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Generation of pseudo-sunlight via quantum entangled photons and the interaction with molecules
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Light incident upon molecules triggers fundamental processes in diverse systems present in nature. However,
under natural conditions such as sunlight illumination, it is impossible to assign known times for photon arrival
due to continuous pumping, and therefore the photoinduced processes cannot be easily investigated. In this
work, we demonstrate theoretically that the characteristics of sunlight photons, such as photon number statistics
and spectral distribution, can be emulated through a quantum entangled photon pair generated with parametric
down-conversion (PDC). We show that the average photon number of sunlight in a specific frequency spectrum,
e.g., the visible light, can be reconstructed by adjusting the PDC crystal length and pump frequency, and thereby
the molecular dynamics induced by the pseudo-sunlight can be investigated. The entanglement time, which is the
hallmark of quantum entangled photons, can serve as a control knob to resolve the photon arrival times, enabling
investigations on real-time dynamics triggered by pseudo-sunlight photons.
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I. INTRODUCTION

Giant strides in ultrashort laser pulse technology have
opened up real-time observation of dynamical processes in
complex physical, chemical, and biological systems. Under
natural conditions, such as sunlight illumination, known times
cannot be assigned for photon arrival due to continuous
pumping, and thus photoinduced dynamical processes cannot
be easily investigated. In time-resolved optical spectroscopy,
however, investigations on dynamical processes can be con-
ducted by synchronizing the initial excitations in the entire
ensemble with the use of an ultrashort pulsed laser, thereby
amplifying the microscopic dynamics in a constructively
interferential fashion. In this manner, time-resolved laser
spectroscopy has provided detailed information and deeper
insights into microscopic processes in complex molecular
systems. Nevertheless, the relevance of the laser spectroscopic
data regarding photosynthetic proteins was challenged, and
whether the dynamics initiated by sunlight irradiation might
be different from those detected with laser spectroscopy is still
being debated [1–11]. Although spectroscopic measurements
may or may not demonstrate phenomena under sunlight illu-
mination in a one-to-one correspondence, the debate inspired
us to comprehend the occurrence of photoexcitation under
natural irradiation.

Sunlight is considered as black-body radiation with an
effective temperature of approximately 5800 K, and thus
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the coherence time is extremely short. Furthermore, photon
number statistics obeys Bose-Einstein distribution, whereas
the coherent laser is characterized by Poisson photon number
statistics [12]. A variety of schemes have been proposed to
generate light that mimics sunlight, e.g., a solar simulator with
a Xenon arc lamp. Broadband incoherent light that emulates
the temporal property of thermal light has been also investi-
gated, e.g., a scattered laser beam from a rotating ground-glass
disk [13] and amplified spontaneous emission [14]. It was
also presented that thermal light could be well represented
in terms of a statistical mixture of laser pulses, which gives
a valid description of linear light-matter interactions [15,16].
However, these schemes do not provide knobs to control light
on an ultrafast timescale approximate to a few femtoseconds,
which is relevant for energy/charge transfer during the pri-
mary steps of photosynthesis and isomerization reaction in the
first steps of vision. Therefore, a scheme to control thermal
light on an ultrashort timescale to unveil how photoexcitation
by natural light and the subsequent dynamics proceed should
be developed.

To tackle this issue, we take a constructive approach in-
stead of a direction toward manipulating the actual thermal
light. We examine the quantum states of photons that recon-
struct the characteristics of the sunlight, specifically statistical
properties such as photon number statistics and spectral dis-
tribution. In this work, such photon states are termed pseudo-
sunlight. An advantage of the approach is that deductively
obtained expressions of quantum states enable us to investi-
gate photoinduced dynamical processes in molecular systems
with quantitative underpinnings and help us to gain deeper
insights into physical implications. To this end, we address
quantum entangled photon pairs generated through parametric
down-conversion (PDC) in birefringent crystals [12]. The
state vector of the generated pairs yields a form of geometric
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distribution as the photon number probability [17–19]. In ad-
dition, the two photons in a pair exhibit continuous frequency
entanglement stemming from the conservation of energy and
momentum. Consequently, the quantum state of one photon
in the pair is a mixed state in terms of frequency with some
spectral distribution, while the state of the other photon is
not fully measured. For these reasons, entangled photon pairs
are expected to reconstruct the statistical characteristics of
sunlight.

