
mag does not depend on �.

With these, the Euler-Lagrange equation inside the drop

becomes

ξ 2

(
∂2�

∂x2
+ ∂2�

∂z2

)
+ sin � cos � = 0. (8)

Here ξ = √
K/
χ/H is the magnetic coherence length

(length where the magnetic field rotates the director roughly
by 45◦ toward the field) [11]. For the general solution, this
equation has to be solved numerically taking into account
the boundary conditions: � = 0 at z = 0 for x > 0 and at
z � ho for x = 0, and � = α(x) at z = h(x). However, for
H > Hso = Hbo = Ho (i.e., for x > ξ ), we can assume that
the director depends only on z and its z dependence can be
obtained as [11]

�(z) = π/2 − 2 arctan[exp(−z/ξ )] for z < h(x)/2, x > ξ,

�(z) = π/2 − 2 arctan[exp{−[h(x) − z]/ξ}] for z > h(x)/2, x > ξ.
(9)

For H � 1 kOe, Eq. (9) will be valid for x � 30 μm, i.e., for
more than 92% of the area of a drop for ao = 250 μm.

With these in mind, the transmittance in the center line
along the magnetic field can be approximated as

T (x) = sin2

[
π

λ

∫ h(x)

0

(
ne√

1 + v cos2�(z)
− no

)
dz

]
, (10)

where �(z) is taken from Eq. (9). The k = 24 dark and bright
fringes measured at 10 kOe mean the optical path differ-
ence 
neff · ho ∼ k/2 · λ. With the red filter (λ = 633 nm)
and ho = 84.5 μm, we get that 
neff (10 kOe) ≈ 0.09. This
is slightly smaller than 
n = ne − no = 0.11 measured at
0.5 ◦C below the I-N transition [35] and is consistent with the
observation that the homeotropic boundary condition was not
broken at 10 kOe.

C. Motion of the inversion wall

As the magnetic field increases, the number of fringes
increases, and their shape approaches half circles that are
separated by an inversion wall with thickness twice the mag-
netic coherence length ξ (H ) = √

K33/
χ/H (see video in the
Supplemental Material for a drop where snapshots are shown
in Fig. 2) [39]. Although this inversion wall appears at (or
close to) the center line of the droplet, it slowly starts moving
toward the periphery along the magnetic field. We propose
this is mainly because during this motion the defect area—and
thus its energy—decreases. This provides an effective force
that is balanced by the gradient of the energy dissipated during
that motion.

In first approximation, we neglect the surface layer with
magnetic coherence length ξ (104 Oe) ∼ 2.6 μm in compari-
son to the height of the wall h(x) � 43 μm for the 490 μm
diameter drop. The cross section of the defect wall in the x-z
plane is sketched in Fig. 7(b). Looking at Fig. 7(d), we can
express the area of the cross section of the defect wall at a
distance x from the center as

A(x) = r2(x)θ (x) − a(x)[r(x) − h(x)], (11)

where θ (x) = arcsin[a(x)/r(x)] and h(x) = r(x) −
ao/ tan(θo). Substituting these expressions into Eq. (11),
we can express A(x) with variables x, ao, and θo as

A(x) = arcsin

⎡
⎣ √

a2
o − x2√

a2
oCsc2(θo) − x2

⎤
⎦[

a2
ocsc2(θo) − x2

]

− ao

√
a2

o − x2cot(θo). (12)

For small contact angles (θo = 20◦), we can approximate A(x)
as

A(x) ∼ 2
(
a2

o − x2
)3/2

θo

3ao
. (13)

The energy of the defect wall is

WD = E · A(x). (14)

Here E = 2H
√

K33
χ is the energy per unit area of the defect
wall in CGS units [40].

In this approximation at constant magnetic fields, the de-
fect energy will be proportional to the area A(x). Conse-
quently, as A(x) decreases with increasing x, the defect wall
will be pushed toward the periphery.

