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Topological superconductivity in carbon nanotubes with a small magnetic flux
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We show that a one-dimensional topological superconductor can be realized in carbon nanotubes, using a
relatively small magnetic field. Our analysis relies on the intrinsic curvature-enhanced spin-orbit coupling of the
nanotubes, as well as on the orbital effect of a magnetic flux threaded through the nanotube. Tuning experimental
parameters, we show that a half-metallic state may be induced in the nanotube. Coupling the system to an
Ising superconductor, with an appreciable spin-triplet component, can then drive the nanotube into a topological
superconducting phase. The proposed scheme is investigated by means of real-space tight-binding simulations,
accompanied by an effective continuum low-energy theory, which allows us to gain some insight on the roles
of different terms in the Hamiltonian. We calculate the topological phase diagram and ascertain the existence
of localized Majorana zero modes near the edges. Moreover, we find that in the absence of a magnetic field, a
regime exists where sufficiently strong interactions drive the system into a time-reversal-invariant topological
superconducting phase.
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I. INTRODUCTION

Low-dimensional topological superconductors are unique
states of matter, supporting Majorana fermions at the system’s
edges [1–4]. These zero-energy edge modes have non-Abelian
exchange statistics, making them a very attractive platform for
realizing quantum computation schemes [5,6]. Experimental
evidence for the emergence of Majorana zero modes, at
the ends of one-dimensional (1D) semiconducting nanowires
with strong Rashba spin-orbit coupling (SOC) and induced
Zeeman spin splitting, was observed in the form of zero-bias
conductance peaks in several instances [7–11].

An alternative route to realizing 1D topological supercon-
ductivity is using carbon nanotubes (CNTs) [12] instead of
semiconducting nanowires. CNTs are small-diameter tubes
of rolled-up graphene, having exceptional electronic band
structures and transport properties [13,14]. As opposed to
nanowires, CNTs have a truly 1D nature, as their diameter d is
extremely small (of order 1 nm). Moreover, being comprised
entirely of carbon atoms, very clean CNTs may be fabricated,
thus facilitating probing of their quantum properties [15].

These properties make CNTs an attractive platform for
pursuing 1D Majorana fermions, and several schemes aimed
at achieving those have been put forward [16–19]. The pro-
posals mainly rely on the same ingredients available in the
semiconducting-nanowires setups: a combination of proxim-
ity to an s-wave superconductor, SOC, and a Zeeman mag-
netic field. The latter, due to the low g factor of the CNTs,
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typically needs to be very large, which poses experimental
challenges: high magnetic fields are not easily produced, and
may also critically suppress superconductivity in the proxim-
itizing substrate.

In this paper we present a scheme which allows us to cir-
cumvent the high Zeeman-energy problem, and realize topo-
logical Majorana zero modes without the need for any Zeeman
splitting. Our scheme, depicted in Fig. 1, relies instead on an
orbital effect caused by a magnetic flux threaded through the
nanotube. When it is combined with the unusual SOC present
in CNTs, and the breaking of the CNT’s rotational symmetry
(by, e.g., an external gate), the CNT can be tuned into a
half-metallic state using relatively low magnetic fields. Then,
proximitizing the CNT to a superconductor with a significant
spin-triplet component in its Cooper-pairs wave function, a
p-wave topological gap may open in the nanotube, hosting
Majorana fermions near its edges. Thin films of transition-
metal dichalcogenides (TMDs) make excellent candidates
for the superconducting substrate, having strong Ising SOC,
favorable for pairing of electrons with their spin polarized in
the TMD plane.

The presence of spin-triplet pairs in the superconducting
substrate opens up another interesting possibility, as the in-
teraction between electrons in the CNT heavily favors triplet
pairing over the singlets. Then, in a regime with zero magnetic
flux, strong enough interactions may allow one to tune the sys-
tem into a time-reversal-invariant topological superconductor
phase [20,21].

The rest of the paper is organized as follows. In Sec. II
we introduce the theoretical model of our system, as well
as the effective low-energy theory. Section III is dedicated
to the spin-triplet proximity effect, and its implementation
using superconducting TMDs. We show that a topological
superconducting phase is supported by our model in Sec. IV.
The presence of Majorana zero modes bound to the edges
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FIG. 1. Our proposed setup for realizing topological supercon-
ductivity in a CNT. We apply a magnetic field Bz parallel to the CNT,
and use a nearby metallic gate (gray) with voltage VG to tune its
chemical potential. In the presence of SOC and rotational-symmetry
breaking (inherent in our setup), these allow us to tune the CNT to a
half-metallic point. Thus, proximity coupling to a superconducting
TMD substrate may open a topological gap in the CNT, hosting
Majorana states at the edge.

is demonstrated in Sec. V. The conditions for realizing a
topological phase without magnetic flux are presented and
discussed in Sec. VI. Weconclude our findings in Sec. VII.

II. MODEL FOR THE CNT

We consider a tight-binding model of the π electrons
of a cylindrically rolled-up graphene lattice comprising the

CNT. The CNT may be classified by its chiral vector C =
(n, m), describing the rolling direction in the hexagonal-lattice
plane. The resulting spectrum then includes a series of 1D
“cuts” of the 2D Dirac cones, which are determined by the
chiral vector [22]. We focus in this work on metallic zigzag
nanotubes, i.e., CNTs where C = (n, 0) and n ∈ 3Z, yet our
model is easily generalized to any metallic zigzaglike CNT
with n, m ∈ 3Z and n �= m, as we discuss below. Importantly,
for this kind of CNTs the pure hopping spectrum (without,
e.g., SOC) is gapless and fourfold degenerate (2 spin × 2
valley) near k‖ = 0, where k‖ is the momentum along the
nanotube axis.