II. FREQUENCY-ENTANGLED PHOTONS

We consider the PDC process, in which a pump photon
with frequency ωp is split into two entangled photons—
signal and idler photons—with frequencies ω1 and ω2 such
that ωp = ω1 + ω2. Electric fields inside a one-dimensional
nonlinear crystal whose length is L are considered, and the
time-ordering effect during the PDC process is neglected. This
approximation is relevant in describing the PDC in the low-
gain regime [20], and the state vector of the generated photons
is obtained as |ψPDC〉 = exp(−iĤPDC/h̄)|vac〉 with ĤPDC =∫

dω1
∫

dω2 f (ω1, ω2)â†
s (ω1)â†

i (ω2) + H.c., where â†
s (ω) and

â†
i (ω) denote the creation operators of the signal and

idler photons, respectively [21]. The two-photon ampli-
tude f (ω1, ω2) is expressed as f (ω1, ω2) = h̄Bαp(ω1 +
ω2) �(ω1, ω2), where αp(ω) is the pump envelope func-
tion normalized as

∫
dω αp(ω) = 1, and �(ω1, ω2) =

sinc[�k(ω1, ω2)L/2] is referred to as the phase-matching
function, where �k(ω1, ω2) represents the momentum mis-
match among the input and output photons. All other con-
stants, such as the second-order susceptibility of the crystal
and pump intensity, are merged into the factor B, which
corresponds to the conversion efficiency of the PDC [21].
Typically, �k(ω1, ω2) may be approximated linearly around
the central frequencies of the generated beams, ω̄s and
ω̄i, as �k(ω1, ω2)L = (ω1 − ω̄s)Ts + (ω2 − ω̄i )Ti with Tσ =
L/vp − L/vσ [21,22], where vp and vσ are the group velocities
of the pump laser and a generated beam at frequency ω̄σ ,
respectively. The difference Te = |Ts − Ti| is termed the en-
tanglement time [23,24], which represents the maximal time
delay between the arrival of the two entangled photons.

For CW pumping, the two-photon amplitude is written
as f (ω1, ω2) = h̄δ(ω1 + ω2 − ωp) r(ω1) with r(ω) = B �(ω,

ωp − ω) = B sinc[(ω − ω̄s)Te/2]. Therefore, the propagator
is recast into exp(−iĤPDC/h̄) = exp[

∫
dω r(ω)â†

s (ω)â†
i (ωp −

ω) − H.c.], and the output photon state is obtained as the
two-mode squeezed vacuum state [19],

|ψPDC〉 =
∏
ω

∞∑
nω=0

[tanh r(ω)]nω

cosh r(ω)
|nω〉s|nωp−ω〉i, (1)

where |nω〉σ is the Fock state of the photon σ with fre-
quency ω. When the idler photon is discarded without
being measured, the quantum state of the signal pho-
ton is mixed [17–19]. This situation is described by
tracing out the idler photon’s degrees of freedom such
that ρ̂s = tri(|ψPDC〉〈ψPDC|) [12]. Consequently, the re-
duced density operator of the signal photon reads ρ̂s =∏

ω

∑∞
nω=0 Pω(nω )|nω〉s〈nω|s, where Pω(n) represents the

probability that there are n photons of frequency ω in the

FIG. 1. Average photon number in the signal beam generated
through the PDC process with the CW pumping, n̄(ω) in Eq. (2) (red
solid line) and the thermal distribution, n̄th (ω) = (eh̄ω/kBT − 1)−1 at
temperature T = 5777 K (blue dashed line). To evaluate Eq. (2), the
parameters of ωp = 25000 cm−1, ω̄s = 12000 cm−1, Te = 2.5 fs, and
B = 0.15 are employed. The two vertical lines indicate electronic
transition energies that will be discussed later, ω1g = 18 000 cm−1

and ω2g = 18 500 cm−1.

signal photon beam, Pω(n) = [1 − ζ (ω)]ζ (ω)n, with ζ (ω) =
tanh2 r(ω). The density operator is also expressed as ρ̂s =
Z−1 exp[− ∫

dω ln ζ (ω)â†
s (ω)âs(ω)], with Z being the parti-

tion function [25]. Therefore, the quantum state ρ̂s can be
regarded as the thermal state in the sense that the photon-
number statistics obey the geometric distribution, and the
average photon number is computed as a function of ω,

n̄(ω) =
∞∑

n=0

nPω(n) = ζ (ω)