The force that is pushing the wall sideways is the negative
derivative of the energy with respect to x:

F (x) = −dW

dx
= −E

dA(x)

dx
. (15)

As it can be seen in Fig. 7(e), the motion of the wall to keep
its structure undistorted requires a director rotation by 180◦
(π ) while the wall moves by its thickness w. This is similar to
the flow of a cholesteric liquid crystal along the helix axis.
It is called permeation and was described first by Helfrich
[41]. The viscous torque density �v related to this rotation
can be expressed as �v = γ1(dϕ/dt ), where ϕ is the angle
of the director and γ1 is the rotational viscosity. The rate of
the director rotation is dϕ(x)/dt = π/T (x), where T (x) is the
time it takes to translate by a thickness of the wall with the
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speed v(x) = w/T (x).. With these, we get that dϕ(x)/dt =
πv(x)/w. The energy density dissipated by the rotation in unit
time is −γ1[πv(x)/w]2. This dissipated energy density must
be balanced by the energy density gain in unit time, which is
the force density F (x)/[A(x) · w]:

γ1

(π

w
v(x)

)2
= F (x) · v(x)

w · A(x)
. (16)

From this, we can express v(x) as

v(x) = dx

dt
= F (x) · w

A(x) · γ1π2
= − EA′(x)w

A(x)γ1π2
, (17)

where prime (′) means derivation by x. After separation of the
variables, we can write

−γ1π
2

Ew

∫ x

xo

A(x)

A′(x)
dx =

∫ t

0
dt = t . (18)

Using A(x) given in Eq. (12) the integral can be solved only
numerically, while using the approximate expression of A(x)
of Eq. (13) we get

a2
o ln

(
x

xo

)
− x2 − x2

o

2
= 6Hw

√
K33
χ

γ1π2
t . (19)

This expression apparently depends on the magnetic field H ,
the width of the defect wall w, the diamagnetic susceptibility
anisotropy 
χ , the bend elastic constant K33, and the rota-
tional viscosity coefficient γ1. However, in the approximation
that the thickness of the defect wall is w ∼ 2ξ , i.e., depends
on the magnetic field as w = 2

√
K33/
χ/H , where ξ 	

h(x), the magnetic field, and the diamagnetic susceptibility
anisotropy drop out from the equation, and we get

a2
o ln

(
x

xo

)
− x2 − x2

o

2
≈ 12K33

γ1π2
t . (20)

This equation contains only the size of the drop ao, two
material parameters K33 and γ1, and predicts that x(t ) is
independent of the magnetic field, which is indeed observed
between 6 kOe and 10 kOe fields (see Fig. 6). Equation (20)
does not hold at lower fields, where the magnetic coherence
length becomes comparable to the height of the drop, thus
Eq. (13) is not valid anymore.

Importantly, to solve Eq. (20) no fitting parameter is
needed. Taking ao = 245 μm, and published values of γ1 =
50 cp [42,43] and K33 = 2.8 × 10−7 dyne [36] at the measured
0.5 ◦C below the I-N transition, we obtain the theoretical curve
shown in the inset of Fig. 6. At the first 10–15 min of the
movement this theory excellently agrees with the experimen-
tal results; later, however, the theoretical curve accelerates,
while the real wall motion continues with almost constant
speed. There are several possible reasons for this discrepancy.

(a) In obtaining Eq. (20), we used an approximate area
given in Eq. (13) instead of the exact one in Eq. (12). Our nu-
merical calculation, however, shows that—as expected—this
does not make a large difference and still gives an accelerating
curve.

(b) Since the tilt of the top surface α(x) with respect
to the bottom plate increases with increasing x, the defect
wall may become bent in order to stay perpendicular to both
boundaries. This leads to a weaker A(x) dependence than that

given in Eq. (12), thus slowing down the motion. However,
since α < 20◦, the correction is not expected to be sufficient
to explain the difference between the experiments and theory
for t > 30 min.

(c) There might be impurities and defects that are dragged
by the defect wall, thus slowing down the movement at later
stages. In fact, we have observed that larger dust particles can
even pin the defect wall. This is illustrated in the inset of
Fig. 4, where a dust particle placed in the center completely
halted the motion of the wall. After turning the field off and
repeating the measurements several times, the measured time
dependences reproduced, indicating that the distribution of the
defects or impurities reproduces as well.

