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Dynamically assisted Schwinger mechanism and chirality
production in parallel electromagnetic field
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We study particle and chirality production from the vacuum in the presence of a slow strong parallel
electromagnetic field superimposed by a fast weak perturbative electromagnetic field. We derive an analytical
formula for the particle and chirality production number based on the perturbation theory in the Furry picture.
With the formula, we analytically discuss the interplay and dynamical assistance between the Schwinger
mechanism and one-photon pair production and clarify effects of a parallel slow strong magnetic field. We
also show that the dynamical assistance can significantly enhance chirality production, and that a sizable amount
of chirality can be produced even for massive particles. Phenomenological applications including heavy-ion
collisions and intense laser experiments are also discussed.
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I. INTRODUCTION

One of the most remarkable predictions of quantum elec-
trodynamics (QED) is spontaneous particle production from
the vacuum in the presence of a slow strong electromag-
netic field (for review, see Refs. [1–3]). This remarkable
prediction was first made by Sauter in 1931 [4]. Sauter’s
idea was expanded later by Heisenberg and Euler [5] and
by Schwinger [6], who fully formulated the idea within
quantum field theory for the first time. Thus, the vacuum
particle production by a slow strong electromagnetic field is
called the Schwinger mechanism. The Schwinger mechanism
is essentially an electric effect. In the presence of a slow strong
electric field, there occurs a level crossing between the Dirac
sea and the positive energy continuum (see Fig. 1). Then, an
electron filling the Dirac sea can tunnel into the positive en-
ergy continuum, leaving a hole in the Dirac sea. Thus, a pair of
an electron and a positron is spontaneously produced, which
can be understood as a QED analog of electrical breakdown
or the Landau-Zener transition in materials [7–10].

The production number of the Schwinger mechanism is
determined by the tunneling rate, which decreases with in-
creasing the gap size ∼m and the tunneling length ∼m/eĒ
(see Fig. 1), where m, e > 0, and Ē are mass, the QED
coupling constant, and the electric field strength, respec-
tively. Therefore, one may expect that the production num-
ber is suppressed by an exponential of m × m/eĒ . Indeed,
Schwinger [6] showed that the production number of electrons
N and positrons N̄ for a constant and homogeneous electric
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field is given by

N = N̄ = V T × (eĒ )2

4π3
e−π m2

eĒ (1)

with V and T being the spatial volume and the whole time
interval, respectively. For a more general electromagnetic field
configuration, the production number formula reads [6,11–17]
(see also Refs. [18–24] for more discussions on magnetic-field
effects)

N = N̄ = V T × (eĒ )2

4π3
e−π m2

eĒ × π
eB̄

eĒ
coth

[
π

eB̄

eĒ

]
. (2)

Remark that it is sufficient to consider a parallel electro-
magnetic field configuration Ē ‖ B̄, which can cover all the
possible values of the Lorentz invariants F ≡ Ē2 − B̄2 and
G ≡ Ē · B̄. Equation (2) shows that the addition of a parallel
magnetic field enhances the production number by the factor
π (eB̄/eĒ ) coth [π (eB̄/eĒ )] > 1.1 The Landau quantization
is the essence of this enhancement. Namely, the Landau

quantization discretizes the transverse mass
√

m2 + p2
⊥ →√

m2 + |eB̄|(2n + 1 − s) (where n = 0, 1, 2, . . . ∈ N labels
the Landau level, and s = ±1 is the spin component with
respect to the magnetic field direction) and, accordingly,
the phase space

∫
d2 p⊥ → eB̄

∑
n. The phase space linearly

increases with eB̄, which essentially accounts for the enhance-
ment of the production number of electrons and positrons. The

1Precisely speaking, a parallel magnetic field enhances the pro-
duction number except for scalar particles, whose lowest energy
level increases with eB̄ as

√
m2 + |eB̄| and hence its production is

exponentially suppressed [17,18]. The production of vector particles
(e.g., gluon and W boson) or, more generally, higher spin particles,
is enhanced more strongly than that of spinor particles [12,24]
because of the existence of unstable modes (Nielsen-Olesen insta-
bility [25–27]).
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FIG. 1. Band structure of the QED vacuum in the presence of a
slow strong electric field applied in the x direction, V (x) = −eĒx,
and schematic pictures of the Schwinger mechanism [blue (darker
gray in grayscale) arrow] and the dynamically assisted Schwinger
mechanism [orange (lighter gray in grayscale) arrow]. 2m, with m
being mass, is the gap size, and � represents energy supplied by a fast
weak electromagnetic field in the dynamically assisted Schwinger
mechanism.

mass suppression factor exp [−πm2/eĒ ] remains the same
since the gap size ∼m and the tunneling length ∼m/eĒ are
unchanged by the Landau quantization, or the presence of a
magnetic field, for spinor particles.

The Schwinger mechanism (or the idea of the Schwinger
mechanism) has a wide spectrum of phenomenological appli-
cations including, to name a few, the early Universe [28–34],
condensed matter/materials [35–43], and axion produc-
tion [44–46]. In particular, application to heavy-ion collisions
has received much attention over the decades. Just after a
collision of heavy ions at the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC), a strong
(chromo-electromagnetic field, which is sometimes called
glamsa, is produced [47–51]. It is widely recognized that
particle production from the glasma via the Schwinger mecha-
nism is the essence of the formation of the quark-gluon plasma
in heavy-ion collisions [17,50–55], while its detailed under-
standing is still lacking. In addition, the glasma has a parallel
(chromo)electromagnetic field configuration, and therefore
produces chirality through the chiral anomaly [56–58]. The
chirality imbalance may induce novel anomalous transport
phenomena (see Refs. [59,60] for review) such as the chiral
magnetic effect [61–63]. Experimental search for anoma-
lous transport phenomena is a very active topic in heavy-
ion collision experiments; see Ref. [64] for a recent review.
Therefore, it is important to deepen our understanding of
particle and chirality production in the presence of a parallel
strong electromagnetic field via the Schwinger mechanism
and discuss possible observable consequences in, e.g., heavy-
ion collisions.

The Schwinger mechanism has not been observed
in laboratory experiments yet, despite its great
theoretical/phenomenological interest. The most promising
way to observe the Schwinger mechanism in laboratory
experiments is to use intense lasers. However, the Schwinger

mechanism is exponentially suppressed by the mass factor as
in Eqs. (1) and (2), and hence an electric field strength of the
order of the electron mass scale eĒcr ≡ m2

e ∼
√

1029 W/cm2

is required for the Schwinger mechanism to be manifest.
The available field strength at the present is limited to
eĒ ∼

√
1022 W/cm2 [65]. Upcoming intense laser facilities

such as the Extreme Light Infrastructure (ELI) and at
the Exawatt Center for Extreme Light Studies (XCELS)
are expected to reach eĒ ∼

√
1024–25 W/cm2 but are still

weaker than the critical field strength Ēcr by several orders
of magnitude (see Ref. [66] for a review of the current
experimental situation). Therefore, it is still difficult within
the current laser technology to directly observe the Schwinger
mechanism.

The experimental difficulty motivated theorists to inves-
tigate how to enhance the Schwinger mechanism to ob-
serve it with a subcritical electromagnetic field. One of the
promising ideas is the dynamically assisted Schwinger mech-
anism [67–71], which is an analog of the Franz-Keldysh effect
in semiconductor physics [72–75]. The idea is to superimpose
a weak fast electromagnetic field with a large Keldysh pa-
rameter [18,76–78] (or inject an energetic dynamical photon)
onto a slow strong electromagnetic field (see Fig. 1). Then,
the weak fact electromagnetic field perturbatively interacts
with electrons in the Dirac sea and supplies energy, which
is depicted by the orange (lighter gray in grayscale) dashed
line in Fig. 1. The electrons come out from the Dirac sea, and
the gap size as well as the tunneling length are effectively
reduced, which implies a reduction of the mass suppres-
sion factor in the production number formulas (1) and (2).
Therefore, the Schwinger mechanism is enhanced, and the
enhancement was found to be significant [67–71], providing a
hope to observe the Schwinger mechanism, albeit indirectly,
with intense lasers in the near future.

