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Fracton order is an intriguing new type of order which shares many common features with topological order,
such as topology-dependent ground-state degeneracies, and excitations with mutual statistics. However, it also
has several distinctive geometrical aspects, such as excitations with restricted mobility, which naturally lead to
effective descriptions in terms of higher-rank gauge fields. In this paper, we investigate possible effective field
theories for three-dimensional fracton order, by presenting a general philosophy whereby topological-like actions
for such higher-rank gauge fields can be constructed. Our approach draws inspiration from Chern-Simons and BF
theories in 2+1 dimensions, and imposes constraints binding higher-rank gauge charge to higher-rank gauge flux.
We show that the resulting fractonic Chern-Simons and BF theories reproduce many of the interesting features of
their familiar two-dimensional cousins. We analyze one example of the resulting fractonic Chern-Simons theory
in detail, and show that upon quantization it realizes a gapped fracton order with quasiparticle excitations that
are mobile only along a subset of one-dimensional lines, and display a form of fractional self-statistics. The
ground-state degeneracy of this theory is both topology and geometry dependent, scaling exponentially with the
linear system size when the model is placed on a three-dimensional torus. By studying the resulting quantum
theory on the lattice, we show that it describes a Zs generalization of the Chamon code.
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I. INTRODUCTION

Topological quantum field theories (TQFTs) have been a
powerful tool in developing our understanding of the possible
strongly interacting, gapped phases of matter. In particular,
they exhibit behaviors not perturbatively accessible from ei-
ther weakly interacting or semiclassical limits, in which par-
ticles interact statistically and systems exhibit a ground-state
degeneracy that depends on the topology of the underlying
spatial manifold. This behavior, known as topological order,
has drawn a tremendous amount of interest, and our under-
standing of where it may manifest itself in nature [1–4], its
interplay with symmetry [5–8], and possible applications to
quantum computing [9,10] have developed rapidly in recent
years.

Recently, a new class of phases, known as fractonic
phases, have been discovered in the context of exactly solv-
able lattice models [11–18]. Fractonic phases [10–12,14–48]
exhibit behaviors in some respects similar topological or-
der, such as robust ground-state degeneracies, and statistical
interactions between pointlike quasiparticles. However, they
are also qualitatively different from topologically ordered
phases in several respects: the ground-state degeneracy is not
topological, but rather sensitive to geometric aspects such as
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system sizes and aspect ratios, and excitations are generally
subdimensional, meaning that they are either immobile, or
that their motion is restricted to lines or planes in a three-
dimensional (3D) system.

Given the power of topological quantum field theory to
study topological orders in two dimensions (2D), it is natural
to ask whether there is a class of quantum field theories which
captures fractonic behavior. Clearly, such field theories must
be both similar to, and qualitatively different from, TQFTs.
Specifically, a TQFT describes an infrared limit, the topologi-
cal scaling limit, in which the details of the underlying lattice
(or regularization) are unimportant, and universal topological
physics emerges. Interestingly, the lattice also recedes in
another scaling limit, this time near critical points, whose
properties are famously captured by universal critical field
theories. Fracton models, however, do not have a continuum
limit in this strong sense: their ground-state degeneracies
depend explicitly on the lattice size, and the subdimensional
mobility of their excitations means that rotational symmetry
can never emerge at long wavelengths. Finding a quantum
field theory appropriate to describing fracton phases thus
represents an interesting theoretical challenge.

A number of possible approaches to this challenge have
been discussed in the literature thus far [16,19,21,25–
31,34,41,49]. For certain models, a connection to a continuous
field theory can be made via a Higgs transition [21,25,26,29],
though a continuum version of the action describing the
infrared fixed point of these theories is not known in general
[25,28,40–42,45]. Moreover, this formulation only describes a
subset of the known fracton models; other models, such as the
Chamon code [14,15], do not admit a Higgs-type description.
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A second approach is to work directly from a known
fracton lattice model, and derive the constraints that it must
impose on a resulting gauge theory. Once these constraints
are known, often they can be imposed via a gauge-invariant
continuum action, leading to actions reminiscent of (2 + 1)D
BF theory. Drawing inspiration from similar results in two-
dimensional topologically ordered systems [50], Ref. [21]
used this approach to derive a BF-like continuum field theory
for the X-cube model [12]. A more general framework, relat-
ing constraints in excitations’ mobility to generalized Gauss’
laws, was developed by Ref. [31]. Finally, Gromov [49] has
recently proposed a framework within which “matter” fields
which exhibit a set of multipole conservation laws stemming
from polynomial shift symmetries can be gauged to obtain
fracton models.

In this work, we adopt a different approach, by “general-
izing” (2+1)D TQFT’s to the context of higher-rank gauge
theories with a single time component A0 (so-called “scalar”
charge theories). That is, rather than considering usual vector
gauge fields, we seek possible TQFT-like actions for tensor
gauge fields, whose spatial gauge transformations may in-
volve products of two derivatives.1 This is a natural choice
if one desires to replicate some features of fractonic phases of
matter [25,27,31,42,45,46,51–54].

Our main focus is on what we will call fractonic Chern-
Simons theory. Specifically, we will take as our starting point
an action inspired by (2 + 1)D Chern-Simons theory, which
imposes a constraint binding charge to the flux of a higher-
rank gauge field. We also comment briefly on the possibility
of similar theories inspired by (2 + 1)D BF theory (or mutual
Chern-Simons theory), which are particularly interesting in
the context of general higher-rank gauge theories, whose
gauge transformations can contain mixed first- and second-
order polynomials in derivatives [31,49]. In both cases, we
restrict our attention to Abelian [U(1)] theories, which are
technically simpler to deal with than their non-Abelian coun-
terparts.

The behavior of the resulting theories depends sensitively
on the number of gauge fields present, since in a scalar charge
theory our construction gives only a single Chern-Simons
constraint. We will primarily discuss a gapped field theory
that emerges naturally when we require our rank-2 gauge
fields to transform in representations of C3 rotations about a
fixed (1,1,1) axis. Since the appropriate representations are
two dimensional, this leads to a theory with two spatial gauge
fields, whose single propagating degree of freedom can be
eliminated by our Chern-Simons constraint, leading to a fully
gapped theory.

We discuss in detail both a continuum classical version of
this model and a lattice-regularized quantum version. At the
classical level, we find a theory whose gauge transformations
imply that charged excitations (lineons) are mobile along only
discrete sets of lines, and identify nonlocal (Wilson-line–like)
gauge-invariant observables exhibiting a strong sensitivity to
both the topology and the geometry of the spatial manifold. In

1More generally, the term “higher-rank gauge theory” refers to
any symmetric gauge structure whose gauge transformation contains
higher-order differential forms.

particular, we show that though imposing the Chern-Simons
constraint does reduce the number of independent Wilson
operators, this number grows with the linear system size.

Strikingly, upon quantizing our theory, we find that it has
all of the expected hallmarks of type I fracton order. Specifi-
cally, it has a ground-state degeneracy that is sensitive to both
the topology (periodic boundary conditions are required) and
the geometry (aspect ratios and system sizes) of the system.
Furthermore, its lineon excitations have nontrivial statistical
interactions of the type exhibited in certain fractonic lattice
models [31–34,55], in which pairs of particles propagating
along different lines in the same plane may have mutual
statistics. In fact, we show that by first quantizing this theory
on a lattice, and then applying the Chern-Simons constraint,
we are naturally led to a lattice Hamiltonian that can be
viewed as a Zs generalization of the Chamon code [14].