(d) Due to the no-slip boundary condition, the defect wall
ends in two half defect lines at a distance ξ from the wall
[see Fig. 7(b)]. These defect lines are likely pinned at the
peripheral defect ring, while they are dragged inside the drop
by the defect wall. Consequently, the defect lines become
increasingly stretched as the distance x of the wall increases.
Although this mechanism likely can explain the lack of accel-
eration, its theoretical description is out of the scope of this
paper.

(e) Finally, the actual height of the defect hd = h(x) − 2ξ

and the actual area of the defect wall Ad (x) decreases faster
than the calculated A(x). Although this would provide even
more acceleration at intermediate x values, the Helfrich type
dissipation mechanism fails at higher x, when the coherence
length is comparable to the thickness of the material. Indeed,
we find (see Fig. 6) that the wall stops at small h(x) values.
We assume that this happens when h(x) = 2ξ , i.e., when the
wall shrinks to a defect line that cannot gain energy by further
movement. Since ξ is inversely proportional to the magnetic
field, the distance x, where the h(x) becomes twice of the
coherence length, decreases qualitatively in accordance with
the experimental results shown in Fig. 6. For example, at 3
kOe ξ ∼ 5 μm, i.e., it should stop at h(x) ∼ 10 μm. Since
x = h(x) � ho − x sin θ , using ho = 43 μm and θ = 20◦ one
gets that x ∼ 100 μm. This is close to the experimentally
observed x ∼ 120 μm.

V. CONCLUSIONS

In this paper we described studies of the director struc-
ture of lens-shape nematic liquid crystals with perpendicular
(homeotropic) boundary conditions in various external mag-
netic fields.

Experimentally, we observed that the optical path has
two maxima in the center line along the magnetic field. On
increasing fields, the positions of the maxima move closer
to the center and lead to the formation of increasing number
of fringes that eventually form half circles separated by an
inversion wall at the center, perpendicular to the field. We find
that the defect wall is unstable in the center line and moves
toward the periphery along the magnetic field. Below 7 kOe
magnetic fields, the speed is larger for smaller fields, but the
walls stop at smaller distances. In the 7–10 kOe range, the
speed is independent of the magnetic field.

Our theory can account for all major features of the exper-
imental observations. (i) It can explain the number of fringes
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at the function of magnetic field, (ii) gives an explanation for
the movement of the defect walls, (iii) gives an excellent de-
scription of the speed at the first 10–15 min of the defect wall
motion without any fitting parameter, and (iv) it explains that
the speed of the defect wall is independent of the magnitude of
H > 7 kOe magnetic fields. Although this theory deals only
with magnetic interactions, it is straightforward to general-
ize to electric effects that might be more useful for tuning
lenses.

For practical applications, the most promising observation
is that the defect wall does not appear above a critical angle
between the plate of the spherical cap and the magnetic
field, thus giving rise to uniform director structure. After
polymerization, or for materials with glass transition, such
objects may be used to make optical lenses with a focal length
that varies with the polarization and the direction of the light
beam. Additionally, in its liquid form, the focal lengths can be
tuned by magnetic field.

The experimental observations and their comparison to our
theory imply a number of further research directions, such
as investigating the role of impurities and defects on the
movement of the defect wall, the study of the optical behavior
of birefringent LC drops, or their tuning with magnetic and
electric fields.
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APPENDIX

Above we used quantities and equations in CGS units for
simplicity. Here we give those related to our results in SI units
as well.

The magnetic field H = 1 Oe (CGS) = (4π )−1 ×
1000 A/m ≈ 79.58 A/m (SI). For nonmagnetic materials,
H = 1 Oe (CGS) corresponds to B = 1 G (CGS) magnetic
inductance, which is B = 0.1 mT in SI. In our studies,
the maximum applied magnetic field was about 10 kOe,
which corresponds to B = 1 T. The Fredericks threshold
field [Eq. (4)] in SI is Hbo = (π/ho)

√
K33/μo
χSI ,

where μo = 4π × 10−7 V s/A m is the permeability of
the vacuum and 
χSI is the diamagnetic susceptibility
anisotropy in SI. The Frank elastic constants have units
of force, which are dyne in CGS and N in SI; in our case
K33 = 3 × 10−7 dyne = 3 pN. The magnetic coherence
length in SI is ξ = (1/H )

√
K33/μo
χSI .
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