1 − ζ (ω)
= sinh2 r(ω). (2)

Specifically, when ζ (ω) can be approximately expressed as
ζ (ω) � exp(−h̄ω/kBT ), the expressions of Pω(n) and n̄(ω)
become identical to those of the thermal radiation from a
black-body with temperature T , where kB denotes the Boltz-
mann constant. This is a necessary and sufficient condition
for reconstructing the statistical properties of the field and
hence the field correlation functions at any order. Although the
whole frequency range may be impossible to reconstruct, it is
still beneficial to emulate a specific frequency region such as
the visible light for unveiling how photoexcitation by natural
light and the subsequent dynamics proceed, for example, in
photosynthesis and vision.

Figure 1 presents the average photon number in the signal
beam generated through PDC with CW pumping. For com-
parison, the thermal distribution, n̄th(ω) = (eh̄ω/kBT − 1)−1,
at temperature T = 5777 K is also shown. The parameters
employed for the calculation are chosen so as to reproduce
the average photon number of the visible light, as given in
the figure caption. These values are realizable through the
use of birefringent crystals such as β-BaB2O4 [26,27] and
BiB3O6 [28]. Figure 1 demonstrates that Eq. (2) is capable
of approximately reproducing the average photon number of
black-body radiation in the visible region by adjusting the
crystal length L and pump frequency ωp. It is noteworthy that
the photon number in the visible region is substantially 0 or 1.

023256-2



GENERATION OF PSEUDO-SUNLIGHT VIA QUANTUM … PHYSICAL REVIEW RESEARCH 2, 023256 (2020)

III. INTERACTION OF SIGNAL PHOTONS
WITH MOLECULES

Theoretical expressions of quantum states of photons en-
able one to investigate photoinduced molecular-dynamics
processes with quantitative underpinnings. Here, we discuss
the electronic excitation of a molecule. The molecule is
modeled by the electronic ground state |g〉 and electronic
excited states {|eα〉}α=1,2,..., and the Hamiltonian is given
by Ĥmol = εg|g〉〈g| + ∑

α εα|eα〉〈eα|. The states {|eα〉} corre-
spond to electronic excitons in the single-excitation manifold
of a molecular aggregate. The optical transitions between |g〉
and |eα〉 are described by the operator μ̂ = ∑

α μαg(|eα〉〈g| +
|g〉〈eα|), where μαg stands for the transition dipole. In gen-
eral, environment-induced fluctuations in electronic energy
strongly influence the excited-state dynamics in condensed
phases. However, in this study we ignored the environmental
degrees of freedom because the main concern here is to inves-
tigate the characteristics of pseudo-sunlight irradiation, which
is qualitatively independent of the effects of the environment.
For simplicity, radiative and nonradiative decays to the ground
state are also neglected.

The following setup is considered: The signal and idler
beams generated through PDC are split. Only signal photons
interact with molecules, and idler photons propagate freely.
Therefore, the total molecule-field Hamiltonian can be
written as Ĥtotal = Ĥmol + Ĥfield + Ĥint. The second term in
this equation, Ĥfield, is the free Hamiltonian of the signal
and idler photons, and the molecule-field interaction is
described by Ĥint (t ) = −μ̂Ês(t ). Due to the weak field-matter
interaction, the first-order perturbative truncation in terms
of Ĥint (t ) provides a reasonable description of the electronic
excitation generated with the signal photon absorption. Thus,
the state vector to describe the molecular excitation together
with signal and idler photons is obtained as |ψtotal(t )〉 =
(i/h̄)

∑
α μαg

∫ t
−∞ dτ1 e−iωαg(t−τ1 )Ês(τ1)|eα〉|ψPDC〉, where

ωαβ = (εα − εβ )/h̄ has been introduced. In the equation,
the field operator of the signal photon Ês(t ) can be
divided into positive- and negative-frequency components,
Ê (+)

s (t ) = ∫
dω iA(ω) âs(ω)e−iωt and Ê (−)

s (t ) = [Ê (+)
s (t )]†,

respectively, where A(ω) ∝ √
ω [29]. The negative-frequency

component causes the rapidly oscillating term in the
integrand; hence, the contribution to the electronic excitation
is negligibly small. Therefore, Ês(τ1) can be replaced
with the positive-frequency component. This rotating-wave
approximation is of no consequence in cases of weak
field-matter interaction [16,24], but it breaks down in the
strong interaction regime [30].