We also discuss an analog of Maxwell-Chern Simons
theory model with three spatial gauge fields, corresponding
to the off-diagonal elements of a symmetric rank-2 tensor. In
this case, the single Chern-Simons constraint is insufficient
to fully gap the theory. One interesting feature of this model
is that in the absence of the Chern-Simons term it has been
shown to be necessarily confined [56], whereas with our
higher-rank Chern-Simons term confinement is suppressed
and we find a deconfined U(1) phase with dipolar excitations
mobile in two-dimensional planes.

Our approach highlights that, although our fractonic
Chern-Simons theories are clearly not TQFTs, it is possible to
construct field theories for higher-rank gauge fields that share
several important features of the chiral (2+1)D Chern-Simons
theories. First, our fractonic Chern-Simons term creates self-
statistical interactions between charged excitations. Second,
our fractonic Chern-Simons action is gauge invariant only
up to a boundary term, implying that their boundaries host
gapless surface states that cannot be realized in two dimen-
sions with subsystem symmetry. These are closely related to
the surface states of subsystem-symmetry-protected models
described in Ref. [34].

The presence of such anomalous surfaces is surprising in
light of the correspondence between our field theories and
exactly solvable lattice models, which is not expected for sys-
tems with topologically protected gapless boundary modes.
This is one of several hints that the regularization may play a
more fundamental role in quantizing our higher-rank Chern-
Simons theories than it does for TQFTs or critical theories.
Indeed, it is not clear whether it is possible to construct a
well-defined continuum version of our compact U(1) theory
that correctly captures the low-energy behavior of the lattice
model.

The paper is organized as follows. In Sec. II, we introduce a
general formulation for Chern-Simons–type actions appropri-
ate to models with three-component gauge fields (A0, A1, A2)
and a single scalar charge. This formulation applies both
to vector gauge theories, whose gauge transformations are
linear in derivatives, and tensor gauge theories whose gauge
transformations are quadratic in derivatives. In Sec. III, we
discuss a particular realization of such a rank-2 theory, with
two spatial gauge fields transforming under C3 rotations about
the (1,1,1) direction. We discuss the possible gauge-invariant
operators in this case, and show that the associated quadratic
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(in derivatives) gauge transformations lead to matter fields that
are restricted to move on lines, and gauge-invariant “cage-net”
operators similar to those previously discussed in the context
of lattice fracton models [34,36,57].

In Sec. IV, we scrutinize the classical Chern-Simons theory
of this rank-2 theory. In particular, we show that the Chern-
Simons constraint fixes all gauge-invariant operators except
noncontractible loop operators, and discuss the number of
independent loop operators of this type for the 3-torus. We
also show that the Chern-Simons action is gauge invariant
only up to a boundary term, and discuss the nature of the
resulting boundary theory.

Section V describes a lattice regularization of our rank-2
gauge theory, which we use to discuss two distinct routes
to quantization. In Sec. VI, we discuss quantizing the con-
strained lattice model, derive the resulting ground-state degen-
eracy on the L × L × L torus, and describe the self-statistics
and mutual statistics that follow from our Chern-Simons
action. In Sec. VII, we first quantize the lattice gauge fields,
and then impose the Chern-Simons constraint. We see that this
leads to a lattice Hamiltonian that is a Zs generalization of the
Chamon code [14]. Finally, in Sec. VIII, we discuss adding
a Chern-Simons term to the Maxwell action of a symmetric
tensor gauge theory with four components, (A0, Axy, Axz, Ayz ).
We argue that though the resulting theory is gapless, it is
nonetheless interesting as the Chern-Simons term appears to
overcome the theory’s expected confinement [56] in a manner
very similar to the case of compact U(1) Maxwell-Chern-
Simons theory in 2 + 1 dimensions [58].

II. GENERAL HIGHER-RANK CHERN-SIMONS
GAUGE THEORIES

Our starting point is a theory with two spatial gauge fields
A1 and A2, which will allow us to obtain a fully gapped
Chern-Simons theory with a single constraint. Consider gauge
transformations of the form

A1 → A1 + D1α, A2 → A2 + D2α, (1)

where D1 and D2 are differential operators, whose form we
will leave unspecified for now. Since we only have two gauge
fields, the magnetic field defined has a single component

B = D2A1 − D1A2. (2)

Note that the magnetic field (2) is always gauge invariant;
however, it is not necessarily the most relevant gauge-invariant
magnetic field that we can write. If D1 and D2 share a common
factor ∂�, the operator ∂−1

� B is also gauge invariant. Through-
out the paper, we will focus on the cases where D1, D2 do
not have common factor and the lowest-order gauge-invariant
term is the magnetic flux.

The gauge-invariant electric fields have the form

Ei = ∂t Ai − DiA0, (3)

where we have introduced the usual time component of the
gauge field, which transforms as

A0 → A0 + ∂tα (4)

under gauge transformations.

The generalized Chern-Simons action we consider is

LCS = s

4π
[A1E2 − A2E1 − (−1)ηA0B], (5)

where η = 1 if Di contain only even numbers of derivatives,
and η = 2 if they contain only odd numbers of derivatives.
Under gauge transformations, we have

δLCS = s

4π
[D1αE2 − D2αE1 − (−1)η∂tαB]

= s

4π
(D1α∂t A2 + (−1)η∂tαD1A2

− [D2α∂t A1 + (−1)η∂tαD2A1]

+ D2αD1A0 − D1αD2A0). (6)

In the absence of boundaries, we may freely integrate by parts,
to obtain

δLCS;Bulk = 0. (7)

The boundary terms in general do not vanish, implying the
existence of gapless boundary modes, whose precise nature
depends on the choice of Di. We will return to this point later
when we discuss specific examples.

Irrespective of the choice of Di, the Chern-Simons action
(5) has several commonalities with the standard vector Chern-
Simons theory in 2 + 1 dimensions. First, in the absence of
sources the constraint simply sets B = 0. Since there is only
one component of the magnetic field, this one constraint is
sufficient to eliminate the possibility of any propagating gauge
degrees of freedom, leading to a gapped theory whose physics
is entirely determined by operators describing pure gauge
degrees of freedom.2 In ordinary Chern-Simons theory these
are the holonomies, or gauge-invariant Wilson lines along
noncontractible curves. We will discus the analog of Wilson-
line operators for specific examples of Di in detail presently;
these have the general form ei

∫
s Ai with the submanifold s

chosen to ensure the operator is gauge invariant.
Second, irrespective of the choice of Di, the gauge fields

A1 and A2 are canonically conjugate. If both gauge fields are
compact, this implies that a generalized Wilson operator of the
form ei

∫
s Ai must be discrete as well as compact. Thus, each

of the generalized Wilson operators can take on only a finite,
discrete set of values, which fully specify the states allowed
in the absence of sources. On closed manifolds this can give
either a finite or a countable ground-state degeneracy.