A number of aspects of the dynamically assisted
Schwinger mechanism have been investigated/clarified
within, for example, the worldline instanton formal-
ism [79–81], numerical simulations based on the quantum ki-
netic theory [82,83], and the recently developed perturbation
theory in the Furry picture [74,75,84–89]. Examples include
optimization of a field profile [90–95], momentum distribu-
tion [74,75,87,88,96–102], finite-size effects [103,104], and
spatially dependent perturbations [105–108]. In particular, it
was clarified in Refs. [74,75] that the dynamically assisted
Schwinger mechanism can be understood in terms of the inter-
play between the Schwinger mechanism and one-photon pair
production process γ + Ē → e+e−. Namely, in the presence
of both a slow strong electromagnetic field and a fast weak
perturbation, the Schwinger mechanism and one-photon pair
production dominate the particle production if the frequencies
(i.e., the energy supply) of the perturbation are small and
large, respectively. At intermediate frequencies, both produc-
tion mechanisms take place and assist each other to signifi-
cantly enhance the particle production; i.e., the dynamically
assisted Schwinger mechanism occurs.

Although there are many preceding studies on the dynam-
ically assisted Schwinger mechanism, they focus mostly on a
slow strong purely electric field configuration and, therefore,
effects of a parallel strong magnetic field are less understood
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(effects of a transverse strong magnetic field associated with
a finite-sized strong electric field were recently discussed
in Ref. [109]). In other words, the dynamically assisted
Schwinger mechanism for a nonvanishing Lorentz invariant
G �= 0 is unexplored, and it is unclear how the dynamical
assistance affects chirality production. These questions are
important to complete our understanding of the dynami-
cally assisted Schwinger mechanism as well as to discuss
phenomenology such as anomalous transport phenomena in
heavy-ion collisions and to propose new observables in the
upcoming laser experiments. To the best of our knowledge,
Ref. [106] is the only work in this direction at the present. Ref-
erence [106] investigated the dynamically assisted Schwinger
mechanism in the presence of a parallel slow strong electro-
magnetic field configuration within the worldline instanton
formalism just for a slowly varying perturbation (only for
which the worldline instanton formalism can be justified)
with Sauter-type spacetime dependence, and chirality pro-
duction was not discussed explicitly. It is important to go
beyond a slowly varying perturbation because the dynamically
assisted Schwinger mechanism is, and accordingly chirality
production is expected to be, enhanced more strongly for
faster perturbations [74,75]. Indeed, chirality production for
a pulsed electric field was discussed in Ref. [110], finding
that chirality production (by massive particles) decreases with
increasing duration of the electric field. Since no chirality
should be produced in the limit of vanishing duration, we
can naturally expect that there exists an optimal duration or
frequency for the dynamical assistance to maximize chirality
production.

The purpose of the present paper is to discuss effects
of a parallel slow strong magnetic field on the dynamically
assisted Schwinger mechanism and its impacts on chirality
production. This shall be achieved in the following manner:
In Sec. II, we discuss the number of particles produced from
the vacuum by a slow strong parallel electromagnetic field su-
perimposed by a fast weak perturbative electromagnetic field.
We derive an analytical formula for the production number by
extending the perturbation theory in the Furry picture for a
purely slow strong electric field configuration [74,75,84–89]
to include a parallel magnetic component. With this formula,
we analytically discuss the interplay between the Schwinger
mechanism and one-photon pair production and the dynami-
cal assistance between the two production mechanisms in the
presence of a parallel slow strong magnetic field. Advantages
of the perturbation theory in the Furry picture are that (i) the
production number formula is applicable to perturbations with
arbitrary time dependence and hence it is valid even for a fast
perturbation (the validity was explicitly tested by comparing
with a numerical approach in Refs. [74,75,87,88]), which is
not accessible with approaches based on adiabatic approxi-
mations such as the worldline instanton formalism [79–81];
(ii) one can manifestly discuss the interplay and dynamical
assistance between the Schwinger mechanism and one-photon
pair production, which is not feasible within other approaches;
and (iii) the formula can easily be applied to chirality produc-
tion. In Sec. III, we discuss chirality production for the same
field configuration. We first derive an analytical formula for
chirality production by explicitly evaluating an in-in vacuum
expectation value of the chirality operator and using the pro-

duction number formula. Based on the formula, we investigate
how the dynamically assisted Schwinger mechanism affects
chirality production. In Sec. IV, we summarize our findings
and discuss future work and implications for or applications
to, e.g., heavy-ion collisions and intense laser experiments.

II. PRODUCTION NUMBER

In this section, we discuss the number of particles produced
from the vacuum in the presence of a slow strong elec-
tromagnetic field superimposed by a fast weak perturbative
electromagnetic field. Our formulation is based on the pertur-
bation theory in the Furry picture [84–86], which was recently
applied to a case where a slow strong electromagnetic field
is purely electric [74,75,87–89]. We generalize the preceding
calculations by including a parallel magnetic component and
derive an analytical formula for the production number (see
Sec. II A). Based on the formula, we analytically discuss the
particle production and clarify how the existence of a slow
strong parallel magnetic field affects the interplay between the
Schwinger mechanism and one-photon pair production and
the dynamical assistance between the two mechanisms (see
Secs. II B and II C).

A. Perturbation theory in the Furry picture

We explain the perturbation theory in the Furry picture
by following Ref. [74] and derive a formula for the number
of particles produced from the vacuum in the presence of
a slow strong electromagnetic field Āμ superimposed by a
fast weak perturbative electromagnetic field Aμ 	 Āμ. In this
work, for the sake of simplicity, we neglect back-reaction
from produced particles and treat the electromagnetic fields
just classically, i.e., higher order quantum processes such as
bremsstrahlung are neglected.

We first solve the Dirac equation,

[i /∂ − eĀ − m]ψ̂ = e /Aψ̂, (3)

perturbatively in terms of the perturbative field Aμ while the
interaction with the strong field Āμ is treated nonperturba-
tively. To do this, we introduce a (retarded) Green function
SR which is fully dressed by the strong field Āμ as

[i /∂x − eĀ(x) − m]SR(x, y) = δ4(x − y),

SR(x, y) = 0 for x0 − y0 < 0. (4)

With the Green function SR, we can write down a formal
solution of the Dirac equation (3) as

ψ̂ (x) =
√

Zψ̂ in(x) + e
∫

d4y SR(x, y) /A(y)ψ̂ (y). (5)

Here, we assumed that the perturbative field Aμ adiabatically
goes off at the infinite past and future and required the
Lehmann-Symanzik-Zimmermann (LSZ) asymptotic condi-
tion [111]

lim
x0→−∞/+∞

ψ̂ (x) =
√

Zψ̂ (in/out) (6)

with Z being the field renormalization constant and ψ̂ (in/out)

being the asymptotic field operator at x0 → −∞/ + ∞. No-
tice that ψ̂ (in) �= ψ̂ (out) in general because of the interaction
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with the electromagnetic fields Āμ and Aμ. The asymptotic
field operator ψ̂as (as = in, out) is the solution of the Dirac
equation without the perturbative field Aμ and can be ex-
pressed as a mode integral

ψ̂ (as)(x) =
∑

i

∫ [
+ψ

(as)
i (x)â(as)

i + −ψ
(as)
i (x)b̂(as)†

i

]
, (7)

where
∑

i

∫
denotes summation/integration over all the quan-

tum numbers i (e.g., momentum, spin) and the mode functions
+ψ

(as)
i and −ψ

(as)
i are the two independent solutions of

0 = [i /∂ − e /̄A − m]±ψ
(as)
i (8)

with normalization

δi,i′ =
∫

d3x ±ψ
(as)†
i ±ψ

(as)
i′ ,

0 =
∫

d3x ∓ψ
(as)†
i ±ψ

(as)
i′ . (9)

The subscript ± specifies the positive and negative frequency
modes of the mode function ±ψ

(as)
i . Namely, we identify

the positive and negative frequency mode functions at the
asymptotic time, +ψ

(as)
i and −ψ

(as)
i , respectively, by

lim
x0→−∞/+∞ ±ψ

(in/out)†
i ∝ exp

[
∓i

∫ x0

dx′0 ωi

]
, (10)

where ωi > 0 is the one-particle energy at the asymptotic
time.