When the quantum states of idler photons are not mea-
sured, the reduced density operator to describe the electronic
excitation is obtained by tracing over the fields’ degrees of
freedom, ρ̂el(t ) = trs+i[|ψtotal(t )〉〈ψtotal(t )|], as such

ρ̂el(t ) =
∑
αβ

μαgμβg

h̄2 e−iωαβ t
∫ t

−∞
dτ2 e−iωβgτ2

∫ t

−∞
dτ1 eiωαgτ1

× G(1)
s (τ2, τ1)|eα〉〈eβ |, (3)

where the first-order temporal correlation function of signal
photons G(1)

s (t2, t1) = 〈Ê (−)
s (t2)Ê (+)

s (t1)〉 has been introduced.

FIG. 2. Time evolution of the normalized density matrix ele-
ments describing molecular electronic excitations, Eq. (3), under il-
lumination of the signal photons generated through the PDC process
(red solid lines) and the black-body radiation of temperature 5777 K
(blue dashed line). The average photon number and the electronic
transition energies shown in Fig. 1 were used in the calculations.
The normalization is such that the maximum value of the real part
of the off-diagonal element, ρ12(t ) = 〈e1|ρ̂el (t )|e2〉, for the PDC
case is unity; therefore, it is of no consequence that the normalized
population exceeds unity.

In the CW pumping case, the function is expressed as [25]

G(1)
s (t2, t1) =

∫ ∞

0
dω eiω(t2−t1 )A(ω)2n̄(ω). (4)

By replacing n̄(ω) with the average photon number for ther-
mal light, n̄th(ω) = (eh̄ω/kBT − 1)−1, Eq. (3) becomes prac-
tically identical to the expression for the density operator
under the influence of the real sunlight photons [8]. Figure 2
demonstrates the time evolution of the matrix elements of
the density operator under the illumination of the PDC signal
photon and the black-body radiation of 5777 K. The molecular
electronic states can only interact with the light at time t � 0.
In the calculations, the average photon number shown in
Fig. 1 was employed, and the electronic transition energies
were set to ω1g = 18 000 cm−1 and ω2g = 18 500 cm−1 with
μ1g = μ2g. Because it is impossible to resolve the time at
which the signal photon interacts with the molecule, it is
considered that the signal photon interacts with the molecule
at a uniformly random time. Consequently, the probability
of observing the electronically excited molecule, ρ11(t ) =
〈e1|ρ̂el(t )|e1〉, increases linearly with time. The same holds
for the black-body radiation case, and therefore the dynamics
of the density matrix elements calculated for the two cases
exhibit reasonably good agreement. It should be noted that
the probability does not continue to mount in the long-time
limit when the radiative and nonradiative decays to the ground
state are considered. As demonstrated in Fig. 2, therefore,
excited-state dynamics induced by signal photons generated
through PDC can be regarded as an emulation of the dynamics
under the influence of sunlight irradiation, provided that n̄(ω)
reconstructs the spectrum of sunlight photons in a frequency
range under investigation, such as the visible frequencies.
Figure 2 also shows coherent time-evolution of the off-
diagonal matrix element of the density operator, ρ12(t ) =
〈e1|ρ̂el(t )|e2〉, although such coherent oscillations would be
washed out by the excitation at uniformly random time [2,31].
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It is noted that the coherent oscillations can appear when the
“sudden turn-on of light” is applied [16,32].

IV. DETECTION OF IDLER PHOTONS

In the previous section, we discussed the interaction be-
tween the molecule and the signal photons without detecting
the idler. However, more useful application of the PDC source
can be made possible through detection of idler photons.
Accordingly, spectroscopic and imaging techniques with en-
tangled photon pairs have been proposed on the basis of
coincidence counting [27,33–38]. When the quantum states of
both signal and idler photons are measured, the characteristic
features of quantum lights, such as entanglement time, can
provide novel and useful control knobs to supplement clas-
sical parameters such as frequency and time delay. However,
such heralded signal photons are not in the thermal state, in
contrast to the discussions in the preceding sections. In the
following, we investigate the excited-state dynamics triggered
by the interaction of molecules with signal photons when idler
photons are detected.