The CNT is modeled by the following tight-binding Hamil-
tonian on a honeycomb lattice with periodic boundary condi-
tions in a direction determined by C,

HCNT =
∑
i,s,s′

c†
i,s

( − δss′
μ(θi ) − σ ss′

z VZ
)
ci,s′

+
∑

〈i, j〉,s,s′

[
c†

i,s

( − tδss′
eiAi j + i�SO

o,i jσ
ss′
z

)
c j,s′ + H.c.

]

+
∑

〈〈i, j〉〉,s,s′

[
i�SO

z,i jc
†
i,s(σz )ss′c j,s′ + H.c.

]
. (1)

Here ci,s are creation operators of electrons at the lattice site
i with spin s, t is the nearest-neighbor hopping amplitude, μ

is the on-site chemical potential, which in general depends on

FIG. 2. Spectra of a (12, 0) zigzag CNT calculated using the tight-binding Hamiltonian Eq. (1) (top row), and using the effective continuum
model Eq. (2) (bottom row). Going from left to right, we consecutively “switch on” different terms in the Hamiltonian. (a) Calculated spectrum
with zero magnetic flux and zero SOC terms. The Dirac cone splitting is due to a rotational symmetry breaking by the on-site chemical

potential μ(θi ) = μ0√
2π�

e− 1
2 (

θi
� )

2

, with μ0 = 40 meV, and � = 0.6. (b) Same as (a), but with a finite orbital SOC energy �SO
o = 0.7 meV.

(c) Same as (b), with an added magnetic flux induced by a magnetic field Bz = 1 T applied along the CNT axis. (d) Same as (c), with a
finite Zeeman-type SOC �SO

Z = 0.5 meV. The plots (e)–(h) correspond to the effective continuum Hamiltonian of plots (a)–(d), respectively.
The roles of rotational-symmetry breaking, orbital SOC, Zeeman SOC, and magnetic flux are captured by the parameters Vν = 0.6 meV,
vFα = 0.7 meV, vFα

′ = 0.5 meV, and vFφ = 0.35 meV, respectively. In (e) the different colors mark the different expectation values of the
valley bonding and antibonding 〈νx〉 = ±1 in the two bands. In all other plots red and blue mark the spin projections of the different bands
along the nanotube axis, σ = ±1. The tight-binding model and the continuum model agree well, and as expected deviations start to appear
when moving away from k‖ = 0.
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the angle θi along the CNT’s circumference at which the site
i is situated, and σz is a Pauli matrix acting in spin space. The
magnetic field applied along the CNT axis gives rise to the
Zeeman splitting VZ and to an orbital effect, captured by the
Peierls phase Ai j [23]. The SOC is accounted for by two terms
�SO

o,i j,�
SO
z,i j , which are the orbital- and Zeeman-type SOC

matrix elements between sites i, j. The labels 〈i, j〉 and 〈〈i, j〉〉
indicate summation over nearest and next-nearest neighbors,
respectively. The on-site potential μ(θi ) breaks the azimuthal
symmetry of the CNT, enabling intervalley scattering, which
will prove crucial for our subsequent analysis. More details
regarding the tight-binding model Eq. (1) are given in Ap-
pendix A.

We find that the low-energy properties of the tight-binding
model Eq. (1) can be approximated by the following contin-
uum model (we set h̄ = 1 henceforth):

H = vF[ρyk‖ + ρxνz(ασz + φ) + α′σzνz] + Vννx, (2)

with ρi, σi, νi Pauli matrices acting in the subspaces of the
sublattice, spin, and valley degrees of freedom, respectively.
The Fermi velocity vF characterizes the linear dispersion near
the graphene Dirac cones, with a value of ∼8 × 105 m/s.
The spin-orbit term α corresponds to a spin-dependent phase
accumulated by an electron going around the tube’s diame-
ter [24]. Its strength is inversely proportional to the diameter
of the nanotube [25] and can be roughly estimated [26] as
vFα ≈ 1 meV

R[nm] ,with R the CNT’s radius. The strength of the
sublattice diagonal “Zeeman-like” SOC term α′ depends on
the chirality of the CNT [27], and is usually estimated to
be of the same order of magnitude as α [16,27,28]. The
circumferential momentum shift due to the Aharonov-Bohm

(AB) flux φ can be written in terms of R and the magnetic field
Bz, vFφ ≈ R [nm]Bz [T] meV.

Finally, Vν , which is responsible for intervalley scattering
due to breaking of the CNT rotational symmetry about its axis,
caused by, e.g., an anisotropic gate inducing angle-dependent
chemical potential, is approximated from our tight-binding
analysis to be of order ∼1 meV, consistent with previous
estimates [17]. In Eq. (2) the Zeeman term induced by the
external field Bz was neglected, as it is small in comparison
to the other energy scales for the moderate-to-low magnetic
field regime we are interested in (few Tesla or lower). For
example, with a magnetic field Bz = 1 T we have VZ ≈
0.1 meV, whereas the energy associated with the flux for
R = 1 nm is Vφ = vFφ ≈ 0.85 meV. For further details on
numerically estimating the parameters appearing in Eq. (2) in
terms of experimental parameters, see Appendix B. We note
that due to the negligible Zeeman energy, and the fact that our
proposal relies only on the orbital effect of the magnetic field,
the proposed scheme is quite insensitive to deviations in the
orientation of the magnetic field, provided that enough flux is
threaded through the CNT.