After the canonical quantization procedure, we can inter-
pret â(as)

i and b̂(as)
i as annihilation operators of a particle and

an antiparticle at the corresponding asymptotic states, respec-
tively. For the normalization (9), the commutation relations
for â(as)

i and b̂(as)
i read

δi,i′ = {
â(as)

i , â(as)†
i′

} = {
b̂(as)

i , b̂(as)†
i′

}
,

0 = (others). (11)

The annihilation operators at the infinite past and future do
not coincide with each other in the presence of the external
electromagnetic fields Āμ and Aμ. Indeed, from the formal
solution (5), we find

(
â(out)

i

b̂(out)†
i

)
=

∫
d3x

(
+ψ

(out)†
i

−ψ
(out)†
i

)
ψ̂out

= lim
x0→∞

∫
d3x

(
+ψ

(out)†
i

−ψ
(out)†
i

)

×
[
ψ̂ in+e

∫
d4y SR(x, y) /A(y)ψ̂ (in)(y)+O(e2)

]

≡
∞∑

k=0

ek

(
â(out;k)

i

b̂(out;k)†
i

)
. (12)

By using

SR(x, y) = − iθ (x0 − y0){ψ̂ (as)(x), ˆ̄ψ (as)(y)}
= − iθ (x0 − y0)

×
∑

i

∫ [
+ψ

(as)
i (x)+ψ̄

(as)
i (y)+−ψ

(as)
i (x)−ψ̄

(as)
i (y)

]
,

(13)

we can explicitly write down â(out;k)
i and b̂(out;k)

i . Up to k � 1,
we find

â(out;0)
i =

∑
i′

∫ [(∫
d3x+ψ

(out)†
i +ψ

(in)
i′

)
â(in)

i′

+
(∫

d3x+ψ
(out)†
i −ψ

(in)
i′

)
b̂(in)†

i′

]
, (14a)

â(out;1)
i =

∑
i′

∫ [(
−i

∫
d4x+ψ̄

(out)
i /A+ψ

(in)
i′

)
â(in)

i′

+
(
−i

∫
d4x+ψ̄

(out)
i /A−ψ

(in)
i′

)
b̂(in)†

i′

]
, (14b)

and

b̂(out;0)†
i =

∑
i′

∫ [(∫
d3x−ψ

(out)†
i +ψ

(in)
i′

)
â(in)

i′

+
(∫

d3x−ψ
(out)†
i −ψ

(in)
i′

)
b̂(in)†

i′

]
, (15a)

b̂(out;1)†
i =

∑
i′

∫ [(
−i

∫
d4x−ψ̄

(out)
i /A+ψ

(in)
i′

)
â(in)

i′

+
(
−i

∫
d4x−ψ̄

(out)
i /A−ψ

(in)
i′

)
b̂(in)†

i′

]
. (15b)

Therefore, the annihilation operator at the infinite future, â(out)
i

or b̂(out)
i , becomes a mixture of those at the infinite past,

â(in)
i and b̂(in)

i . Notice that the annihilation operators at the
infinite future, â(out)

i and b̂(out)
i , contain the creation operators

at the infinite past, â(in)†
i and b̂(out)†

i , respectively. This means
that â(out)

i and b̂(out)
i do not annihilate the vacuum state at

the infinite past, i.e., the in-vacuum expectation value of the
number operator at the infinite future becomes nonvanishing.

We compute the (anti)particle number N (N̄) at the infi-
nite future produced from the in-vacuum. Using Eqs. (14)
and (15), we can evaluate N and N̄ including the first-order
nontrivial correction by the perturbative field Aμ as

(−)
N =

∑
i

∫
(−)
n i, (16)

where ni and n̄i are the distributions of particles and anti-
particles per mode i, respectively, and are given by

ni ≡ 〈vac; in|â(out)†
i â(out)

i |vac; in〉
〈vac; in|vac; in〉

=
∑

i′

∫ ∣∣∣∣
(∫

d3x+ψ
(out)†
i −ψ

(in)
i′

)
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− ie

(∫
d4x+ψ̄

(out)
i /A−ψ

(in)
i′

)∣∣∣∣
2

, (17a)

n̄i ≡ 〈vac; in|b̂(out)†
i b̂(out)

i |vac; in〉
〈vac; in|vac; in〉

=
∑

i′

∫ ∣∣∣∣
(∫

d3x−ψ
(out)†
i +ψ

(in)
i′

)

− ie

(∫
d4x−ψ̄

(out)
i /A+ψ

(in)
i′

)∣∣∣∣
2

, (17b)

with |vac; in〉 being the vacuum at the infinite past defined as
a state such that

0 = â(in)
i |vac; in〉 = b̂(in)

i |vac; in〉 for any i. (18)

The first term in Eq. (17) accounts for the Schwinger mech-
anism because it is independent of the perturbation Aμ and
is driven only by the slow strong electromagnetic field Āμ.
The second term in Eq. (17) accounts for one-photon pair
production by the perturbation Aμ. Note that the second term
is distinct from the ordinary one-photon pair production since
ours is nonperturbatively dressed by the slow strong elec-
tromagnetic field Āμ. As shown below, this dressing enables
us to describe the smooth interplay between the Schwinger
mechanism and one-photon pair production as well as the
dynamical assistance between the two mechanisms.

B. Analytical discussion for a parallel strong electromagnetic
field with a perturbation

To get a qualitative understanding of the particle produc-
tion, let us consider a spatially homogeneous system and
a constant parallel strong electromagnetic field Ē ‖ B̄ su-
perimposed by a fast weak perturbation E pointing in the
same direction. Namely, we consider an electromagnetic field
configuration,

E = (0, 0, Ē + E (x0)), B = (0, 0, B̄), (19)

which is realized by a gauge potential Aμ = Āμ + Aμ such
that

Āμ = (0,−B̄x2, 0,−Ēx0),

Aμ =
(

0, 0, 0,−
∫ x0

dx′0 E (x′0)

)
, (20)

For simplicity, we assume eĒ , eB̄ > 0. Note that the time
dependence of E is arbitrary at this stage.

1. Evaluation of the production number formula (16)

We analytically evaluate the production number for-
mula (16) for the field configuration (20).

First, we solve the Dirac equation (8) in the presence
of the parallel strong electromagnetic field Āμ (20). This is
analytically doable. We find that there are four good quantum
numbers i = p1, p3, n, and s to label the mode function
±ψ

(as)
i = ±ψ (as)

p1,p3,n,s; namely, the canonical momenta p1 and
p3 (i.e., the eigenvalues of the translation operators −i∂1

and −i∂3, respectively), the Landau level n = 0, 1, 2, . . . ∈ N
(i.e., the remaining transverse momentum p2 is quantized by

the magnetic field), and spin s = ±1. We can write down the
mode function ±ψ (as)

p1,p3,n,s explicitly as(
+ψ (as)

p1,p3,n,s(x)

−ψ (as)
p1,p3,n,s(x)

)
=

(
A(as)

p1,p3,n,s(x
0) B(as)

p1,p3,n,s(x
0)

B(as)∗
p1,p3,n,s(x

0) −A(as)∗
p1,p3,n,s(x

0)

)

×
(

Up1,n,s(x2)

Vp1,n,s(x2)

)
eip1x1

eip3x3

2π
. (21)

Here, the scalar functions A(as)
p1,p3,n,s and B(as)

p1,p3,n,s are given by

A(in)
p1,p3,n,s(x

0) ≡ e− iπ
8 e− π

8

m2⊥
eĒ

m⊥√
2eĒ

×D
i
2

m2⊥
eĒ −1

(
−e− iπ

4

√
2

eĒ
(p3 + eĒx0)

)
,

B(in)
p1,p3,n,s(x

0) ≡ e+ iπ
8 e− π

8

m2⊥
eĒ

× D
i
2

m2⊥
eĒ

(
−e− iπ

4

√
2

eĒ
(p3 + eĒx0)

)
, (22a)

A(out)
p1,p3,n,s(x

0) ≡ e− iπ
8 e− π

8

m2⊥
eĒ

× D
− i

2

m2⊥
eĒ

(
e

iπ
4

√
2

eĒ
(p3 + eĒx0)