The optical length between the detector for idler photons
and the PDC crystal is set to be the same as the length between
the crystal and the sample into which signal photons enter.
The photon detection that resolves the arrival time t = ti of the
idler photons is modeled with the projection operator �̂i(ti ) =
â†

i (ti )|vac〉〈vac|âi(ti ), where âi(t ) = (2π )−1/2
∫

dω âi(ω)e−iωt

has been introduced [39]. The spectral information on
the idler photon is not obtained. Consequently, the
quantum state of the signal photon is a mixed state in
terms of frequency, although the signal photon number is
identified as unity. The frequency distribution is given by
D(ω) ∝ Pω(1) � tanh2 r(ω). In the CW pumping case, the
first photon arrives at a uniformly random time [39] and
the second photon certainly arrives within the entanglement
time Te. Thus, the probability of detecting a photon in the
idler beam is time-independent: Pi = 〈ψPDC|�̂i(ti )|ψPDC〉 =
Z−1

∫
dω tanh2 r(ω). When the idler photon is detected at

time ti, the density operator of the electronic excitation is
given by ρ̂el(t ; ti ) = (1/Pi )trs+i[�̂i(ti )|ψtotal(t )〉〈ψtotal(t )|],
leading to an expression that is different from Eq. (3):

ρ̂el(t ; ti ) =
∑
αβ

μαgμβg

h̄2 e−iωαβ t
∫ t

−∞
dτ2 e−iωβgτ2

×
∫ t

−∞
dτ1 eiωαgτ1 G(1)

s (τ2, τ1; ti )|eα〉〈eβ |, (5)

where G(1)
s (t2, t1; ti ) = 〈Ê (−)

s (t2)Ê (+)
s (t1)〉ti is the first-order

temporal correlation function of the heralded signal photon.
The bracket represents 〈· · · 〉ti = trs+i[· · · ρ̂s(ti )], where ρ̂s(ti )
is the reduced density operator of the heralded signal photon
given by ρ̂s(ti ) = P−1

i tri[�̂i(ti )|ψPDC〉〈ψPDC|]. A concrete
expression of the correlation function is obtained as

G(1)
s (t2, t1; ti ) = [E (ti )(t2)]∗E (ti )(t1), (6)

where the following quantity has been introduced:

E (ti )(t ) = 1√
PiZ

∫ ∞

0
dω e−iω(t−ti )A(ω) tanh r(ω). (7)

FIG. 3. Time evolution of the normalized density matrix ele-
ments describing the electronic excitations triggered by interaction
with the signal photons, provided that idler photons are detected
at time t = ti, Eq. (5). (a) The entanglement time Te = 2.5 fs and
the other parameters are the same as in Figs. 1 and 2. (b) The
entanglement time is set to Te = 50 fs, and the other parameters are
ω̄s = 18 001 cm−1 and B = 0.11. The normalization is such that the
maximum value of the diagonal element, ρ11(t ; ti ) = 〈e1|ρ̂el (t ; ti )|e1〉,
is unity.

Equation (7) could be regarded as the “electric field” that
will interact with the molecule. Figure 3 presents the time
evolution of the density matrix elements under the condition
that the idler photon is detected at time t = ti for two values of
the entanglement time, (a) Te = 2.5 fs and (b) Te = 50 fs. The
parameters chosen for Fig. 3(a) are the same as in Fig. 2, while
the parameters employed in Fig. 3(b) are ω̄s = 18 001 cm−1

and B = 0.11. In contrast to the case in Fig. 2, the detection of
the idler photon enables us to assign the time at which the sig-
nal photon interacts with the molecule. Thus, the probability
of observing the electronically excited molecule, ρ11(t ; ti ) =
〈e1|ρ̂el(t ; ti )|e1〉, exhibits the plateau values 0 and 1. However,
the rise time from 0 to 1 depends on the values of the entan-
glement time. This can be understood through the following
approximative treatment of the “electric field.” From Eq. (2),
the PDC to generate light reproducing the weak intensity of
sunlight lies in the weak down-conversion regime, r(ω) 	
1. In this limit, the approximation of tanh r(ω) � r(ω) =
B sinc[(ω − ω̄s)Te/2] is relevant, and Eq. (7) is recast as