It is instructive to define an antiunitary time-reversal op-
erator T = νxσyK, with K the complex conjugation operator,
such that T 2 = −1. Neglecting the Zeeman term, only the AB
flux term breaks the time-reversal symmetry, since H (φ = 0)
commutes with T , as one would expect. Also notice that in
the Hamiltonian Eq. (2) the spin projection along the CNT
axis σz, is a good quantum number, to be labeled as σ = ±1.

The role of each of the components of H is illustrated
in Fig. 2. The low-energy continuum Hamiltonian is readily
diagonalized, and we obtain the eigenenergies E = ±ε(k‖),
with

ε(k‖) =
√

k2
‖ + V 2

ν + (φ + σα)2 + α′2 ± 2
√

(k‖Vν )2 + α′2[k2
‖ + (φ + σα)2]. (3)

Several key insights may be inferred from the form of ε(k‖).
First, it is evident that only a combination of the magnetic
flux φ and the SOC α terms may lift the spin degeneracy in
the spectrum, which is vital for our half-metallic construction.
We also see that Vν splits the spectrum into two shifted copies
in the k‖ direction, similar to the effect of Rashba SOC in
quantum nanowires. Finally, the role of Zeeman-like SOC α′
is clearly understood in the vicinity of k‖ = 0, where it lifts the
twofold degeneracy in the spectrum, thereby opening a gap.
The lifting of this degeneracy is also crucial, otherwise one
always ends up with an even number of pairs of Fermi points,
regardless of the value of the chemical potential. To achieve
an odd number of Fermi points, and hence the possibility of a
topological phase, one must thus use a CNT which has a finite
α′ SOC term.

A single-channel half-metallic phase is achieved when the
spectrum ε(k‖) is tuned such that an energy window with
only two Fermi points exist. However, this is not sufficient
to ensure that the CNT is susceptible to proximity-induced
superconductivity. The Cooper pair that tunnels from the
superconductor typically has a small net momentum, and

therefore the sum of the two Fermi momenta should also
be small. This cannot be achieved if the two Fermi points
belong to the same valley, in which case the total momentum
of the pair in the circumferential direction k⊥ ∼ 1/R is large.
This problem is circumvented in our scheme by introducing
a potential that breaks the symmetry around the tube. This
symmetry breaking is embodied by the term Vννx in Eq. (2).
When the value of this term is comparable to the other terms
in the Hamiltonian, an appreciable valley mixing is obtained
so that |〈νx〉| ≈ 1 and the two Fermi points have opposite
momenta, see Fig. 3. Tuning the chemical potential, such that
an additional even number of spin channels is occupied, may
also lead to topological superconductivity.

III. EQUAL-SPIN PROXIMITY EFFECT

So far we have established the possibility of tuning the
CNT into a state where it has an odd number of pairs of
Fermi crossing points, by exploiting the intrinsic SOC and
the orbital effect of a parallel magnetic field. However, an
s-wave superconductor proximity coupled to the nanotube
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FIG. 3. Zoom-in on part of the CNT spectrum, with the chemical
potential tuned to a half-metallic point. The black dashed line marks
the Fermi energy, and colors indicate the value of θν ≡ tan−1 〈νx 〉

〈νz〉
(illustrated in the inset); recall that the νi act in the valley subspace,
so θν = 0 corresponds to complete valley polarization, which occurs
when the rotation-symmetry breaking term Vν vanishes and νz is a
good quantum number. Here Vν is sufficiently large such that the
valleys are almost completely mixed near the Fermi points, i.e.,
|θν | ≈ π

2 . Parameters used: vFα = 0.4 meV, vFα
′ = 0.3 meV, vFφ =

2 meV, and Vν = 1 meV.

cannot induce a topological gap, since all the bands are spin
polarized. Instead, one needs to use a superconductor which
has a significant spin-triplet component, and bring it to contact
with the CNT. Moreover, this superconductor should have
the right spin-triplet component that will be compatible with
the spin polarization of the CNT, which is in the tube axis
direction.

We propose the use of superconducting thin films or mono-
layers of TMDs as a superconducting substrate. In these mate-
rials, due to a combination of strong atomic SOC and breaking
of the lattice in-plane mirror symmetry, electrons in opposite
valleys experience opposite effective Zeeman fields [29,30],
an effect known as Ising SOC. Studies of superconducting
few-layers TMDs show an increase of the upper critical in-
plane magnetic field well above the Clogston limit (where the
magnetic polarization energy is equal to the superconductor
condensation energy) [31–36]. This phenomenon originates
in the strong tendency of the electron spins to point in the out-
of-plane direction due to a strong Ising effective field. It was
demonstrated that in the presence of an s-wave pairing poten-
tial, Ising SOC facilitates equal-spin spin-triplet Cooper pairs,
with their spin pointing in the in-plane direction [37]. This
scenario is ideal for inducing topological superconductivity
in the CNT. Notice that no time-reversal-symmetry breaking
within the superconducting TMD needs to occur. Concretely,
we suggest the use of one particular material NbSe2, which
has an exceptionally high Ising SOC with a spin-splitting
energy of about 80 meV in the monolayer [33]. This would
ensure that the equal-spin component in the Cooper-pair wave
function is comparable with that of the singlet. Moreover,
recent experiments with graphene-superconducting NbSe2

heterostructures imply some compatibility between the two,
and the possibility of an appreciable proximity effect [38–40],
which will presumably also hold true for the CNTs.