Finally, in the presence of matter fields, the Chern-Simons
action (5) has the effect of binding charge to flux. To see
this, we add matter fields to our Chern-Simons action in the
standard way, by adding a term

LMatter = A0ρ − AiJ
i, (8)

where the currents obey the conservation law

DiJ
i = ∂tρ. (9)

2This only applies to the case where D1, D2 do not share any com-
mon factor. Otherwise, even the magnetic flux fluctuation is fixed,
there might exist some local operator with lower order exhibiting a
dispersive gapless mode.
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Depending on the specific form of the differential operator
Di, the theory might contain additional subsystem charge-
conservation law and charge multipole conservation [49]. In
the presence of sources the Chern-Simons constraint is

B = D2A1 − D1A2 = 2π

s
ρ (10)

which binds the generalized magnetic flux to charge. One
might anticipate that a generalized Aharonov-Bohm effect
may endow these charge-flux bound states with fractional
statistics. Indeed, as gauge-invariant operators involving A1

do not commute with gauge-invariant operators involving A2,
we will usually find at least some excitations with nontrivial
mutual statistics.

However, as we will see, the choice of Di does have
profound implications for the final theory, and is key to
determining the nature and mobility of the sources, as well
as the ground-state degeneracy. This is because it is the form
of Di, and not the action, that determines the gauge-invariant
operators and conservation laws, which play an essential role
in both of these physical properties. We therefore now discuss
a few examples in detail.

A. Example 1: D1 and D2 are linear in derivatives:
Stacking of 2D Chern-Simons theory

As a warmup, we consider the case where D1 and D2 are
linear in derivatives. In this case, we can always write D1 =
∂l1 , D2 = ∂l2 , with l1, l2 being two nonparallel directions. We
will see that in two spatial dimensions this always yields the
conventional 2D Chern-Simons theory, while in three spatial
dimensions it behaves like a stack of decoupled Chern-Simons
theories.

To understand this theory, let us first understand its sym-
metries. First, theories of this type will be rotationally in-
variant in the plane perpendicular to l1, l2. This is because
Ai transform like vectors under rotations in the l1, l2 plane.
The gauge-invariant magnetic field B is thus a scalar under
in-plane rotations, as is the combination A1E2 − A2E1. Thus,
our Chern-Simons action is fully rotationally invariant within
the l1, l2 planes. (Indeed, it is easy to check that in this case
LCS has full Lorentz invariance.)

Second, the gauge transformations dictate that this theory
has a conserved charge in each 2D plane. To see this, we
couple our gauge fields to matter currents in the usual way:

LMatter = A0ρ − A1J1 − A2J2. (11)

Gauge invariance requires that the current is conserved, i.e.,

∂tρ = ∂l1 J1 + ∂l2 J2. (12)

If we integrate the right-hand side over any plane spanned
by (l1, l2) (in periodic boundary conditions), we obtain zero,
implying charge conservation in each plane.

Next, let us examine the gauge-invariant operators. First,
consider open line segments of the form

∫
A1dl1,

∫
A2dl2,

where the lines run along the l̂1 and l̂2 directions, respectively.

Under gauge transformations we have∫ y

x
A1dl1 →

∫ y

x
A1dl1 + α|yx,

∫ y

x
A2dl2 →

∫ y

x
A2dl2 + α|yx.

(13)

Thus, with periodic boundary conditions, closed lines of either
type are gauge invariant. Further, we can see that a corner
between a line along l̂2 and a line along l̂1 is gauge invariant.
Thus, in addition to Ei and B, there are also gauge-invariant

contractible closed loops. Indeed, defining �̃l1, �̃l2 such that

�̃li · �l j = δi j (14)

we see that integrals of the form∮
(A1dl̃1 + A2dl̃2) (15)

are gauge invariant for any closed curve in the (l1, l2) plane.
Next, we examine how the Chern-Simons constraint B = 0

restricts our possible choices of gauge-invariant operators.
First, note that for a contractible closed curve bounding a
region R, we have∮

(A1dl̃1 + A2dl̃2) ∝
∫
R

B. (16)

(This can be shown by expressing l̃i, li in terms of a set
of orthonormal basis vectors, and applying Stoke’s theorem.
Note that the coefficient of proportionality is not 1 unless li
and l j are orthogonal.) We conclude that the constraint B = 0
ensures that all contractible Wilson-line operators are trivial.

Next, suppose we have periodic boundary conditions along
the l1, l2 directions, such that there are also noncontractible
gauge-invariant line operators. Since the two line operators
concern lines in different directions, we will apply the Chern-
Simons constraint to each set of lines individually. With this
logic, the Chern-Simons constraint then gives

D2

∫
1

A1 = 0, (17)

where
∫

1 runs along a noncontractible curve in the l̂1 direction.
In 2D this tells us that once we have fixed one A1 line we
have fixed them all; a similar argument applies for A2. This
is simply the familiar result that if there is no magnetic flux
through the surface of the torus, the only degrees of freedom
are the fluxes through its two noncontractible curves. In 3D
we are free to choose one line in each (l1, l2) plane, exactly as
for a stack of decoupled Chern-Simons theories.

It is easy to see that quantizing such a theory also gives a
result that is identical to a stack of decoupled Chern-Simons
theories. Hence, we conclude that choosing D1, D2 to be linear
in derivatives is essentially the same as choosing ordinary
Chern-Simons theory in 2D, or a stack of ordinary Chern-
Simons theories in 3D.

B. BF generalizations

Before moving on to our second example, which will
lead to a fractonic Chern-Simons theory whose behavior we
will analyze in detail, it is worth pointing out that a similar
generalization of mutual Chern-Simons, or BF, theories can

023249-4



FRACTONIC CHERN-SIMONS AND BF THEORIES PHYSICAL REVIEW RESEARCH 2, 023249 (2020)

be carried out. This generalization allows us to consider a
wider variety of higher-rank gauge theories since, unlike the
Chern-Simons construction described above, it can be applied
to gauge fields whose gauge transformations are described by
arbitrary polynomials in momenta. Gauge transformations of
this type are necessary to capture current conservation laws
arising from general subsystem symmetries [49], including
type II fracton orders [31].

We begin with two gauge fields (A0, A1, A2) and
(B0, B1, B2), which transform under gauge transformations
according to

A0 → A0 + ∂tα, B0 → B0 − ∂tα,

A1 → A1 + D1α, B1 → B1 + D̃1α, (18)

A2 → A2 + D2α, B2 → B2 + D̃2α,

where

Di = D(e)
i + D(o)

i , D̃i = D(e)
i − D(o)

i (19)

with D(e)
i , D(o)

i the differential polynomials containing even
and odd numbers of derivatives, respectively.3 The higher-
rank BF action has the form

LBF = A0(D̃1B2 − D̃2B1) + A1(D̃2B0 + ∂t B1)

+ A2(−∂t B1 − D̃1B0). (20)

It is easy to check that this action is gauge invariant up to
a boundary term. In the presence of sources, it imposes the
constraints

(D̃1B2 − D̃2B1) = ρA,

(D1A2 − D2A1) = ρB, (21)

where ρA, ρB are the charges coupled to the A and B gauge
fields, respectively. Provided D1, D2 does not share any com-
mon factor, these constraints are sufficient to eliminate any
propagating modes, leading to a gapped theory describing a
stable infrared fixed point. Further, it is clear that A1 and
B2 (and A2 and B1) are canonically conjugate, such that
the sources of A and B will acquire mutual statistics upon
quantizing the theory. In this way, a wide variety of higher-
rank gapped fractonic actions can be constructed. We defer a
discussion of the many interesting examples to future work,
except to note that the BF-like field theory of the X-cube
model proposed by Ref. [16] involves a construction of this
type, albeit modified to work with gauge fields with three spa-
tial components, whose gauge transformations share common
factors.