E (ti )(t ) ∝ A(ω̄s)
2π

Te
rect

(
t − ti

Te

)
e−iω̄s (t−ti ), (8)

where rect(x) = 1 for |x| < 1/2 and 0 otherwise. While
deriving Eq. (8), the approximation of A(ω)r(ω) � A(ω̄s)r(ω)
is employed, where A(ω) ∝ √

ω. This does not cause a fatal
defect for the parameters employed in Fig. 3. Equation (8)
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FIG. 4. Illustration of the two-photon coincidence counting mea-
surement. The signal and idler beams generated through the PDC in
the birefringent crystal are split on a beam splitter (BS). Only the sig-
nal photons interact with molecules, and the idler photons propagate
freely. The idler photons and photons spontaneously emitted from the
molecule excited by the signal photons are detected in coincidence.

demonstrates that the signal photon certainly arrives at
the molecular sample within the entanglement time Te

before or after the idler photon is detected at time ti. For
t > ti + Te/2, the density operator in Eq. (5) is obtained
as ρ̂el(t ; ti ) ∝ ∑

αβ μαgμβgsinc[(ωαg − ω̄s)Te/2]sinc[(ωβg −
ω̄s)Te/2]e−iωαβ (t−ti )|eα〉〈eβ |. When the entanglement time
Te is extremely short, Eq. (8) can be approximated as
E (ti )(t ) ∝ δ(t − ti ). In this “impulsive” limit, the time
evolution of the density operator of the electronic excitation,
Eq. (5) reduces to ρ̂el(t ; ti ) ∝ ∑

αβ μαgμβge−iωαβ (t−ti )|eα〉〈eβ |,
as presented in Fig. 3(a). Therefore, it is reasonable to state
that the detection time for the idler photon is considered to
be the time that the signal photon arrives at the molecule in
the case of short entanglement time. In contrast, the arrival
time of the signal photon becomes blurred within the time
window of ti − Te/2 � t � ti + Te/2, when the entanglement
time Te is relatively long. This situation is presented in
Fig. 3(b). Experimentally the dynamics described with
Eq. (5) could be observed through two-photon coincidence
counting [24,40], although the actual measurement might be
technically difficult. As illustrated in Fig. 4, idler photons and
photons spontaneously emitted from the molecule excited by
signal photons are counted at times ti and t , respectively. The
two-photon counting signal is thus given by S(t, ti ) =
tr[â†

i (ti )â†
s (t )âs(t )âi(ti )ρ̂tot (t )], which is approximately

expressed with the density matrices in Eq. (5) as

S(t, ti ) � 2π

h̄2 A(ω̄s)2
∑
αβ

μαgμβg〈eα|ρ̂el(t ; ti )|eβ〉. (9)

This expression is derived in Appendix.
As aforementioned, idler photons are detected at a uni-

formly random time in the CW pumping case. To gain further
insight into the physical implications of Eq. (5) and corre-
spondingly Eq. (9), we consider the average of the density
operator of the electronic excitation, Eq. (5), for all possible
values of ti,

〈ρ̂el(t ; ti )〉 =
∑
αβ

μαgμβg

h̄2 e−iωαβ t
∫ t

−∞
dτ2 e−iωβgτ2

×
∫ t

−∞
dτ1 eiωαgτ1

〈
G(1)

s (τ2, τ1; ti )
〉|eα〉〈eβ | (10)

with 〈G(1)
s (t2, t1; ti )〉 being the correlation function averaged in

terms of ti,

〈
G(1)

s (t2, t1; ti )
〉 ∝

∫ ∞

−∞
dti [E (ti )(t2)]∗E (ti )(t1). (11)

As illustrated in Fig. 1, the photon number in the visible region
is substantially 0 or 1, and the average photon number n̄(ω) is
well approximated by

n̄(ω) �
1∑

n=0

nPω(n) = Pω(1) � tanh2 r(ω). (12)