We model the proximity-induced pairing terms in the nan-
otube as

HSC = �̃s

∑
i

γic
†
i↑c†

i,↓ + �̃t

∑
〈i, j〉,s=↑,↓

bi jγiγ jc
†
i,sc

†
j,s + H.c.,

(4)

where �̃s, �̃t are the singlet and triplet pairing potentials, the
indicator γi is 1 if site i lies in the area covered by the SC
and 0 otherwise, and bi j = ±1 depending on the direction of
the bond connecting sites i, j. The pairing term Eq. (4) can
also be captured by the low-energy continuum description. We
introduce an antiunitary particle-hole operator � = τyT , with
τi Pauli matrices acting on the particle-hole degree of freedom
(notice that in the tight-binding description the valley degree
of freedom is absent, and thus the particle-hole operator is
�TB = τxK). We may now write the continuum Bogoliubov–
de Gennes (BdG) Hamiltonian,

HBdG = {vF[ρyk‖ + (ρxα + α′)σzνz] + Vννx − μ}τz

+ vFρxνzφ + (�s + �tρyσx )τx, (5)

which acts on a Nambu spinor with a total of 16 components
(sublattice, spin, valley, and particle hole). �s,�t are the
low-energy counterparts of the tight-binding pairing potentials
introduced in Eq. (4), �̃s, �̃t , respectively. The particle-hole
symmetry is manifested by {HBdG,�} = 0. The form of the
spin-triplet term in HBdG is not only consistent with the tight-
binding simulations, but it is also the only possible pairing
term which (i) preserves particle-hole and time-reversal sym-
metries, (ii) pairs nearest-neighbor equal-spin electrons with
zero circumferential momentum, and (iii) does not distinguish
between different valleys. Although the applied magnetic field
breaks the time-reversal symmetry in our system, the intrinsic
pairing in the superconducting substrate does not. The same
argument applies with regards to the breaking of the valley
symmetry by Vν . Thus, this pairing term, along with the singlet
one, is the main focus in this work. We note that in the absence
of singlet pairing, �s = 0, the spin conservation in the system
is reflected by [HBdG, σzτz] = 0, i.e., σz is no longer a good
quantum number, but σzτz is. A finite �s breaks this symmetry
as it mixes the spins, but is not necessarily detrimental to the
emergence of the topological superconducting phase, as we
will later show.

A lattice BdG Hamiltonian can be used to diagnose the
parameter regimes where topological superconductivity takes
place by introducing the Z2 topological index [2,41,42],

Q = sgn[Pf{�HBdG(k‖ = 0)}Pf{�HBdG(k‖ = π )}], (6)

where Pf{·} is the matrix Pfaffian. Q = −1 corresponds to
the topologically nontrivial phase, whereas in the trivial phase
Q = 1. For the case of a continuum BdG Hamiltonian as in
Eq. (5), the Pfaffian should only be evaluated at k‖ = 0.

IV. EMERGENCE OF TOPOLOGICAL
SUPERCONDUCTIVITY

Now that we have the full BdG Hamiltonian Eq. (5), we
may explore the parameter space in order to find the topolog-
ical phases. As an example, using realistic parameters for the
CNT, as well as for the superconducting TMD substrate, we
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FIG. 4. (a) Phase diagram of the proximity-coupled CNT as a
function of the magnetic flux and chemical potential. Shown is the
BdG quasiparticle energy gap, normalized by the triplet pairing
strength Eg

�t
, multiplied by the topological index Q. Regions with

negative values (blue) are topological. The black lines demarcate
the topological phase transitions, where the gap closes. The pa-
rameters used are vFα = 0.4 meV, vFα

′ = 0.3 meV, Vν = 1 meV,
�t = 0.1 meV, and �s = 0.3 meV. (b) The same as (a), only with
the spin-singlet component of the proximity effect �s = 0. (c) The
normal-state CNT spectrum, with the same parameters as in Fig. 3,
with different line colors for the two spin directions. We mark the
region with an odd (even) number of Fermi crossing pairs with
a bright green (pink) background. The small pink “window” in
between the bright green regions corresponds to the trivial phase in
between the two topological ones in (b).

show in Fig. 4(a) that by “scanning” the gate voltage and the
magnetic flux a large topological area in parameter space is
indeed accessible, with a quasiparticle gap Eg comparable in
size to the triplet pairing potential �t .