III. EXAMPLE II: FRACTONIC CHERN-SIMONS THEORY
WITH DIPOLE EXCITATIONS

Let us now consider an example that will lead to a fractonic
Chern-Simons theory. To obtain this, we will take Di to be
quadratic in derivatives. In this case (unlike for linear Di),

3For general differential polynomial D(e)
i , D(o)

i , the coefficient in
each differential term is dimensionful so such operator is only well
defined on the lattice.

FIG. 1. Illustration of the x, y, z and u, v, w coordinates. The red
plane is the 111 plane and the three boundary lines of the red triangle
denote the u, v, w directions. The C3 rotation on the 111 plane rotates
the red triangle by 2π/3 and permutes the axis along x, y, z.

we have several choices, distinguished by their transformation
under spatial symmetries.

For our example, consider a system with a cubic geometry,
with the cubic axes x, y, and z. We will not require our action
to have full cubic symmetry; indeed, we will see later that full
cubic symmetry is compatible with our Chern-Simons action
only for a specific choice of the coupling constant. Instead,
we require invariance under C3 rotations about the (111)
direction. Thus, Di (and consequently Ai) must transform in
an irreducible representation 	 such that 1 ∈ 	 ⊗ 	, to ensure
that the quantities B and A1E2 − A2E1 transform as scalars
under C3 rotations. We will also require that the Di transform
nontrivially under C3 rotations; this ensures that both A1 and
A2 are required to construct a symmetric action.

The full set of irreducible representations of C3 are given
in Appendix B. If Di are quadratic in derivatives, we have two
choices for the irreducible representation 	, which we denote
	a and 	b:

Da
1 = 1√

3
∂�∂u, Da

2 = 1√
3
∂�∂v,

Db
1 =

√
2√
3
∂u∂u⊥ , Db

2 = 1

2
√

2

(
∂2

u − ∂2
u⊥

) − 1√
6
∂u∂u⊥ , (22)

where relative to the cubic axes x, y, z, we have defined (see
Fig. 1)

�̂ = 1√
3

(x̂ + ŷ + ẑ),

û = 1√
2

(ŷ − ẑ),

v = 1√
2

(z − x),

w = (−u − v) = 1√
2

(x − y) (23)

in terms of which u⊥, the direction orthogonal to u, is

û⊥ = 1√
3

(−2v − u) = 1√
6

(2x̂ − ŷ − ẑ). (24)

Under arbitrary rotations about the � axis, 	a transforms like a
vector, with an angular momentum of 1 along the � axis, while
	b transforms like a rank-2 tensor, with angular momentum
2. For C3 rotations, however, where the angular momentum
3 representation transforms like a scalar, these are effectively
two vector representations.
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Thus, we have 1 ∈ 	α ⊗ 	β for all combinations of α, β.
Consequently, we may choose Di to be an arbitrary linear
combination of Da

i and Db
i . We will see later that, provided

both irreducible representations appear with nonzero coeffi-
cients, the resulting theories are closely analogous. Thus, we
will take

D1 = Da
1 + Db

1 = ∂x∂u = 1√
2
∂x(∂y − ∂z ),

D2 = Da
2 + Db

2 = ∂y∂v = 1√
2
∂y(∂z − ∂x ), (25)

− D1 − D2 = ∂z∂w = 1√
2
∂z(∂x − ∂y).

Under gauge transformations, we have

A1 → A1 + ∂x∂uα, (26)

A2 → A2 + ∂y∂vα,

−A1 − A2 → −A1 − A2 + ∂z∂wα. (27)

The C3 rotations about the (1,1,1) direction permute (u, v,w)
and (x, y, z) directions. Since α is a scalar, this implies that
C3 rotations permute A1, A2, and −A1 − A2 (and similarly for
E1, E2):

C3 : x → y, y → z, z → x,

A1 → A2, A2 → −(A1 + A2),−(A1 + A2) → A1, (28)

D1 → D2, D2 → −(D1 + D2),−(D1 + D2) → D1.

The gauge-invariant magnetic field given in Eq. (2) is

B = (∂x∂uA2 − ∂y∂vA1). (29)

It is easy to check that B (as well as the combination A1E2 −
A2E1) transforms as a scalar under C3 rotations, as it must if
our theory is to be symmetric with A0 rotationally invariant.

A. Conservation laws

Before studying Chern-Simons theory per se, let us un-
derstand what properties of the theory are dictated solely by
the structure of its gauge transformation laws. The canonical
coupling of gauge fields to sources

Lmatter = A0ρ − A1J1 − A2J2 (30)

implies the current conservation relation

∂tρ − D1J1 − D2J2 = 0. (31)

Note that in order for Lmatter to be invariant under C3 rotations,
we must have

C3 : J1 → J2 − J1, J2 → −J1. (32)

Evidently,

∂t

∫
d3r ρ =

∫
d3r(D1J1 + D2J2) = 0 (33)

so that charge is conserved in the system as a whole. Note that
here we assume periodic boundary conditions and single val-
uedness of all currents, such that the integral of any derivative
over all space is zero.

In addition, however, from Eq. (25) we see that both
operators Di contain only terms with at least one derivative
in each u-v plane. Thus, we also have

∂t

∫
du dv ρ = 0 (34)

and charge is conserved in each u-v plane. In addition, all
terms in D1 and D2 contain either ∂x or ∂y (or both), such that
the charge is conserved in each x-y plane, and similarly for the
x-z and y-z planes.

Finally, since charge conservation in an individual plane
automatically implies that the dipole moment orthogonal to
that plane is conserved, our theory has conserved dipole
moments along the x, y, z, and � (or x + y + z) directions.
The net result of these four dipole conservation laws is that
dipole mobility in our system is severely restricted. Consider
a dipole oriented along the z direction, which has a conserved
dipole moment orthogonal to both the (x, y) and the (u, v)
planes. As a consequence, it can move only along the line
x + y = 0, which lies in the intersection of these two planes.
Similar considerations apply to other dipole orientations: all
dipole excitations in this theory are restricted to move along
lines.

B. Gauge-invariant cage-net operator

Having understood the theory’s conservation laws, we now
consider the nature of the gauge-invariant line operators. We
will see that these reflect the one-dimensional motion of
dipolar excitations, as well as introducing a cage-net structure
similar to that noted in other fracton models [57].

To identify what types of operators we should study, ob-
serve that one obvious difference relative to the usual vector
gauge theory is the dimension of the gauge field A: if α is
dimensionless [as is natural, since it appears as a U(1) phase
rotation of the matter fields], then A has mass dimension
2. Thus, dimensionless gauge-invariant operators in these
theories require integrating along surfaces.

To determine which surfaces to examine, we will begin
with dimensionful gauge-invariant line operators, whose end
points transform as ∂iα for some direction i. This implies that
the end points of these open lines do not harbor charges, but
instead are associated with the derivative of the charge along
the î direction. To make physical sense of this, we define
dimensionless gauge-invariant ribbon operators by integrating
over a surface of width ai transverse to the line’s orientation;
the end points of such ribbons harbor a dipole oriented along
the î direction. We will see presently that the associated dipole
moments are conserved, suggesting that such a fixed length
scale is not unnatural.