As a consequence, Eq. (7) is approximately expressed as

E (ti )(t ) � 1√
PiZ

∫ ∞

0
dω e−iω(t−ti )A(ω)

√
n̄(ω), (13)

and the averaged correlation function is computed as〈
G(1)

s (t2, t1; ti )
〉 ∝ G(1)

s (t2, t1), (14)

indicating that Eq. (10) is identical to Eq. (3). Indeed, the sam-
ple average of the density matrix elements presented in Fig. 3
in terms of ti reproduces the curves depicted in Fig. 2 [41].
What should be emphasized here is that the sample average
in terms of ti does not change the physical properties of the
heralded signal photon and the interaction with the molecule:
it characterizes the statistical property of the heralded signal
photon. These observations indicate that the detection of the
idler photon enables us to resolve the photon arrival times
under pseudo-sunlight irradiation. However, it should also be
noted that this conclusion is only true for cases in which
Eq. (12) is an acceptable approximation, e.g., in the solar vis-
ible region. In such cases, the photon number is substantially
0 or 1, and the heralding is to remove the vacuum state of
the photon number 0 [42], which does not interact with the
molecule. Therefore, the heralding is of no major consequence
when considering the molecule-photon interaction.

V. CONCLUDING REMARKS

In this work, we demonstrated theoretically that the nature
of sunlight photons can be emulated through quantum entan-
gled photons generated with PDC. One may emulate sunlight,
which is black-body radiation with an effective temperature
of approximately 5777 K, through controlling the system’s
parameters in a mechanical fashion. Further, electronic exci-
tations of a molecule using such pseudo-sunlight light were
investigated. The key is that the entanglement time, which
is a unique characteristic of the quantum entangled photons,
serves as a control knob to resolve the photon arrival times,
enabling investigations of real-time dynamics triggered by
the pseudo-sunlight photons. Pinpointing the photon arrival
times may pave a new path for implementing time-resolved
spectroscopic experiments that directly reflects the properties
of natural sunlight.

Note added. Recently, we became aware of Ref. [43], in
which C.-Y. Lu, J.-W. Pan, and co-workers experimentally
demonstrated nonclassical interference between sunlight and
single photons from a quantum dot. For measuring the Hong-
Ou-Mandel interference, only the single-photon events of the
sunlight were registered.
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APPENDIX: TWO-PHOTON COINCIDENCE
COUNTING SIGNAL

We consider the two-photon coincidence counting mea-
surement depicted in Fig. 4, in which the idler photons and the
photons spontaneously emitted from the molecule excited by
the signal photons are counted at times ti and t , respectively.
The two-photon counting signal is thus written as [24,40]

S(t, ti ) = tr[â†
i (ti )a

†
s (t )âs(t )âi(ti )ρ̂tot (t )], (A1)

where the density operator ρ̂tot (t ) represents the state of the
total system after the spontaneous emission. In this Appendix,
we evaluate Eq. (A1) to relate the two-photon counting signal
with the electronically excited-state dynamics induced by the
signal photons under the condition that the idler photon is
detected at time ti.

The density operator ρ̂tot (t ) can be expanded up to fourth-
order with respect to Ĥint (t ) as [24,44]

ρ̂tot (t ) =
(

− i

h̄

)4 ∫ t

−∞
dτ4

∫ τ4

−∞
dτ3

∫ τ3

−∞
dτ2

∫ τ2

−∞
dτ1

× Ĝ(t − τ4)Ĥ×
int (τ4)Ĝ(τ4 − τ3)Ĥ×

int (τ3)Ĝ(τ3 − τ2)

× Ĥ×
int (τ2)Ĝ(τ2 − τ1)Ĥ×

int (τ1)ρ̂tot (−∞), (A2)

where Ĝ(t ) denotes the Liouville space time-evolution opera-
tor to describe the dynamics of the electronic excitation in the
molecules, and the superoperator notation Ô×

1 Ô2 = [Ô1, Ô2]
has been introduced for any operators Ô1 and Ô2. The initial
state is assumed to be ρ̂tot (−∞) = |g〉〈g| ⊗ |ψPDC〉〈ψPDC|.
For simplicity, we consider the situation in which there are
no dissipative processes such as environmental effects and
exciton relaxation. In this situation, the time-evolution op-
erator can be written as Ĝ(t )Ô = Ĝ(t )ÔĜ†(t ) with Ĝ(t ) =
exp(−iĤmolt/h̄). Therefore, the density operator effective for
the calculation of Eq. (A1) is obtained as