)
,

B(out)
p1,p3,n,s(x

0) ≡ e+ iπ
8 e− π

8

m2⊥
eĒ

m⊥√
2eĒ

× D
− i

2

m2⊥
eĒ −1

(
e

iπ
4

√
2

eĒ
(p3 + eĒx0)

)
, (22b)

with Dν (z) being the parabolic cylinder function and m⊥ being
the transverse mass,

m⊥ ≡
√

m2 + eB̄(2n + 1 − s). (23)

The spinors Up1,n,s,Vp1,n,s are given by

Up1,n,s(x
2) ≡ up1,n(x2) × �s, (24a)

Vp1,n,s(x
2) ≡

[
γ 0 m

m⊥
up1,n(x2)

+ γ 1

√
eB̄(2n + 1 − s)

m⊥
up1,n−s(x

2)

]
×�s,

(24b)

where

up1,n(x2)≡
√

L

2π

(
eB̄

π

)1
4 1√

n!
Dn

(√
2

eB̄
(p1 + eB̄x2)

)
(25)

with L being the system size in the x2 direction and �s being
an eigenvector of γ 0γ 3 and γ 1γ 2 satisfying

γ 0γ 3�s = +�s, γ 1γ 2�s = −is�s, δs,s′ = �†
s �s′ . (26)

Note that we normalized Ap1,p3,n,s, Bp1,p3,n,s, and up1,n as

1 = ∣∣A(as)
p1,p3,n,s

∣∣2 + ∣∣B(as)
p1,p3,n,s

∣∣2
, (27a)

L

2π
δn,n′ =

∫
dy u†

p1,n′up1,n, (27b)
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so that the normalization condition (9) for the mode function
±ψ (as)

p1,p3,n,s is satisfied as

δi,i′ = δs,s′ × δ(p1 − p′
1)δ(p3 − p′

3) × L

2π
δn,n′ . (28)

Note that (L/2π )δn,n′ corresponds to δ(p2 − p′
2) in sys-

tems without any magnetic field. Also, note that A(in)
p1,p3,n,s �=

A(out)
p1,p3,n,s and B(in)

p1,p3,n,s �= B(out)
p1,p3,n,s because of the existence of

the strong electric field. This is essentially because the Dirac
equation becomes time dependent if eĒ �= 0 and then the
eigenfunction of the time-translation operator at the infinite
past cannot be the one at the infinite future. Physically, this
means that the strong electric field supplies energy to the
system, which mixes up particle and antiparticle modes.

In terms of the four good quantum numbers i = p1, p3, n,
and s, we can express the mode integral (7) as

ψ̂ =
∑
s=±1

2π

L

∞∑
n=0

∫
d p1d p3

× [
+ψ (as)

p1,p3,n,sâ
(as)
p1,p3,n,s+−ψ (as)

p1,p3,n,sb̂
(as)†
−p1,−p3,n,−s

]
. (29)

We assigned the minus signs in the labels of b̂(as)
−p1,−p3,n,−s.

Those minus signs are necessary so that the creation operator
b̂(as)†

p1,p3,n,s correctly creates a one-particle state with quantum
numbers p1, p3, n, and s. One can check this statement
by explicitly computing an expectation value of the corre-
sponding operator at the asymptotic states Ô(as) [e.g., the
canonical momentum operator ψ̂ (as)†(−i∂)ψ̂ (as)] with respect
to the one-particle state b̂(as)†

p1,p3,n,s |vac; as〉 [17]. According to
this assignment, we also have minus signs in the labels of
n̄ (17b) as

n̄−p1,−p3,n,−s = 〈vac; in|b̂(out)†
−p1,−p3,n,−sb̂

(out)
−p1,−p3,n,−s|vac; in〉

〈vac; in|vac; in〉

=
∑

s′=±1

2π

L

∞∑
n′=0

∫
d p′

1d p′
3

×
∣∣∣∣
(∫

d3x−ψ (out)†
p1,p3,n,s+ψ

(in)
p′

1,p′
3,n

′,s′

)

−ie

(∫
d4x−ψ̄ (out)

p1,p3,n,s /A+ψ
(in)
p′

1,p′
3,n

′,s′

)∣∣∣∣
2

. (30)

Second, we evaluate the production number formula (16)
using the analytical expression for the mode function
±ψ (as)

p1,p3,n,s (29). By substituting Eq. (29) into Eq. (17), one
can show

np1,p3,n,s = n̄−p1,−p3,n,−s = V

(2π )3
exp

[
−π

m2
⊥

eĒ

]

×
∣∣∣∣1 + 1

2

m2
⊥

eĒ

∫ ∞

0
dω

Ẽ (ω)

Ē
exp

[
− i

4

ω2 + 4ωp3

eĒ

]

× 1F̃1

(
1− i

2

m2
⊥

eĒ
; 2;

i

2

ω2

eĒ

)∣∣∣∣
2

, (31)

where V is the space volume of the system,

Ẽ (ω) ≡
∫

dx0e−iωx0E (x0) (32)

is the Fourier component of the perturbation E , and
1F̃1(a; b; z) ≡ 1F1(a; b; z)/�(b) is the regularized hypergeo-
metric function. Note that np1,p3,n,s = n̄−p1,−p3,n,−s holds. This
is physically because a particle and an antiparticle are always
produced as a pair from the vacuum and hence the total
amounts of the charge, momentum, and spin of the pair
should be vanishing. By integrating Eq. (31) over the quantum
numbers, we arrive at

(−)
N =

∑
s=±1

2π

L

∞∑
n=0

∫
d p1d p3

(−)
n p1,p3,n,s (33)

= m4V T × 1

4π2

eĒ

m2

eB̄

m2

∑
s=±1

∞∑
n=0

exp

[
−π

m2
⊥

eĒ

]

×
[

1 + 2π

T

{
1

2

m2
⊥

eĒ

Ẽ (0)

Ē
+ 1

4

(
m2

⊥
eĒ

)2 ∫ ∞

0
dω

×
∣∣∣∣ Ẽ (ω)

Ē
1F̃1

(
1 − i

2

m2
⊥

eĒ
; 2;

i

2

ω2

eĒ

)∣∣∣∣
2}]

, (34)

where T is the whole time interval, and we used
∫

d p1 = eB̄L,
which accounts for the degeneracy of the Landau level. Notice

that the total production number
(−)
N depends on the magnetic

field eB̄ through (i) the overall factor eB̄, which comes from
the phase space under the Landau quantization

∫
d2 p⊥ →

(eB̄/2π )
∑

n; and (ii) the transverse mass m⊥, which is

discretized by the Landau quantization as
√

m2 + p2
⊥ →√

m2 + eB̄(2n + 1 − s) = m⊥. This means that the effect of
the parallel strong magnetic field eB̄ is just to discretize
the transverse momentum via the Landau quantization, and
one may say that the particle production (or the dynamically
assisted Schwinger mechanism) is essentially unaffected by
the presence of a strong magnetic field. This is a reasonable
result since magnetic fields cannot do work on a charged
particle (i.e., cannot supply energy to vacuum fluctuations to
produce real particles), and they are just able to change motion
of the particle (i.e., can change momentum). Nevertheless,
the change of momentum can result in nontrivial physics
consequences such as chirality production, which we discuss
in Sec. III.

Below, let us consider some limiting situations to ana-
lytically understand basic features of the production number
formula (34). In particular, we clarify the relationship between
the formula (34) and the well-established production formulas
for the Schwinger mechanism and one-photon pair production
in terms of the size of the physical parameters such as the elec-
tromagnetic field strength and the typical slowness/fastness of
a perturbation.

2. Dependence on the electric field eĒ

The electric field strength eĒ controls the interplay be-
tween the Schwinger mechanism and one-photon pair produc-
tion.