From the gauge transformations, we see that the theory
admits six types of gauge-invariant line operators. Three of
these are in-plane line operators:

	u =
∫

du A1, 	v =
∫

dv A2, 	w =
∫

dw(−A1 − A2),

(35)
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while three are line operators extending along the cubic axes
x̂, ŷ, ẑ.

	x =
∫

dx A1, 	y =
∫

dy A2, 	z =
∫

dz(−A1 − A2).

(36)

The associated dimensionless gauge-invariant ribbon opera-
tors have the form

Wu = ei
∫ x+a

x 	udx, Wx = ei
∫ u+√

2a
u 	xdu (37)

and similarly for other pairs of directions. Here, a is the
fundamental dipole scale of our problem, as discussed above.
Note that we choose the length of the fundamental dipoles in
the u, v,w directions to be

√
2 that of the fundamental dipoles

along the x, y, z directions. With this choice, a dipole along u
can be viewed as a combination of a dipole along y and a
dipole along −z.

Naively, the Wilson lines {	i} appear similar to line opera-
tors we would expect from a stack of 2D vector gauge theories
discussed in the previous example. However, in the present
theory the lines can run only along one of the six directions
specified above (see Appendix A). Further, a corner between a
	u line and a 	v line must have a charge, by gauge invariance.
To see this, consider the operator

T =
∫ �r1

�r0

A1du +
∫ �r2

�r1

A2dv +
∫ �r0

�r2

(−A1 − A2)dw, (38)

where the points �r0, �r1, �r2 form a triangle in one of the
(u, v) planes, with edges along the u, v, and w directions
respectively. For a usual rank-1 gauge theory, T would be a
gauge-invariant line operator. In our case, however, it is not:
under gauge transformation, we find that

T → T + (∂x − ∂z )α(�r1) + (∂z − ∂y)α(�r2) + (∂y − ∂x )α(�r0).
(39)

This shows that in order for T to be gauge invariant, we
must attach an infinitesimal dipole to each of the triangle’s
corners. Thus, though we do have Wilson-line-like operators
in plane, these lines cannot bend without creating new dipolar
excitations.

Similarly, lines running along the cubic axes cannot turn,
either into other cubic directions or into the (u, v) planes.
However, because

(∂u + ∂v + ∂w )α = 0, (40)

three lines running along orthogonal cubic axes can meet at
a point without creating extra charges, as shown in Fig. 2.
Similarly there is no charge at a trivalent vertex between√

2	y, 	u, and 	w (and its appropriately rotated analogs)
since

√
2∂vα − (∂xα − ∂yα) = 0. (41)

Note that Eq. (41) requires the lines to be correctly oriented at
the vertex; the correct orientations are shown in Fig. 2.

From the above arguments, it is easy to see that similar
gauge-invariant cage-net structures can be formed of our
dimensionless Wilson ribbons (see Fig. 3), provided that we
choose the dipole scales as specified in Eq. (37). The relative
factor of

√
2 in the ribbons’ widths ensures that the three

FIG. 2. Gauge-invariant cage nets of the symmetric rank-2 the-
ory. With differential operators given in Eq. (25), the cages can have
edges along the x, y, z or u, v, w directions.

dipoles can annihilate at the corresponding corners, so that
the operators are gauge invariant.

In summary, the structure of the gauge transformations
(25) leads to a qualitatively different fractonic Chern-Simons
theory, in which the analog of the Wilson line is a gauge-
invariant dimensionless ribbon operator. These ribbons are not
free to turn, but can meet at certain trivalent corners. This
results in gauge-invariant “cage-net” operators, which can be
tetrahedral, prismatic, or cubic as shown in Fig. 2.

In addition to cage nets we can also form gauge-invariant
closed membranes by widening our ribbons to some multiple
of the fundamental dipole scale, and then forming a closed
surface along which all ribbons share an edge. In the extreme
limit these are two-dimensional membrane operators that can
extend in the x-u, y-v, or z-w planes, and the associated cage
nets are stretched into the diamond configuration shown in
Fig. 3. We will not discuss these membrane operators in our
analysis, however, since they can always be viewed as arrays
of the fundamental ribbon operators Wα described above.

Finally, if we allow sources in our theory, open ribbon
operators can also be gauge invariant, provided that we attach
an appropriately oriented dipole at each end point (see Fig. 4).

FIG. 3. (a) The red/yellow/green sheets represent thick ribbon
operators. An isolated ribbon must harbor a charge at each cor-
ner; however, with appropriately oriented gauge fields these corner
charges cancel in the configuration shown. (b) By lengthening and
thinning the ribbons, we obtain a Wilson ribbon cage net. Note that
the Wilson ribbon cage nets are gauge invariant only if we choose
the width of ribbons along the u, v, w directions to be longer by a
factor of

√
2 than those along the x, y, z directions.
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FIG. 4. Lineon excitation configurations: each end of an open
Wilson ribbon extended along the x direction must terminate on a
dipole (or antidipole) with dipole moment oriented along u. Like-
wise, a Wilson ribbon extended along the u direction hosts a dipole
oriented along x at each end point. Since Wilson ribbons cannot
turn, these dipoles are mobile only along the direction of the ribbon,
and are hence one-dimensional lineon excitations. Here, the star
represents gauge fields A1, A2 while the dot represents charge ρ.

Each of the six possible line directions is thus associated with
a dipolar source which, due to dipole conservation, is mobile
only along a specific linear direction; these thus behave like
the “lineons” typical of type I fracton theories. To strengthen
the connection to fracton orders, we can also consider open
membrane operators whose width is some multiple of the fun-
damental dipole scale. The charges appearing at the corners of
each membrane are then immobile fractons.

C. Related models with the same symmetry

It is clear from the above discussion that (irrespective
of our choice of action) a theory with the operators D1, D2

described above cannot be topological. In particular, the cage-
net structure requires us to choose a fundamental dipole
scale, and the theory is manifestly not scale invariant. The
existence of this scale follows from the fact that the theory
conserves dipole moment perpendicular to each individual
u-v, x-y, y-z, and x-z plane. Further, the structure of the cage
nets is invariant only under a discrete set of C3 rotations, which
are naturally viewed as a subset of the rotational symmetries
of the cubic lattice.

We may nonetheless ask whether related theories exist,
which share the same C3 rotation symmetry, and conserve
dipole moment along four families of planes. To see that they
do, we consider a more general form of the operators D1, D2:

D1 = αDa
1 + βDb

1, D2 = αDa
2 + βDb

2, (42)

where Da,b
i are given in Eq. (22), and α, β are parameters

which only take discrete values if we put the theory on the
cubic lattice. Regardless of the choice of α, β, the theory
is C3 rotation invariant; essentially, this is because both of
the two-dimensional irreducible representations are vectorlike
from the point of view of C3 rotation symmetry.

For general nonzero α, β, the differential operators have
the explicit form

D1 ∼ [∂x + (α − β )∂�](∂y − ∂z ),

D2 ∼ [∂y + (α − β )∂�](∂z − ∂x ). (43)

FIG. 5. By tuning α, β in Eq. (42), we are changing the height
of the tetrahedron in our cage-net configuration. There are an in-
finite number of equivalent cage-net configurations related by this
deformation. (c) A rotated view of the cage-net tetrahedron. The
dimensions of the base of the tetrahedron (indicated with a shaded
red triangle) are fixed, while its height along the (111) direction (rep-
resented by the green dotted line) varies depending on arctan (α/β ).
(a) Examples of equivalent cage-net tetrahedra. The purple dot
corresponds to the case where α, β = 1. The yellow dot corresponds
to α = 2, β = 1. (b) When β = 0, the height of the tetrahedron goes
to infinity and the cage-net configurations become a prism.