Interestingly, while �t is the crucial ingredient for our
scheme to produce topological p-wave superconductivity, the
presence of a finite singlet component �s can be beneficial
in some cases. This can be seen by comparing Figs. 4(a)
and 4(b), where in the latter �s = 0, and a trivial regime
emerges in the middle of the area which was topological
in the former. To understand why, one should examine the
number of Fermi level crossings in the normal-state spectrum,
see Fig. 4(c). When varying, e.g., the chemical potential,
a crossover occurs from an odd number of crossing pairs
to an even one. Having only same-spin pairing would thus
mean we have a topological phase transition to the trivial
phase. A finite �s may however bridge between the two
topological phases by allowing more pairing interactions
in the intermediate region. Another consequence of finite
�s is an increase of the minimal magnetic field required
to access the topological phase. This is to be expected,

FIG. 5. Normalized quasiparticle energy gap Eg

�t
, as a function

of the chemical potential μ and the inter-valley mixing strength Vν .
The color scale is such that only the variations inside the topological
regime are shown. Notice that the gap vanishes as Vν → 0. The pa-
rameters used are vFα = 0.4 meV, vFα

′ = 0.3 meV, vFφ = 1.5 meV,
�t = 0.1 meV, and �s = 0.3 meV.

since φ is necessary to establish the half-metallic phase, in
which there exists a regime where the spin-singlet pairing is
ineffective.

Let us comment on the strength of the magnetic field
required to tune the system into the topological phase. The
SOC parameters chosen for Fig. 4 are appropriate for a CNT
of radius 2.5 nm. The minimal vFφ required to make this
CNT topological is about 0.5 meV, which by the relation
Bz[T ] ≈ vFφ [meV]/R [nm] corresponds to a magnetic field
of 200 mT (see Appendix B). In this example we find that
the gap is Eg ≈ 0.1 meV. The localization length of the
Majorana zero mode is ξ ≈ vF/Eg ≈ 5 μm, and we expect
that it may be smaller due to a reduction of the Fermi velocity
by the superconductor [43]. Following this consideration we
estimate that a nanotube with a radius of 10 nm requires only
about 50 mT to become topologically nontrivial, albeit with a
smaller gap.

We can now also better appreciate the role of Vν in HBdG.
Examining the amplitude of the topological gap as a function
of Vν , see Fig. 5, we see that near Vν = 0 there exists a
region which although being formally topological as Q =
−1, has a very small energy gap Eg—it is diminished by
around one order of magnitude compared to �t . This is
merely a consequence of the valley polarization in the ab-
sence of the rotational-symmetry breaking, which attenuates
zero-momentum Cooper-pair hopping into the CNT. Only
when the average valley number 〈νz〉 approaches zero, namely
the electron wave functions at the Fermi surface are evenly
distributed between K and K ′, can the full superconducting
gap develop in the system, as is the case for larger values
of Vν .

V. MAJORANA EDGE STATES

We now turn to demonstrate the topological phase tran-
sition from real-space diagonalization of the tight-binding
Hamiltonian Eqs. (1) and (4). To this end we simulate a
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FIG. 6. Topologically trivial (a) and (b) and nontrivial (c) and
(d) phases of the proximitized CNT. The trivial phase is gapped
and all of its eigenstates are bulk states. In contrast, the topological
phase exhibits a pair of zero-energy modes within the bulk gap,
and their wave functions are localized at the CNT’s edges. The
spectra are shown in (a) and (c); in (b) and (d) we show the absolute
value squared of the electronic wave functions. The two curves in
(d) are obtained as follows: Starting from two degenerate zero-energy
eigenstates, we multiply one of them by a global phase so its first
component matches the other’s, and then we take the symmetric
and antisymmetric combination of the resulting wave functions. This
yields two states localized at opposite edges of the CNT; a tunneling
density of states measurement would produce the sum of the two
curves displayed. (e) Ordered eigenenergies (absolute value squared)
as a function of the chemical potential μ. The topological phase
transitions are observed as gap closings and re-openings, where in
the topological phase zero-energy modes persist inside the bulk gap.

finite-length CNT with open boundary conditions. We ex-
emplify our results on a (6, 0) CNT of length 12.3 μm
(1.2 × 106 carbon atoms). We use the realistic parameters t =
2.66 eV [44], �SO

o = 2 meV, �SO
z = 1 meV [26], and assume

an intervalley mixing energy of 15 meV in a steplike structure
(see Appendix A for details). A modest magnetic field of
2 T is used in order to drive the system into the topological
phase (for CNTs of larger diameter, even a weaker magnetic
field will suffice). For simplicity, we discard the spin-singlet
component of the SC �̃s = 0, and only include a spin-triplet
component �̃t = 0.5 meV. Furthermore, we present results
for a CNT fully covered by a SC; we have tested also the case
of partial covering and saw almost no difference, apart from a
suppression of the energy gap due to the smaller effective �t

experienced by the CNT.

The phase transition may be observed in Fig. 6, where
we show the BdG spectrum and the lowest-energy wave
function for the trivial and topological phases (we control
the crossover by tuning the chemical potential μ). The trivial
phase is gapped and has no edge modes, whereas the topo-
logical phase exhibits two zero-energy modes localized at
the edges of the CNT. The Majorana localization length can
be roughly estimated as ξM = vF/Eg, which is of the order
of 1 μm.

Another way to observe the topological phase transi-
tion is inspecting the BdG spectrum as a function of one
of the parameters, e.g., μ, see Fig. 6(e). The topological
phase transitions are signaled by closings of the bulk gap.
The gap then re-opens inside the phases, but in the topo-
logical phase, zero-energy modes clearly appear inside the
gap.