When the strong electric field becomes very strong, eĒ →
∞, the Schwinger mechanism becomes free from the ex-
ponential suppression by mass and can produce particles
abundantly. As a result, the particle production is dominated

023257-6



DYNAMICALLY ASSISTED SCHWINGER MECHANISM AND … PHYSICAL REVIEW RESEARCH 2, 023257 (2020)

by the Schwinger mechanism, i.e., the first term in Eq. (31)
dominates the production as

np1,p3,n,s = n̄−p1,−p3,n,−s
eĒ→∞−−−−→ V

(2π )3
exp

[
−π

m2
⊥

eĒ

]
, (35)

which yields

N = N̄
eĒ→∞−−−−→ m4V T × 1

4π2

eB̄

m2

eĒ

m2

× exp

[
−π

m2

eĒ

]
coth

[
π

eB̄

eĒ

]

≡ NSchwinger. (36)

This agrees exactly with the Schwinger formula in the pres-
ence of a strong parallel magnetic field (2) [6,11–17].

In case that the strong electric field is not so strong or
absent, eĒ → 0, the Schwinger mechanism does not take
place. The particle production is, then, driven solely by one-
photon pair production by the perturbation eE without any
modification from the strong electric field eĒ but with the
Landau quantization by the strong magnetic field eB̄. Namely,
only the second term in Eq. (31) contributes to the production,

and the distribution
(−)
n p1,p3,n,s reads

np1,p3,n,s = n̄−p1,−p3,n,−s

eĒ→0−−−→ V

(2π )3

1

4

m2
⊥

m2
⊥ + p2

3

∣∣eẼ(
2
√

m2
⊥ + p2

3

)∣∣2

m2
⊥ + p2

3

. (37)

By integrating Eq. (37), we find that the total production

number
(−)
N is given by

N = N̄
eĒ→0−−−→ m3V × 1

16π2

gB̄

m2

∑
s=±1

∞∑
n=0

∫
d p3

m

× m2
⊥

m2
⊥ + p2

3

∣∣eẼ(
2
√

m2
⊥ + p2

3

)∣∣2

m2
⊥ + p2

3

. (38)

Notice that the argument of eẼ is 2
√

m2
⊥ + p2

3, i.e., the
perturbative electric field eE needs to supply energy 2 ×√

m2
⊥ + p2

3 to produce a pair of particles.2 This means that
one-photon pair production never occurs if the frequency � of
the perturbative electric field is below the lowest energy level
� < 2m, and that the production number increases sharply
whenever the frequency matches the nth energy level � =
2m⊥ = 2

√
m2 + eB̄(2n + 1 − s). In the presence of the strong

electric field eĒ �= 0, these threshold behaviors are smeared
because of the energy supply by eĒ , which can be interpreted
as the dynamical assistance to one-photon pair production

2n-photon pair production processes (n > 1) have lower thresholds
2 × √

m2
⊥ + p2

3/n. Such higher order processes are parametrically
suppressed by (eE/m2)2n, so that they are negligible as long as the
perturbation eE is sufficiently weak, and thus the dominant contri-
bution to the production number always comes from the one-photon
pair production (n = 1).

by the Schwinger mechanism and vice versa, as we shall
demonstrate explicitly in Sec. II C.

3. Dependence on the magnetic field eB̄

The effect of the magnetic field is just to discretize the
energy level, and the energy difference among the levels
increases with the magnetic field strength eB̄. Therefore, the
number of the Landau levels that contribute to the particle
production changes with eB̄. Unlike the electric field strength
eĒ , the magnetic field strength eB̄ cannot control the interplay
between the Schwinger mechanism and one-photon pair pro-
duction because the relative size between the two mechanisms
is independent of eB̄.

For a very strong magnetic field eB̄ → ∞, the lowest
Landau level n = 0, s = ±1 (+ for particle, and − for antipar-
ticle) dominates the production since the contributions from
the higher Landau levels are exponentially suppressed by eB̄.
Therefore, we have

np1,p3,n,s = n̄−p1,−p3,n,−s

eB̄→∞−−−→ δn,0δs,+1 × V

(2π )3
exp

[
−π

m2

eĒ

]

×
∣∣∣∣1 + 1

2

m2

eĒ

∫ ∞

0
dω

Ẽ (ω)

Ē
exp

[
− i

4

ω2 + 4ωp3

eĒ

]

×1F̃1

(
1− i

2

m2

eĒ
; 2;

i

2

ω2

eĒ

)∣∣∣∣
2

, (39)

which yields

(−)
N

eB̄→∞−−−→
(−)
N LLL

≡ m4V T × 1

4π2

eĒ

m2

eB̄

m2
exp

[
−π

m2

eĒ

]

×
[

1 + 2π

T

{
1

2

m2

eĒ

Ẽ (0)

Ē
+ 1

4

(
m2

eĒ

)2 ∫ ∞

0
dω

×
∣∣∣∣ Ẽ (ω)

Ē
1F̃1

(
1− i

2

m2

eĒ
; 2;

i

2

ω2

eĒ

)∣∣∣∣
2}]

. (40)

The strong magnetic field eB̄ appears just as an overall factor
in Eq. (40) because of the enhancement of the phase space

∝ eB̄. Thus, the production number
(−)
N linearly increases with

eB̄ if the magnetic field is very strong.

The lowest Landau level production
(−)
N LLL is dominated by

the Schwinger mechanism [i.e., first term in Eq. (40)] in the
chiral limit m → 0 as

(−)
N LLL

m→0−−→ V T × eĒeB̄

4π2
. (41)

This is because the lowest Landau level is gapless in the
chiral limit. Therefore, the phase-space of particles is already
occupied by the production from the Schwinger mechanism,
and the additional production by the perturbative electric field
is forbidden by the Pauli principle.

If the magnetic field is not so strong or absent, eB̄ → 0,
the transverse momentum becomes continuous, and hence the
summation over the Landau level n may be written as an
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integration over the transverse momentum. Namely, one may
replace the summation eB̄

∑
n in Eq. (34) with an integration∫

d p⊥ p⊥ with p2
⊥ ≡ eB̄(2n + 1 − s) as

(−)
N

eB̄→0−−→
∑
s=±1

∫
d3 p

(−)
n p1,p2,p3,s

= m4V T × 1

2π2

eĒ

m2

∫ ∞

0

d p⊥ p⊥
m2

exp

[
−π

m2+p2
⊥

eĒ

]

×
[

1+ 2π

T

{
1

2

m2+p2
⊥

eĒ

Ẽ (0)

Ē
+ 1

4

(
m2+p2

⊥
eĒ

)2∫ ∞

0
dω

×
∣∣∣∣ Ẽ (ω)

Ē
1F̃1

(
1− i

2

m2+p2
⊥

eĒ
;2;

i

2

ω2

eĒ

)∣∣∣∣
2}]

. (42)

Equation (42) exactly agrees with the result of Ref. [74], in
which the production number formula (34) for a purely slow
strong electric field was derived.

Before continuing, it is instructive for later discussions to
take the eĒ → 0 limit of Eq. (42), i.e., to derive a formula for
one-photon pair production without any strong electromag-
netic field. We find

N = N̄
eĒ ,eB̄→0−−−−−→ m3V × 1

4π2

∫ ∞

0

d p

m

p2

m2

× m2 + 2
3 p2

m2 + p2

∣∣eẼ (2
√

m2 + p2)
∣∣2

m2 + p2

≡ None-photon, (43)

where p2 ≡ p2
⊥ + p2

3. In contrast to the one-photon pair pro-
duction in the presence of eB̄ �= 0 [Eq. (38)], the energy level
is continuous in Eq. (43). Hence, the production number does
not exhibit any threshold behaviors in terms of the frequency
of the perturbation. In other words, addition of a strong
parallel magnetic field results in sharp peak structures in the
production number as a function of the frequency because of
the Landau quantization.

4. Dependence on the frequency of the perturbation �

The typical frequency of a perturbation, which we write as
�, can control the interplay between the Schwinger mecha-
nism and one-photon pair production. Intuitively, the energy
supplied by a perturbation via a one-photon process is �.
Therefore if the supplied energy by a perturbation � becomes
much larger (smaller) than that by the strong electric field
eĒ , one-photon pair production (the Schwinger mechanism)
should dominate the production. The strong magnetic field is
not essential for this interplay since it cannot supply energy as
discussed in the previous subsections.