Thus, we obtain gauge-invariant ribbon operators extended
along six nonparallel directions. At the end points of any open
ribbon, there is a dipole. With an appropriate choice of the
dipole scales in each direction, these six lines are allowed
to meet at trivalent corners, leading to tetrahedral cage-net
configurations as shown in Fig. 5. One face of the tetrahedron
is an equilateral triangle in the u-v plane; the remaining three
have edges in the x + (α − β )�, y + (α − β )�, z + (α − β )�
directions.

Following the arguments of Sec. III A, it is not hard to
check that for general α and β, the charge is conserved in
each u-v plane, as well as in the other three families of
planes spanned by two of the three vectors x + (α − β )�, y +
(α − β )�, z + (α − β )�. These three planes are related by C3

rotation along 111 axis. These conservation laws ensure that
the dipoles described above can only move in one dimension.
In particular, when α = 2, β = 1, the cage-net configuration
becomes a regular tetrahedron and the Chern-Simons coupling
is odd under cubic rotation.

We note that the choices α = 0 and β = 0 do lead to
qualitatively different theories. Taking α = 0 clearly leads
to a stack of two-dimensional theories since D1, D2 only
involve derivatives in the u-v plane. Taking β = 0 gives
D1 = ∂l∂v, D2 = ∂l∂u. As discussed in Appendix C, the line
operators in the resulting theory are similar to those of a
stack of ordinary 2D gauge theories, with both 2D particles
mobile in each u-v plane and a 1D particle mobile along the �

direction.
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IV. CLASSICAL CHERN-SIMONS THEORY
OF C3-SYMMETRIC RANK-2 MODEL

Thus far, we have focused only characteristics of our field
theory that result solely from the form of the operators D1, D2,
which dictate the nature of the conservation laws, and the
geometry of the gauge-invariant operators. We now turn to
the implications of the Chern-Simons action. In the following
sections, we will analyze this from a classical perspective,
turning to the quantum theory in Sec. VI.

A. Chern-Simons constraint

Classically, the main role of the Chern-Simons Lagrangian
(5) is to enforce the constraint

B ≡ (∂x∂uA2 − ∂y∂vA1) = 2π

s
ρ. (44)

This has two important effects on our classical theory: first, it
fixes the value of all closed cage nets in our three-dimensional
system. Second, it imposes conditions on parallel Wilson
lines, drastically reducing the number of such operators that
are independent.

First, we observe that the constraint B = 2π
s ρ fixes the

value of all cage-net operators. This can be checked directly
by integrating the magnetic field over the volume enclosed by
the cage net, which gives exactly the series of line operators
associated with the cage net itself. A similar result holds for
cage nets bounded by dimensionless ribbon operators. Hence,
in the Chern-Simons theory, our gauge-invariant cage-net
operators are constrained to take the value 0.

Second, let us determine the effect of the Chern-Simons
constraint on noncontractible Wilson operators. Consider op-
erators of the type Wx, in the absence of sources. A priori there
are LyLz/a2 nonoverlapping operators of this type (where a is
the dipole scale), and similarly for other directions. However,
integrating the constraint over x gives

0 = −
∮

B dx = ∂z∂y

∮
dx A1 = ∂z∂y	x,

0 =
∮

B dy = ∂z∂x

∮
dy A2 = ∂z∂x	y, (45)

0 =
∮

B dz = ∂x∂y

∮
dz(A1 + A2) = −∂x∂y	z,

where we have assumed periodic boundary conditions, and
that A is single valued. Thus, we may fix the value of 	x (and
hence Wx) along the boundaries of the yz plane, by specifying
one function of y and one function of z, but having done
this, the value of 	x elsewhere in the plane is fixed. For an
Lx × Ly × Lz system this gives (Ly + Lz )/a − 1 independent
nonoverlapping ribbon operators Wx, and similarly for Wy.
Further, once 	x and 	y are fixed everywhere, the condition
that the cubic cage nets (see Fig. 2) must all be trivial then
fixes 	z along any line, such that the ribbon operators Wz are
fixed.

Similarly, we have

0 =
∮

B du = ∂v∂y

∮
du A1 = ∂v∂y	u. (46)

FIG. 6. Counting of independent nonoverlapping Wilson ribbons
on an L × L × L system. In (b), each square has side length a,
representing the width of the fundamental Wilson ribbon; pink
squares indicate the number of independent ribbon operators Wu on
an (x, y + z) plane. The trajectories of the diagonal Wilson ribbons
on a unit cell of the cubic lattice are illustrated in (a).

This again allows two types of solutions: either 	u is constant
in the ŷ direction, or in the v̂ direction (meaning that it satisfies
∂x	u = ∂z	u). Since

∂y = 1
2 (

√
2∂u + ∂y + ∂z ),

∂v = − 1
2 (∂u +

√
3∂u⊥ ), (47)

and ∂u	u = 0, this effectively tells us that we may choose
	u (and hence Wu) to be a function of y + z or a function
of x, but not both (Fig. 6 illustrates the relevant geometry).
For Li ≡ L this naively gives another 2L/a − 1 independent,
nonoverlapping ribbon operators. However, not all of these
can be independent of the 	x since∮

	xdu =
∮

	udx. (48)

Thus, classically, on an Na × Na × Na system with periodic
boundary conditions along the x, y, and z directions, we
anticipate 4N − 3 independent line integrals for A1, and the
same number for A2. Since the Chern-Simons constraint in
the absence of sources requires that the cage-net configura-
tion in Fig. 2 is trivial, the remaining line operators 	z, 	w

[containing integrals of (A1 + A2)] are also fixed. Thus, there
are 8N − 6 independent global flux operators.

For general values of Lx, Ly, Lz the counting of the number
of independent line operators is more involved. For example,
if the spatial lengths Ly/a, Lz/a are coprime, a closed 	u

ribbon crosses every point in the y-z plane; clearly, there is
a maximum of one such operator for each y-z plane, or a
total of Lx such operators, of which Lx − 1 are independent
of the 	x. This gives a total of (Ly + Lz )/a + Lx/a − 2 in-
dependent line operators involving A1. More generally, the
number of lines along the u direction in each y-z plane is given
by gcd(Ly/a, Lz/a), and we obtain (Ly + Lz )/a + Lx/a +
gcd(Ly/a, Lz/a) − 3 independent line operators involving A1.
Similar considerations apply for line operators involving A2.

Similarly, the number of independent nonoverlapping Wil-
son ribbons is sensitive to the boundary conditions since the
noncontractible lines can go only along specific directions.
Thus, twisting the boundary conditions can lead to dramati-
cally different line operator counting. The dependence of the
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number of independent operators on both the aspect ratio and
twist of the boundary conditions reflects the fact that our
higher-rank Chern-Simons theory is not a topological field
theory, but rather is sensitive to both the geometry and the
topology of the system.

B. Gauge invariance and gapless boundary modes

As we saw above, quite generally the Lagrangian (5) is not
gauge invariant in the presence of boundaries. For theories
where Di are linear in derivatives, this leads to the chiral
boundary modes familiar from usual Chern-Simons theories
(or stacks thereof). We will now show that gauge invariance
requires similar gapless boundary modes in the case at hand.