VI. TIME-REVERSAL-INVARIANT TOPOLOGICAL
SUPERCONDUCTIVITY

The combination of a tunable CNT and a superconducting
TMD substrate may give rise to time-reversal-invariant topo-
logical superconductivity in the absence of any magnetic field.
This is only made possible in the presence of strong enough
electron-electron interactions [45], which heavily suppress the
proximity induced spin-singlet component of the supercon-
ductivity as compared to the spin-triplet one. Then, a time-
reversal-invariant topological superconducting phase [21,46]
manifests itself in the system.

We now consider thin CNTs, in which interactions play
a more significant role [47], and that have a substantial
curvature-induced gap, such as zigzag CNTs (3n, 0), with an
integer n. We note that this gap scales as 1/R2 for zigzaglike
CNTs [48], which is the reason it was neglected in previous
sections (where mainly large-diameter CNTs were consid-
ered). The noninteracting part of the Hamiltonian is described
by the low-energy theory

H0 = vF[kρy + (κ + ανzσz )ρx + α′νzσz] + Vννx − μ, (7)

and vFκ plays the role of the curvature gap. When H0 is
dominated by κ , the spectrum rather simplifies, see Figs. 7(a)
and 7(b). Spin degeneracy is not lifted (since no magnetic
flux is introduced), and the different bands are approximate
νx eigenstates, slightly modified by the presence of spin-orbit-
coupling terms.

By properly adjusting a gate voltage, and thus μ, one
can tune to a point where the Fermi level crosses a sin-
gle spin-degenerate band. At this level we effectively de-
scribe our system as a 1D system with two spin species.
This system is proximity coupled to a superconductor hav-
ing a spin-singlet component �s, as well as a spin-triplet
component �t .

We note that the CNT origin of this effective Hamiltonian
should not be entirely cast away. For example, upon adding
the BdG term �0

t ρyσxτx and examining the energy spectrum,
we find that the curvature term κ reduces the pairing gap to

�t ≈ �0
t

√
k2

F

k2
F +κ2 .
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FIG. 7. (a) Normal-state spectrum of the CNT with no mag-
netic field and with a finite curvature-induced gap. The color scale
indicates 〈νx〉. All bands are exactly spin degenerate. Parameters
used here are vFα = 0.4 meV, vFα

′ = 0.3 meV, Vν = 1 meV, and
vFκ = 6 meV. (b) Zoom-in on a small part of the spectrum marked by
dashed lines in (a). (c) Phase diagram of the spin-degenerate system
with interactions, in the presence of the two types of proximity
induced superconducting pairing. As a function of initial conditions,
we plot the ratio �t (�∗ )

�s (�∗ ) , with �∗ the RG time at which the first of the
pairing potentials reaches strong coupling. The solid black line marks
the transition �t (�∗ )

�s (�∗ ) = 1. The dashed black line marks the same
transition, calculated using the approximate phase boundary Eq. (10).
As expected, this approximation overestimates the prominence of the
topological sector. Notice that the color scale here is logarithmic, and
that we used the single parameter Ũ to account for all interactions.
For this plot we used the initial condition δ0

s = 0.05. The definition
of this parameter, as well as the full RG equations, are all found in
Appendix C.

Upon linearization of the spectrum near the Fermi points,
we write the Hamiltonian density

H =
∑
σ,r

ψ†
rσ (irvF∂x − μ)ψrσ + Hint

+ [�s(ψR↑ψL↓ + ψL↑ψR↓) + H.c.]

+ [�t (ψR↑ψL↑ − ψR↓ψL↓) + H.c.], (8)

where ψrσ annihilates a fermion with spin σ and chirality
r = R, L, and Hint accounts for interactions. The form of the
pairing �t is dictated by the spin polarization of the electrons
in the CNT along the tube axis, the Ising nature of the
TMD with out-of-plane spin polarization, and time-reversal
symmetry. The relative minus sign between the two-species
spin-triplet proximity term ensures that for �s = 0 the system
is in the topological phase [20]. To get a transition into a trivial
phase, the BdG gap must be closed. For the noninteracting

Hamiltonian this occurs when |�s| = |�t |, hence we have the
topological condition

|�s| < |�t |. (9)

One generically expects the singlet proximity component
to be greater (even if comparable in size) to the spin-triplet
one. We find, however, that although this may indeed be true
for the bare values of the superconducting gaps, interactions
renormalize both proximity terms. This renormalization natu-
rally favors the triplet over the singlet component, as we show
in Appendix C.

More concretely, we find at the tree level of the renormal-
ization group (RG) flow that the topological condition Eq. (9)
is modified by accounting for interactions into

�t,0/� � (�s,0/�)
4−K−1

c −K−1
s

4−K−1
c −Ks−y , (10)

with �s/t,0 the bare proximity terms, Kc and Ks are the Lut-
tinger parameters of the charge and spin sectors, respectively,
� is the energy cutoff of our theory, and y is a dimensionless
coupling accounting for backscattering interactions (see Ap-
pendix C for more details). For generic repulsive interactions,
one has the bare values

K0
c < 1, K0

s > 1, y0 > 0,

and thus it is becomes clear from Eq. (10) that repulsive
interactions enhance the topological part of the phase diagram.
For small Hubbard-like interactions characterized by a sin-
gle dimensionless parameter Ũ > 0, Eq. (10) can be written
in a simpler form �t,0/� � (�s,0/�)

1
1−2Ũ . The interaction-

dependent phase boundary gets distorted by the higher-order
corrections to the RG flow, which tend to favor the trivial
phase.