Suppose that the frequency is very small, � → 0. This is
equivalent to assuming

E (x0) = E0 ⇔ Ẽ (ω) = E0 × 2πδ(ω). (44)

Then, we can analytically carry out the ω integration in
Eq. (31) as

np1,p3,n,s = n̄−p1,−p3,n,−s

�→0−−→ V

(2π )3
exp

[
−π

m2
⊥

eĒ

]∣∣∣∣1 + π

2

m2
⊥

eĒ

E0

Ē

∣∣∣∣
2

= V

(2π )3
exp

[
−π

m2
⊥

e(Ē + E0)

]2

+ O((E0/Ē )2).

(45)

Therefore, we can evaluate the total production number
(−)
N as

N = N̄
�→0−−→ m4V T × 1

4π2

eB̄

m2

e(Ē +E0)

m2

× exp

[
−π

m2

e(Ē +E0)

]
coth

[
π

eB̄

e(Ē +E0)

]
, (46)

where O((E0/Ē )2) correction is neglected. By noting that the
total electric field strength for � → 0 (44) is E = Ē + E0, we
see that Eq. (46) agrees with the well-established Schwinger
formula (36). Therefore, the particle production is, indeed,
dominated by the Schwinger mechanism if the frequency �

is small.
If the frequency is very large � → ∞, the ω integration in

Eq. (31) is dominated by ω = � → ∞ modes. Thus, we find

np1,p3,n,s = n̄−p1,−p3,n,−s

�→∞−−−→ V

(2π )3

∣∣∣∣exp

[
−π

2

m2
⊥

eĒ

]

+ 1

2

m⊥√
m2

⊥ + p2
3

eẼ (2
√

m2
⊥ + p2

3)√
m2

⊥ + p2
3

∣∣∣∣
2

eĒ�m2
⊥−−−−→ V

(2π )3
× 1

4

m2
⊥

m2
⊥ + p2

3

∣∣eẼ (2
√

m2
⊥ + p2

3)
∣∣2

m2
⊥ + p2

3

,

(47)

which yields

N = N̄

�→∞,eĒ�m2
⊥−−−−−−−−→ m3V × 1

16π2

eB̄

m2

∑
s=±1

∞∑
n=0

∫
d p3

m

× m2
⊥

m2
⊥ + p2

3

∣∣eẼ(
2
√

m2
⊥ + p2

3

)∣∣2

m2
⊥ + p2

3

. (48)

To get Eq. (47), we neglected the first term in the first line
(i.e., the contribution from the Schwinger mechanism), which
is exponentially suppressed by eĒ/m2

⊥, assuming that eĒ is
not so strong eĒ � m2

⊥. If this condition is satisfied, Eq. (48)
agrees with Eq. (38), i.e., the production is dominated by
one-photon pair production. If eĒ is very strong eĒ � m2

⊥,
the strong electric field can supply very large energy to the
vacuum, so that the Schwinger mechanism always dominates
the production no matter how fast a perturbation is, as we
discussed in Sec. II B 2.
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(a) (b)

FIG. 2. The total production number N (50) for the monochromatic perturbation (49) as a function of the frequency �/m for various values
of the magnetic field strength eB̄/m2 = 0.00, 0.05, 0.10, 0.15, 0.20 (a) and 0.25, 0.50, 1.00, 2.00, 4.00 (b). The small panels show the total
production number scaled by the magnetic field strength N/(eB̄/m2). The other parameters are fixed as eĒ/m2 = 0.20 and eE0/m2 = 0.001.
For comparison, the one-photon pair production formula None-photon (43) and the Schwinger formula NSchwinger (36) are plotted by the dashed
and dotted lines, respectively.

C. Quantitative discussion for a parallel strong electromagnetic
field with a monochromatic perturbation

To understand more detailed features of the particle pro-
duction, let us consider, as a demonstration, the parallel elec-
tromagnetic field configuration (20) with a monochromatic
perturbation,

E (x0) = E0 cos(�x0 + φ)

⇔ Ẽ (ω) = πE0

∑
±

e±iφδ(� ∓ ω). (49)

For this perturbation, one can analytically carry out the ω

integration in the production number formula (34) as

N = N̄ =m4V T × 1

4π2

eĒ

m2

eB̄

m2

∑
s=±1

∞∑
n=0

exp

[
−π

m2
⊥

eĒ

]

×
[

1+
∣∣∣∣π2 m2

⊥
eĒ

E0

Ē
1F̃1

(
1− i

2

m2
⊥

eĒ
;2;

i

2

�2

eĒ

)∣∣∣∣
2]

. (50)

Note that the phase φ is unimportant in the total production

number
(−)
N (50), but can affect the distribution

(−)
n through

the quantum interference between the Schwinger mechanism
and one-photon pair production [74,75,87,98–100]. Below,
we explicitly carry out the n and s summations in Eq. (50)
to quantitatively discuss how the interplay and dynamical
assistance between the Schwinger mechanism and one-photon
pair production occur.

Figure 2 shows the total production number N (50) as
a function of the frequency of the perturbation � for var-
ious values of the magnetic field strength eB̄. We confirm
that the particle production is dominated by the Schwinger
mechanism for small frequency � � 2m and by one-photon
pair production for large frequency � � 2m as we discussed
analytically in Sec. II B 4. At the intermediate frequency � ∼
2m, the particle production becomes more abundant than what
is expected from the Schwinger mechanism or one-photon
pair production separately. This is the dynamical assistance
between the two production mechanisms. Intuitively, the
Schwinger mechanism is enhanced because the mass gap is

reduced by the energy supply from the one-photon interaction
and vice versa, as we explained in Fig. 1.

The frequency � dependence of one-photon pair produc-
tion (i.e., the particle production for large frequency � � 2m)
dramatically changes with increasing magnetic field strength
eB̄. Namely, the production number as a function of � be-
comes flat (oscillating) if eB̄ is small (large). This change oc-
curs because the number of the Landau levels that contribute
to the production changes depending on the size of eB̄ (cf.
Sec. II B 3). As shown in Fig. 3, the contribution from each
Landau level Nn,s,

N =
∑

s

2π

L

∑
n

∫
d px

∫
d pz npx,pz,n,s ≡

∑
n,s

Nn,s, (51)

always has an oscillating dependence on �. This can be
understood as an analog of the Franz-Keldysh oscillation
in semiconductor physics [74,75,112,113], which occurs be-
cause of a quantum reflection in the presence of a tilted
vacuum band structure under a strong electric field [74]. The
quantum reflection is a counter phenomenon of the quantum
tunneling responsible for the Schwinger mechanism. Nn,s

becomes significant above the energy threshold � � 2m⊥ =
2
√

m2 + eB̄(2n + 1 − s). Therefore, many Landau levels can
contribute to the production for small eB̄, which cancels the
oscillation of each contribution. On the other hand, such
a cancellation does not take place for large eB̄, for which
only a small number of Landau levels can contribute to the
production.

For very large magnetic field strength eB̄ � �2, m2, eĒ ,
the lowest Landau level dominates the production N → NLLL

[see Eq. (40)]. Then, the production number becomes just
proportional to eB̄ as shown in the small panels in Fig. 2.
The lowest Landau contribution NLLL becomes the largest at
around the threshold value � ∼ 2m, which is essential for the
dynamical enhancement of chirality production, as we discuss
in Sec. III.

Figure 4 shows the total production number N (50) for
various values of the electric field strength eĒ . The behavior
of the particle production dramatically changes depending
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(a) (b)

FIG. 3. The total production number N = ∑
n,s Nn,s (50) (black dashed line) and the contribution from each Landau level Nn,s (shaded

lines) for various values of 2n + 1 − s as a function of the frequency �/m. The magnetic field strength eB̄ is different between the two panels:
eB̄/m2 = 0.10 (a) and 1.00 (b). The other parameters are fixed as eĒ/m2 = 0.20 and eE0/m2 = 0.001.

on the size of eĒ (cf. Sec. II B 2). For a weak electric field
eĒ � m2, eB̄ (the left panel of Fig. 4), the interplay between
the Schwinger mechanism and one-photon pair production
occurs and is controlled by the size of the frequency �.
The particle production for large � shows up an oscillating
behavior. For vanishing electric field strength eĒ/m2 = 0,
the particle production for large � is dominated by one-
photon pair production in the presence of a strong magnetic
field (38), which is sharply peaked at the thresholds � = 2m⊥.
The threshold behavior is smeared by the electric field eĒ �=
0 since it supplies energy. For large electric field strength
eĒ � m2, eB̄ (the right panel of Fig. 4), the production is
dominated by the Schwinger mechanism no matter how large
the frequency � is, and hence the production number becomes
constant in �. This is because the Schwinger mechanism
becomes free from the exponential suppression and always
surpasses one-photon pair production, which is suppressed
by the power of eE/m2. Note that the production number at
eĒ/m2 = 0.25 [the lightest line in the panel (b) of Fig. 4]
for large � does not coincide with the one-photon pair pro-

duction formula (the dashed black line in the plot). This is
because even though the electric field strength eĒ/m2 = 0.25
is still weak for the Schwinger mechanism to dominate the
production for any values of �, it is enough strong that the
Schwinger mechanism becomes comparable to one-photon
pair production. Thus, one cannot drop the contribution from
the Schwinger mechanism as in the second line of Eq. (47),
and the production number is given by the sum of the two
mechanisms as N = None-photon + NSchwinger.