To be concrete, consider a lattice with a single spatial
boundary at x = 0, and with all fields vanishing as t → ±∞.
(With these boundary conditions we may freely integrate by
parts in time without incurring additional boundary terms.)
From Eq. (6) we deduce that under gauge transformations, the
action transforms as

δS = −
∫

x=0

s

2π
(∂u∂tαA2 − ∂t∂yαA1 − ∂u∂zα∂yA0). (49)

To cancel the resulting gauge anomaly, we must add a
boundary scalar field φ to our theory, which transforms as
φ → φ + α under gauge transformations. Upon adding the
term

LBdy,φ = − s

2π
[A2∂t∂uφ − A1∂t∂yφ − ∂u∂zφ∂yA0], (50)

the total action is explicitly gauge invariant.
We now enforce the constraint B = 0 by writing

A1 = ∂x∂uα, A2 = ∂y∂vα. (51)

Substituting these into the formula (49), and choosing
A0 = 0, we obtain the contribution of the gauge fields to
boundary action for the scalar field α:

SBdy,α = −
∫

x=0

s

2π
(−∂t∂uα∂y∂zα). (52)

Note that here we have assumed that we can integrate by parts
freely in y and z, in order to set∫

x=0
∂u∂tα∂x∂yα − ∂y∂tα∂x∂uα = 0. (53)

Adding the two contributions to the boundary effective action
together, and integrating over the gauge parameter α, we
obtain the effective action for our boundary scalar field

LBdy = − s

2π
(∂y∂zφ∂t∂uφ). (54)

To understand what Eq. (54) means for the boundary, let us
define

χi = ∂iφ (55)

which is exactly the dipole charge along the ith direction. In
terms of the χi fields, the boundary action can be expressed as

LBdy = − s

2π
(∂yχz∂tχz − ∂zχy∂tχy). (56)

This describes two chiral dipole currents, a y-oriented dipole
propagating along the +ẑ direction and a z-oriented dipole
propagating along the −ŷ direction, at the boundary. However,

since the two currents come from the same underlying scalar
field φ, the boundary modes are not truly one dimensional in
their propagation, and this description must be used with some
care.

The discussion above shows that in the presence of a
boundary, our higher-rank Chern-Simons theory is incom-
plete, and extra fields must be added at the boundary to
ensure gauge invariance. By definition, the action associated
with these fields is also not gauge invariant without the bulk,
such that no two-dimensional theory that is invariant under
the relevant rank-2 gauge symmetry can exist without the
bulk. This is reminiscent of the situation in (2+1)-dimensional
Chern-Simons theories, where gauge invariance requires chi-
ral boundary modes that are necessarily gapless. There are
two important differences, however. First, in the case at hand,
rank-2 gauge symmetry in a two-dimensional system requires
charge conservation along individual lines, rather than in the
system as a whole. Thus, for a boundary at x = 0, our result
implies that no two-dimensional theory in which the total
charge is preserved along each y and z line can be described
by an action of the form (54). This suggests that if we take
this conservation law to be sacred (meaning that we require
subsystem symmetry to be preserved at the boundary), then
our rank-2 Chern-Simons theory necessarily has gapless sur-
face states. Indeed, a theory of this form was previously used
to describe gapless boundary modes protected by subsystem
symmetry [32,34,36].

Second, for two-dimensional quantum Hall systems, the
boundary modes in the absence of the bulk not only violate
charge conservation, they also violate energy conservation.
This raises the question of whether there may also be a rank-2
analog of the thermal Hall effect, associated with our surface
dipolar flow. As we will see, quantizing our theory on the
lattice suggests that this is not the case, though we leave a
more thorough discussion of this issue for future work.

V. DISCRETIZING TO THE LATTICE

Before we quantize our theory, we first explicitly write a
discretization of our theory to the simple cubic lattice. This
regularization leads to a quantum theory with a fractonlike
ground-state degeneracy, and is closely related to a known
fracton lattice model, the Chamon code [14]. We will leave
the interesting question of whether other regularizations lead
to qualitatively different quantum theories for future investi-
gation.

We begin our discussion by showing how the gauge field
content and gauge transformations of our model can arise
by gauging a model with an appropriate set of planar U(1)
subsystem symmetries. We begin with a model of charged
bosons on the cubic lattice, whose Hamiltonian consists of
ring-exchange couplings on the three red plaquettes shown in
Figs. 7 and 8, perpendicular to the (0,1,1), (1,0,1), and (1,1,0)
directions. Specifically,

H =
∑

�r
(φ†

�r+ŷφ�r+x̂+ŷφ
†
�r+x̂+ẑφ�r+ẑ

+φ
†
�r+x̂φ�r+ŷ+x̂φ

†
�r+ŷ+ẑφ�r+ẑ

+φ
†
�r+x̂φ�r+ẑ+x̂φ

†
�r+ẑ+ŷφ�r+ŷ), (57)
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FIG. 7. Plaquettes along which ring-exchange interactions occur
in our subsystem-symmetric two-gauge field model.

where x̂, ŷ, ẑ are the three cubic unit vectors. For convenience,
we have set the lattice constant to be 1, and label sites on the
cubic lattice via �r = (x, y, z) ∈ Z3.

These ring-exchange interactions preserve the U(1) charge
on each x-y, y-z, and x-z plane, as well as on the family
of lattice planes perpendicular to the (1,1,1) direction. Thus,
there are four independent subsystem symmetries.

To obtain our desired higher-rank gauge theory, we place
a spatial gauge field A1, A2 at the center of each of the two
types of plaquette in Fig. 7, and a timelike gauge field A0 at
each lattice site. We label these gauge fields via A0,1,2(�r, t ),
where t is a continuous-time variable. We use the vector �r in
both cases, even though A1,2(�r, t ) are in fact associated with
the dual lattice site at �r + x̂+ŷ+ẑ

2 .
We follow the prescription of Refs. [12,13] to obtain the

minimal coupling between these plaquette gauge fields and

FIG. 8. The product of the two ring-exchange processes shown
in Fig. 7 gives a ring-exchange process along a plaquette perpen-
dicular to the (1,1,0) direction, times boson number operators at the
remaining corners of the cube.

matter. On a plaquette perpendicular to (0,1,1), this gives

φ
†
�r+ŷφ�r+x̂+ŷφ

†
�r+x̂+ẑφ�r+ẑe

iA1(�r). (58)

For plaquettes normal to (1,0,1) the coupling is analogous,
with A1 replaced by A2. However, because the product of
the two ring-exchange terms in Fig. 7 gives rise to a ring-
exchange process of the type shown in Fig. 8 (times some
charge-neutral boson-number operators), the gauge connec-
tion on plaquettes perpendicular to the (1,1,0) direction is just
(A1 + A2). Thus, our model has only two independent gauge
fields on the cubic lattice.