We integrate the full RG equations derived in Appendix C,
up to the point where one of the pairing potentials reaches
strong coupling. At this point, the ratio between the two �’s
is extracted, and it is plotted in Fig. 7(c). The main observation
is the fact that even if �s is initially significantly larger than
�t , as is presumably the case when proximitizing the system
to a superconducting TMD, strong enough interactions drive
the system to a time-reversal-invariant topological supercon-
ducting phase.

We finally comment on the departure from the Hubbard-
like interactions. Longer-range interactions will have a three-
fold effect on our equations: they will make y smaller, drive Ks

much closer to 1, and significantly decrease the value of Kc.
For a given Kc the first two of these effects will obviously
favor the singlet pairing, and reduce the topological area
in parameter space. However, for an even smaller Kc, there
is a possibility that �s becomes irrelevant, whereas �t is
still (perhaps barely) relevant. Thus, long-range interactions
do not necessarily eliminate the topological phase from the
phase diagram, although one does expect to find a smaller
topological gap in this case.

VII. CONCLUSIONS

In this work we have presented a scheme for realizing
robust 1D topological superconductivity in an accessible ex-
perimental platform—CNTs, which are very clean and have
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true 1D properties. By applying a magnetic field parallel to
the axis of the CNT, and exploiting an orbital effect instead of
Zeeman splitting, we were able to demonstrate the emergence
of the topological phase at relatively low magnetic fields,
compared to previous suggestions [17].

The proposed scheme also requires the use of a super-
conductor with a spin-triplet component as the reservoir of
electron pairs for our system. The use of superconducting
monolayer Ising type TMDs, such as NbSe2, is proposed, due
to the unusually strong out-of-plane spin-locking character-
istic of their charge carriers. This in turn ensures that a sig-
nificant spin-triplet component exists in the superconducting
wave function, which may then couple to the half-metallic
CNT. Using monolayer TMDs allows some control of the
chemical potential, and also ensures that superconductivity is
preserved when a moderate magnetic field is applied. Other
suitable candidates for a superconducting substrate with a
sizable spin-triplet component are monolayer TaS2 [35], gate-
tuned WTe2 [49] and MoS2 [31,50], and ultrathin layers of
Pb [51]. A promising alternative proximitizing substrate is
magic-angle twisted bilayer graphene, which was recently
discovered to support a superconducting phase [52]. It was
suggested that significant interaction effects may favor spin-
triplet superconductivity in this system [53], making it ade-
quate for our scheme.

In fact, we have shown that half-metallicity is not strictly
necessary, since a “one-and-a-half” metallic state can be
made topologically superconducting due to an odd number
(three) of topologically gapped channels. Moreover, in certain
cases a residual spin-singlet component of the superconductor
may help drive an otherwise trivial regime, i.e., where the
normal-state spectrum has an even number of channels, to a
topological one, provided that �s is not too large compared to
the spin splitting (induced by the magnetic flux and SOC).

In addition, we analyzed the fate of the system in the
absence of a magnetic field. We found that the presence of
a spin-triplet component in the superconducting proximitizing
substrate can make a time-reversal-invariant topological phase
accessible. Since interactions tend to decrease the amplitude
of spin-singlet pairing more than spin-triplet pairing, one
may end up in a state with a Majorana-Kramers pair of zero
modes, protected by time-reversal symmetry. Our analysis
of the Coulomb-interaction effects in the CNT on the in-
duced pairing have important consequences for the finite-flux
case as well. Namely, they suggest a generic suppression of
the spin-singlet component as compared to the triplet one.
This in turn may enable us to access the topological phase
with an even smaller applied magnetic field, see Figs. 4(a)
and 4(b).

To examine the real-space wave function, the numerical
values of the gaps, and the finite-size effects we have simu-
lated numerically a thin (6, 0) CNT, with 1.2 × 106 carbon-
atom sites, and found a good agreement with the low-energy
Hamiltonian Eq. (5). Using the low-energy description, with
physical parameters of thicker CNTs (given in Appendix B)
we find that the magnetic field required to tune them into the
topological phase is much smaller than the one we simulated.
For example, for a CNT of radius 2.5 nm on top of NbSe2 our
consideration gives a topological superconductor at 200 mT
with a gap of order 0.1 meV. A thicker CNT requires an even

smaller field to become topological, but the gap is expected to
be smaller.
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APPENDIX A: DETAILS OF THE TIGHT-BINDING
SIMULATIONS

Here we provide some technical details regarding the im-
plementation of the tight-binding model. First, let us explicitly
formulate the Peierls phase [23] associated with the magnetic
flux � through the tube. Labeling the location of site i in the
graphene lattice ri, the Peierls phase is given by [54]

Ai j = 2π
�

�0

(ri − r j ) · C
|C|2 , (A1)

where �0 = h/e is the magnetic flux quantum. The SOC
terms are essentially spin-dependent hopping terms, and are
thus given by [54]

�SO
o/z,i j = �SO

o/z

(
(ri − r j ) · Ch

|ri − r j | · |Ch|
)2

sgn[(ri − r j ) · Ch], (A2)

where �SO
o/z is the “bare” orbital/Zeeman SOC strength.