III. CHIRALITY PRODUCTION

In this section, we discuss how the dynamically assisted
Schwinger mechanism affects chirality production. Namely,
we consider the slow strong parallel electromagnetic field
superimposed by a fast weak perturbation (19) and derive
an analytical formula for chirality production by explicitly
evaluating an in-in vacuum expectation value of the chirality
operator (see Sec. III A). Then, we use that formula to show
that the dynamical assistance can enhance chirality production

(a) (b)

FIG. 4. The total production number N (50) for the monochromatic perturbation (49) as a function of the frequency �/m for various values
of the electric field strength eĒ/m2 = 0.00, 0.05, 0.10, 0.15, 0.20 (a) and 0.25, 0.50, 1.00, 2.00, 4.00 (b). The other parameters are fixed as
eB̄/m2 = 0.20 and eE0/m2 = 0.001. For comparison, the one-photon pair production formula None-photon (43) and the Schwinger formula
NSchwinger (36) are plotted by the dashed and dotted lines, respectively. Note that the vertical scale is different between (a) and (b).
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by many orders of the magnitude, and that there exists an
optimal frequency for a perturbation to maximize chirality
production (see Sec. III B).

A. Relation to the production number

We analytically show that chirality production is related
to the lowest Landau level production NLLL and write down
a formula for chiral charge produced from the vacuum in
the presence of the slow strong parallel electromagnetic field
superimposed by a perturbation (19) by using the production
number formula derived in Sec. II.

The chiral charge at out state Q5 produced from an initial
vacuum state |vac; in〉 is defined as

Q5 ≡ lim
x0→∞

∫
d3x 〈vac; in| : ˆ̄ψ (out)γ 0γ5ψ̂

(out) : |vac; in〉 ,

(52)

where γ5 ≡ iγ 0γ 1γ 2γ 3 and 〈: · · · :〉 is the normal ordering3

(e.g., 〈: ô1ô†
2 :〉 = − 〈ô†

2ô1〉), which is introduced to kill the
ultraviolet divergence (i.e., subtract the unphysical vacuum
contributions). Note that Q5 is defined as an in-in expectation
value, whose significance and relation to the in-out expecta-
tion value were clarified within the proper-time formalism in
Ref. [114].

We can analytically evaluate Eq. (52). By substituting the
mode expansion (29) into Eq. (52), we obtain

Q5 = (2π )3

V

∑
s

2π

L

∑
n

∫
d px

∫
d pz npx,pz,n,s

× lim
t→∞

∑
±

(±1)

(∫
d3x±ψ̄ (out)

px,pz,n,sγ
0γ5±ψ (out)

px,pz,n,s

)
, (53)

where we used npx,pz,n,s = n̄−px,−pz,n,−s and
dropped a severely oscillating factor limx0→∞ −
ψ̄ (out)

px,pz,n,sγ
0γ5+ψ (out)

px,pz,n,s ∝ limx0→∞ e−2i
√

m2
⊥+p2

z x0 → 0
because of the iε prescription of quantum field theory. Then,
by using the analytical expression for the mode function
±ψ (as)

px,pz,n,s (21), we can explicitly evaluate the matrix element
in Eq. (53), and the result reads

Q5 =
∑

s

∑
n

Nn,s × 2s
m2

m2
⊥

= 2NLLL. (54)

To get the second equality, we used Nn,s=−1 = Nn+1,s=+1.
The higher Landau level contributions cancel each other, and
we are left only with the lowest Landau level contribution
2NLLL = Nn=0,s=+1 + N̄n=0,s=−1. Equation (54) suggests that
chirality production should be enhanced if the lowest Landau
level production NLLL is enhanced by, e.g., the dynamically
assisted Schwinger mechanism.

Within the perturbation theory in the Furry picture (see
Sec. II A), one can explicitly evaluate NLLL as Eq. (40).

3Precisely speaking, normal ordering with respect to “out-state”
operators.

Therefore, we have

Q5 = Q5(E = 0)

×
[

1 + 2π

T

{
1

2

m2

eĒ

Ẽ (0)

Ē
+ 1

4

(
m2

eĒ

)2 ∫ ∞

0
dω

×
∣∣∣∣ Ẽ (ω)

Ē
1F̃1

(
1− i

2

m2

eĒ
; 2;

i

2

ω2

eĒ

)∣∣∣∣
2}]

, (55)

where

Q5(E = 0) = V T × eĒeB̄

2π2
exp

[
−π

m2

eĒ

]
(56)

is chirality production without any perturba-
tions [63,114,115]. Q5(E = 0) is exponentially suppressed
by the mass m, and hence chirality production for massive
particles is usually negligible. However, the dynamical
assistance by a perturbation,

Q5(E )

Q5(E = 0)
− 1 > 0, (57)

is always positive and, as we shall demonstrate below, can en-
hance chirality production by many orders of the magnitude.
Hence, a sizable amount of chirality can be produced even
for massive particles. Note that in the massless limit m → 0
the dynamical assistance goes away because the Schwinger
mechanism dominates the production, and we have

Q5
m→0−−→ Q5(E = 0) = V T × eĒeB̄

2π2
, (58)

which is consistent with the Adler-Bell-Jackiw (ABJ)
anomaly relation for m = 0: ∂t (Q5/V ) = eĒeB̄/2π2 [56,57].
Equation (58) means that the dynamical assistance is not
important for chirality production for light particles whose
mass is sufficiently lighter than the electric field strength eĒ .

B. The dynamical assistance to chirality production

We evaluate the formula (55) with the monochromatic
perturbation (49) to quantitatively discuss how the dynamical
assistance modifies chirality production. We display the result
in Fig. 5.

The dynamical assistance by a perturbation can signifi-
cantly enhance chirality production for massive particles. The
size of the enhancement strongly depends on the frequency
of a perturbation �. For frequencies below the mass gap
� 	 2m, the enhancement is not significant and chirality pro-
duction is exponentially suppressed by the mass per Eq. (56).
The enhancement becomes the maximum at around the energy
threshold for the lowest Landau level � ∼ 2m. This is because
the dynamically assisted Schwinger mechanism takes place,
i.e., the threshold energy is effectively reduced by the energy
supply by a perturbation and thus the Schwinger mechanism
for the lowest Landau level is enhanced, which results in
the enhancement of chirality production. Above the energy
threshold � � 2m, the enhancement decays slowly and shows
an oscillating dependence on �, which can be understood as
an analog of the Franz-Keldysh oscillation [74,75,112,113].
Note that the enhancement increases quadratically with eE0

and that the � dependence is unchanged with eE0 unless eE0
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FIG. 5. Chirality production Q5 (55) scaled by the anomaly fac-
tor eĒeB̄/2π 2 for the monochromatic perturbation (49) as a function
of the frequency �/m. Different shadings distinguish electric field
strengths eĒ/m2 = 0.05, 0.10, 0.20, 0.50, and 1.00. The dashed
lines represent the mass suppression without perturbations (56).
The strength of the perturbative electric field is fixed as eE0/m2 =
0.001. Note that the result is independent of the magnetic field
strength eB̄/m2.

becomes so large that the formula (55), which only takes into
account the lowest correction from a perturbation, becomes
invalid.