ρ̂tot (t ) =
(

− i

h̄

)4 ∫ t

−∞
dτ2

∫ τ2

−∞
dτ1

∫ t

−∞
dτ ′

2

∫ τ ′
2

−∞
dτ ′

1

× Ĝ(t − τ2)Ĥint (τ2)Ĝ(τ2 − τ1)Ĥint (τ1)ρ̂tot (−∞)

× Ĥint (τ
′
1)Ĝ†(τ ′

2 − τ ′
1)Ĥint (τ

′
2)Ĝ†(t − τ ′

2). (A3)

Further, the rotating-wave approximation, Ĥint (t ) �
−∑

α μαg|eα〉〈g|Ê (+)
s (t ) + H.c., leads to

ρ̂tot (t ) �
∑
αβ

μ2
αgμ

2
βg

h̄4

∫ t

−∞
dτ2

∫ τ2

−∞
dτ1

∫ t

−∞
dτ ′

2

∫ τ ′
2

−∞
dτ ′

1

× Ê (−)
s (τ2)e−iωαg(τ2−τ1 )Ê (+)

s (τ1)|eα〉|ψPDC〉
× 〈ψPDC|〈eβ |Ê (−)

s (τ ′
1)eiωβg(τ ′

2−τ ′
1 )Ê (+)

s (τ ′
2). (A4)

Hence, the two-photon coincidence counting signal in
Eq. (A1) is obtained as

S(t, ti ) =
∑
αβ

μ2
αgμ

2
βg

h̄4

∫ t

−∞
dτ2

∫ τ2

−∞
dτ1

∫ t

−∞
dτ ′

2

∫ τ ′
2

−∞
dτ ′

1

× eiωβg(τ ′
2−τ ′

1 )e−iωαg(τ2−τ1 )D(t, ti; τ2, τ1, τ
′
2τ

′
1), (A5)

where D(t, ti; τ2, τ1, τ
′
2τ

′
1) is the multipoint correlation

function of the electric field operators and the
creation/annihilation operators of the photons,

D(t, ti; τ2, τ1, τ
′
2, τ

′
1) = 〈ψPDC|Ê (−)

s (τ ′
1)Ê (+)

s (τ ′
2)â†

i (ti)â
†
s (t )

× âs(t )âi(ti )Ê
(−)
s (τ2)Ê (+)

s (τ1)|ψPDC〉.
(A6)

When the electric field operators are approximately ex-
pressed as Ê (+)

s (t ) � iA(ω̄s)
∫

dω âs(ω)e−iωt and Ê (−)
s (t ) �

−iA(ω̄s)
∫

dω â†
s (ω)eiωt , the following commutation relations

are obtained:

[â†
s (t )âs(t ), Ê (−)

s (τ )] � Ê (−)
s (t )δ(t − τ ), (A7)

[Ê (+)
s (t ), Ê (−)

s (τ )] � 2πA(ω̄s)2δ(t − τ ), (A8)

which enable us to calculate Eq. (A6) as

D(t, ti; τ2, τ1, τ
′
2, τ

′
1)

� 2πA(ω̄s)2δ(t − τ2)δ(t − τ ′
2)G(1)

s (τ ′
1, τ1; ti ). (A9)

As a consequence, we obtain the expression of the two-photon
coincidence counting signal as

S(t, ti ) � 2π

h̄4 A(ω̄s)2
∑
αβ

μ2
αgμ

2
βg

∫ t

−∞
dτ1

∫ t

−∞
dτ ′

1eiωβg(t−τ ′
1 )

× e−iωαg(t−τ1 )G(1)
s (τ ′

1, τ1; ti ), (A10)

which is recast into a simpler form with the use of ρ̂el(t ; ti ),

S(t, ti ) � 2π

h̄2 A(ω̄s)2
∑
αβ

μαgμβg〈eα|ρ̂el(t ; ti )|eβ〉. (A11)

Equation (A11) indicates that the electronically excited-state
dynamics in Eq. (6) can be observed through the two-photon
coincidence measurement.
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