The intervalley mixing term Vν in the low-energy Hamil-
tonian Eq. (2) corresponds to the angle-dependent potential
V (θ ) in the tight-binding description Eq. (1). To implement
this term, we first calculate the angle of each site along the
CNT’s circumference θi = 2πri · C/|C|2. We examined sev-
eral forms for the function V (θ ) which is aimed at mimicking
the effect of the gate potential, and they all yielded similar
results. One possible form is a steplike structure,

Vstep(θ ) =
{

V0, θ1 � θ � θ2,

0, otherwise.
(A3)

Another reasonable form is a Gaussian potential,

VGaussian(θ ) = V0 exp

[
− (θ − θ0)2

(�θ )2

]
. (A4)

In our simulations we mostly used Vstep(θ ) with θ1 = 0, θ2 =
π , i.e., the voltage at half of the CNT is shifted, thus breaking
the azimuthal symmetry.

APPENDIX B: EXPERIMENTAL PARAMETERS

We bring here for convenience explicit expressions that
relate the effective low-energy parameters to experimental
parameters of the CNT. The chiral vector C = (n, m) of the
CNT is related to its radius by

R = a|C|
2π

, (B1)

with the unit cell size a = √
3aCC ≈ 0.25 nm (aCC is the sep-

aration between nearest-neighbor carbon atoms), and |C| =√
n2 + nm + m2.
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The magnetic flux term vFφ = h̄vF
1
R

�
�0

, with �0 = 2 ×
10−15 T m2 the flux quantum, and � = πR2Bz the flux
through the CNT. The Fermi velocity of the Dirac cones is
estimated as vF ≈ 106 m/s. We thus find

vFφ ≈ Bz [T]R [nm] meV ≈ |C|
24

Bz [T ]meV. (B2)

The spin-orbit-coupling term vFα can be estimated from
previous studies [26] which found the spin-orbit gap �SO ≈
0.4 meV for CNT with radius of 2.5 nm, and thus

vFα ≈ 1
meV

R [nm]
≈ 25

|C| meV. (B3)

For reference, we bring here also the Zeeman energy VZ =
gμBBz, with g ≈ 2 and μB the Bohr magneton,

VZ ≈ 0.11B [T] meV. (B4)

APPENDIX C: INTERACTIONS IN THE TIME-REVERSAL
INVARIANT CASE

To account for the important effect of electron-electron
interactions introduced in Sec. VI, we bosonize the Hamilto-
nian Eq. (8) using standard identities ψrσ ∼ 1√

2πa
e−i(rφσ −θσ ),

with a some short-distance cutoff, and the bosonic fields sat-
isfying the algebra [φσ (x), ∂xθσ ′ (x′)] = iπδαβδ(x − x′) [55].
By defining the charge and spin sectors φc,s ≡ φ↑±φ↓√

2
, this

representation allows us to reorganize our Hamiltonian into
four parts, H = Hc + Hs + H�s + H�t , with

Hc = vc

2π

[
K−1

c (∂xφc)2 + Kc(∂xθc)2
]
, (C1a)

Hs = vs

2π

[
K−1

s (∂xφs)2 + Ks(∂xθs)2
] + g

2π2a2
cos(

√
8φs),

(C1b)

H�s = 2�s

πa
cos(

√
2θc) cos(

√
2φs), (C1c)

H�t = 2�t

πa
cos(

√
2θc) cos(

√
2θs), (C1d)

with the interaction incorporated into the so-called Luttinger
parameters Kη, vη (η = c, s), and into the backscattering term
g [56]. For our purposes we will approximate vc ≈ vs ≡ v.
This representation makes clear the competition between the
two pairing terms, as well as between the backscattering g
and �s, whose energy cannot be simultaneously minimized
for any g > 0.

Defining the dimensionless constants y = g
πv

, δs/t =
4�s/t a

v
≡ �s/t

�
, the RG equations may be derived in a straight-

forward manner [57],

d

d�
y = (2 − 2Ks)y − 1

4
δ2

s , (C2a)

d

d�
δs = 1

2

(
4 − K−1

c − Ks − y
)
δs, (C2b)

d

d�
δt = 1

2

(
4 − K−1

c − K−1
s

)
δt , (C2c)

d

d�
Ks = −1

2
K2

s

(
y2 + 1

4
δ2

s

)
+ 1

8
δ2

t , (C2d)

d

d�
Kc = 1

8

(
δ2

t + δ2
s

)
. (C2e)

At the tree level one may consider the RG flow under
Eqs. (C2b) and (C2c) only, yielding the condition Eq. (10).
Importantly, in the presence of repulsive interactions, this
shows that �t is always more relevant than �s. However,
their initial values and their respective distances from strong
coupling will determine the nature of the pairing in the low-
energy limit.

Assuming Hubbard-like interactions, we may approximate

Kc ≈
√

1 + g
2πv

1 + 3g
2πv

, Ks ≈
√

1 + g
2πv

1 − g
2πv

, (C3)

and we also define Ũ = g
2πv

. This form is reasonable, as in
an experimental setup which includes metallic gates and bulk
superconductors, the interactions are fairly well screened. We
note that for small Ũ , we may expand the above coefficients
and approximate the previous phase boundary in a more
manageable form, δt,0 � (δs,0)

1
1−2Ũ , where once more, the ( )0

subscript refers to the bare values.
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