The enhancement is not significant for light particles, as we
discussed below Eq. (58). This is because chirality production
is free from the exponential suppression for light particles, and
hence the dynamical assistance, which is always suppressed
by powers of the mass, can only give a secondary contribution.
Note that the insensitivity to the time dependence of a field
for chirality production for light particles and the decrease of
that for massive particles for a slower field configuration are
consistent with Ref. [110], in which chirality production for
massless and massive particles by a pulsed electric field with
a sudden switching on/off was discussed.

IV. SUMMARY AND DISCUSSION

We have studied particle production from the vacuum by
a slow strong parallel electromagnetic field superimposed by
a fast weak perturbation. We have generalized the perturba-
tion theory in the Furry picture [74,75,84–89] to include a
magnetic component in the slow strong field configuration
and derived an analytical formula for the production number.
Based on the formula, we have analytically discussed the
particle production, focusing on the interplay between the
Schwinger mechanism and one-photon pair production and
the dynamical assistance between the two production mech-
anisms. In particular, we have shown that (i) the strength of
the strong electric field and the frequency of a perturbation
control the interplay, and the Schwinger mechanism (one-
photon pair production) dominates the particle production
when the electric field strength is large (small) and the fre-
quency is small (large); (ii) the two production mechanisms
occur at the same time and assist each other at intermediate
values of the electric field strength and the frequency, and
the particle production is significantly enhanced by many

orders of magnitude (i.e., the dynamically assisted Schwinger
mechanism [67–71]); (iii) the effect of a strong magnetic
field is to discretize the energy level through the Landau
quantization, which enhances the production proportionally
to the magnetic field strength because of the enhancement
of the phase space, and results in sharp threshold behaviors
in the production number when the magnetic field strength
is comparable to or stronger than the electric one; and (iv)
the lowest Landau approximation becomes valid for a very
strong magnetic field compared to mass and the electric field
strength, for which the production number is maximized at
frequency around the energy threshold � ∼ 2m and exhibits
oscillating dependence on � for � � 2m (an analog of the
Franz-Keldysh oscillation [74,75,112,113]).

We also have clarified how the dynamical assistance to
the particle production affects chirality production. We have
explicitly evaluated the in-in vacuum expectation value of
the chirality operator and shown that chirality production is
determined solely by the lowest Landau level production.
Therefore, chirality production is enhanced because the low-
est Landau level production is enhanced by the dynamical
assistance. We have written down an analytical formula for
chirality production based on the production number formula
within the perturbation theory in the Furry picture, and shown
that (i) chirality production for light particles whose mass
is lighter than the electric field strength is less affected by
the dynamical assistance; (ii) chirality production for massive
particles is significantly enhanced by many orders of the
magnitude; and (iii) the enhancement becomes the largest at
frequency � ∼ 2m, where the dynamical assistance to the
lowest Landau level production is maximized.

An interesting application of our results is in heavy-ion
collisions at RHIC and the LHC. We have shown in the present
paper that perturbations on top of a slow strong parallel
electromagnetic field significantly affect particle and chirality
production. In heavy-ion collisions, the glasma [47–51] plays
the role of a slow strong parallel (chromo)electromagnetic
field and a weak fast perturbation is naturally seeded by
quark/gluon jets produced by initial hard collisions. There-
fore, we expect that particle and chirality production in heavy-
ion collisions should be modified significantly by jets on top
of the glasma. For example, a sizable amount of chirality
may be produced even for massive strange and charm quarks
because of the dynamical assistance by jets. This could leave
experimental signatures such as charge asymmetry of heavy
hadrons through the chiral magnetic effect. Another example
is that the enhancement of the particle production by jets
may speed up the formation of the quark-gluon plasma in
heavy-ion collisions, which could be interesting to the early
thermalization/hydrodynamization puzzle [116,117]. We may
also expect that propagation of jets should be modified sig-
nificantly by the glasma because jets lose their energy via
the particle production in the glasma. This could give an
additional contribution to the jet quenching and broadening
phenomena.

Another interesting application is in intense laser experi-
ments at, e.g., ELI and XCELS. Experimentally, one may re-
alize a parallel slow strong electromagnetic field configuration
by colliding two counterpropagating laser beams with differ-
ent polarization. For example, by colliding two laser beams

023257-12



DYNAMICALLY ASSISTED SCHWINGER MECHANISM AND … PHYSICAL REVIEW RESEARCH 2, 023257 (2020)

described by gauge potentials Ā1 = (a/k) sin[k(x1 − x0)] ×
(0, 1, 0) and Ā2 = (a/k) sin[k(−x1 − x0)] × (0, sin φ, cos φ)
and assuming that the laser beams are sufficiently slow |k| 	
1 and that the particle production occurs at the region |kx1| 	
1, one gets

Ē ∼ a

⎛
⎝ 0

1 + sin φ

cos φ

⎞
⎠, B̄ ∼ cos φ

1 + sin φ
Ē. (59)

Thus, we have Ē ‖ B̄ and can control the relative size between
the electric and magnetic field strengths by tuning the po-
larization angle φ (e.g., Ē = B̄ �= 0 for φ = 0; Ē = 0, B̄ �= 0
for φ = −π/2; and Ē �= 0, B̄ = 0 for φ = π/2). As shown
in the present paper, the existence of a parallel strong mag-
netic field makes the particle production phenomenologically
richer, e.g., it results in the nontrivial frequency dependence
for a high-frequency perturbation and chirality production.
The sharp frequency dependence for strong eB̄ may be de-
tected by using techniques of modulation spectroscopy [118],
which is a well-established method to measure the Franz-
Keldysh oscillation in semiconductor physics. Observing chi-
rality production is not only new to laser physics, but also
important to understand the chirality production mechanism
in heavy-ion collisions and consequent observables, which
are less understood in the heavy-ion community despite
great experimental/theoretical efforts over the past decade.
Also, chirality production may induce anomalous transport
phenomena such as the chiral magnetic effect even in laser
systems. This is an opportunity to study anomalous transport
phenomena and may open up a new connection between
laser physics and the other areas of physics since anoma-
lous transport phenomena have been attracting attention from
broad areas of physics with different energy scales, such as
Weyl/Dirac semi-metals, heavy-ion collisions, neutron stars,
and supernovae.

For future work, it is interesting to extend our lowest order
formula (34) by including higher order ek (k � 2) correc-
tions. This enables us to discuss the dynamical assistance
not only by one-photon pair production (γ + Ē , B̄ → e+e−),
but also by multiphoton pair production (nγ + Ē , B̄ → e+e−)
and multi-pair production by a photon (γ + Ē , B̄ → n e+e−),

which are parametrically suppressed by the strength of a
perturbation as (eE/m2)2n but become important if eE be-
comes strong. Such higher order processes may, for example,
induce additional peak structures in the production number
as a function of the frequency of a perturbation [75,119–
122]. Another possible extension is to consider a pertur-
bation with various polarizations. Not only the production
number/distribution, but also spin dynamics is modified by
polarization, which results in nontrivial spin accumulation
and/or generation of a spin current [43,75,123,124]. Non triv-
ial spin dependence/observables imply a modification to chi-
rality production and, therefore, may induce novel chirality-
dependent observables. It is also important to understand
polarization effects to discuss heavy-ion collisions since jets
in heavy-ion collisions are not necessarily longitudinal with
respect to the glasma. It is very straightforward to extend
our formalism to such a general perturbation with different
polarization as well as, for example, with spatial dependence,
which has been discussed within the worldline instanton
formalism for a slowly varying case [105,106] and within a
numerical method [107,108]. The last direction that we would
like to mention is to consider different types of perturbations.
In the present paper, we concentrated on a perturbation by a
weak fast electromagnetic field (or a dynamical photon). In
principle, any kinds of perturbations (or, generally, external
forces) may dynamically assist the Schwinger mechanism and
vice versa as long as they supply energy to the vacuum. Such
a consideration has been done recently for vibrating plates (or
the dynamical Casimir effect) [125]. A strong magnetic field
drastically changes the dimensionality of the system because
of the Landau quantization. Hence, the dynamical assistance
by geometric perturbations such as vibration of plates and
gravitational fields should be modified.
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