Let us define the forward difference operator in the x
direction

dx f (�r, t ) = f (�r + x̂, t ) − f (�r, t ), (59)

and similarly for dy and dz. We also define the backward
difference operator

d̂x f (�r, t ) = f (�r, t ) − f (�r − x̂, t ), (60)

and similarly d̂y and d̂z. Now, we may define the discretized
version of our differential operators

D1 = dx(dy − dz ), (61)

D2 = dy(dz − dx ) (62)

and also D̂1 and D̂2, with backward difference operators
instead. Under a U(1) gauge transformations that takes φ�r →
eiα�r,t φ�r , the gauge fields transform as

A0(�r, t ) → A0(�r, t ) + ∂tα(�r, t ), (63)

Ai(�r, t ) → Ai(�r, t ) + Diα(�r, t ). (64)

In the continuum limit, this yields the gauge transformations
discussed in Sec. III up to an overall rescaling of the gauge
field:

A1 → A1 +
√

2∂x∂uα, A2 → A2 +
√

2∂y∂vα. (65)

We note that the generalized theories described in Sec. III are
also naturally described by a model of the type described here,
albeit on a distorted cubic lattice, in which the x-u plane is
deformed into the [x + (α − β )l]-u plane, and similarly for
the other directions.

The gauge-invariant electric fields are defined in the same
way as before, using these discretized difference operators:

Ei(�r, t ) = ∂t Ai(�r, t ) − DiA0(�r, t ). (66)

Each electric field is associated with a cube in the cubic
lattice. The magnetic field should be defined with backward
difference operators

B(�r, t ) = D̂2A1(�r, t ) − D̂1A2(�r, t ), (67)

hence, each magnetic field is associated with a site, as shown
in Fig. 9. One can verify that the B field is gauge invariant
by noticing that D̂i = S−xS−yS−zDi, where S−x is a shift
operator in the −x direction, S−x f (�r, t ) = f (�r − x̂, t ). Then,
the variation of B under a gauge transformation is δB =
S−xS−yS−z(D2D1 − D1D2)α(�r, t ) = 0.
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FIG. 9. The Chern-Simons constraint on the cubic lattice. The
magnetic field at a given lattice site (green dot at the center of the
cube) is given by the linear combination of gauge fields A1, A2 at
six of the surrounding dual lattice sites (star). The Chern-Simons
constraint sets this magnetic field equal to the charge (ρ ) on this
lattice site.

In the absence of matter sources, the lattice fractonic
Chern-Simons action then takes the form

SCS = s

4π

∫
dt

∑
�r

[A1(�r, t )E2(�r, t )

− A2(�r, t )E1(�r, t ) + A0(�r, t )B(�r, t )] (68)

which one can verify is gauge invariant in the absence of a
boundary. For this, one must use a summation by parts, which
for our difference operators simply amounts to the identity∑

�r
f (�r, t )Dig(�r, t ) =

∑
�r

(D̂i f (�r, t ))g(�r, t ) (69)

up to boundary terms.
Notice that our theory does not run into the subtle issues

associated with discretizing and quantizing the regular 2D
Chern-Simons theory (see, for example, Ref. [59]). These
subtle issues arise when, for example, canonically conjugate
variables do not live on the same location (in 2D CS theory,
A1 lives on the x links, while A2 lives on the y links), or
when there are multiple natural choices to be made for the
charge-vortex binding (a one-to-one correspondence between
plaquettes and vertices is required for the discretized 2D
CS theory [60]). Our model sidesteps these issues, as the
conjugate variables A1 and A2 are both located at the center
of cubes, and both the B field and charges are located on the
vertices (see Fig. 9). Consequently, the lattice discretization
does not attribute any subtlety when quantizing the fractonic
Chern-Simons term.

A. Gauge-invariant ribbon operators on the lattice

It is worth briefly discussing how the gauge-invariant line
and ribbon operators are manifest on the lattice. To do this, we
reintroduce the lattice constant, and imagine that the lattice
gauge field Alatt

1 (�r, t ) is related to a continuum gauge field

Acont
1 (�x, t ) by integrating over the associated plaquette:

Alatt
1 (�r, t ) =

∫ a

0
dx

∫ √
2a

0
du Acont

1 (�r + xx̂ + uû, t ). (70)

Note that in the continuum limit, if we assume that Ã1 is
smooth, this gives

Alatt
1 (�r, t ) =

√
2a2Acont

1 (�r, t ) (71)

explaining the relative factor of
√

2 in Eq. (65). The factor of
a2 gives the expected relationship between the dimensionless
lattice gauge field, and our continuum gauge field with dimen-
sions of 1/length2.

Since the lattice gauge field is dimensionless, the dimen-
sionful line integrals do not have a lattice analog. However,
the dimensionless ribbon operators do since∫ x0+la

x0

dx
∫ u0+

√
2a

u0

du Acont
1 (�x, t ) =

l∑
n=0

Alatt
1 (�r0 + nax̂, t )

(72)
and similarly for other directions. In other words, in our lattice
theory a ribbon corresponds to a line of plaquettes, with the
dipole scale a set by the lattice constant. We will henceforth
refer to these operators as lattice Wilson ribbons, or simply
Wilson ribbons in contexts where the lattice is understood.

Cage nets on the lattice are constructed from the ribbon
operators, exactly as described in the continuum case in
Sec. III B. It is straightforward to show that these lattice
cage-net operators are fixed by the value of the magnetic field
they enclose, and hence that constraint B = 0 completely fixes
these.

VI. QUANTIZING FRACTONIC LATTICE
CHERN-SIMONS THEORY

We now discuss quantization of the fractonic Chern-
Simons theory, using the lattice regularization introduced in
Sec. V. Following Ref. [61], we will quantize within the con-
strained subspace, meaning that we will first restrict ourselves
to configurations where the magnetic field B(�r, t ) defined in
Eq. (67) vanishes everywhere. The remaining gauge-invariant
operators are the gauge-invariant ribbon operators, and our
focus will be on quantizing these in our lattice theory, bearing
in mind that not all of them are independent in the constrained
Hilbert space.

A. Is the Chern-Simons coefficient quantized?

Before quantizing the theory, it is useful to ask whether,
if the gauge parameter α ≡ α + 2π is compact, the
Chern-Simons coefficient is quantized. Recall that in ordi-
nary compact U(1) Chern-Simons theory, such quantization
is necessary to ensure that large gauge transformations (for
example, those that thread a flux of 2π through one of the
noncontractible curves on the torus) do not actually affect the
partition function.

To study this question in more detail, let us consider a
gauge transformation of the form

α(x, y, z) =
{

2π, x > x0, z > z0

0, otherwise. (73)
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FIG. 10. Large gauge transformations on the lattice consist of
changing A1 along a line of plaquettes parallel to the y (or u)
direction, or A2 along a line of plaquettes parallel to the x (or v)
direction, as shown.

Note that this gauge transformation is allowed if α ≡ α + 2π ;
if not it would be incompatible with our choice of periodic
boundary conditions. This gauge transformation takes

A1(x, y, z) → A1(x, y, z) − 2πδx,x0δz,z0 , (74)

where δx,x0 are Kroenecker δ functions. As explained above,
the constraint ensures that A1 must be independent of the
remaining coordinate y.

In this configuration the gauge field A1 vanishes every-
where except along a line of plaquettes (see Fig. 10), where
it has the value 2π . The Wilson operators are

Nx∑
n=0

A1(�r + nax̂, t ) = −2πδz0,r3 ,

Nu∑
n=0

A1(�r + na(ŷ − ẑ), t ) = −2πδx0,r1 (75)

indicating that a dipole that encircles the torus along any one
of these lines acquires a net phase change of 2π . Similar
results hold for ribbons along the z and w directions, which
also involve A1. If we take α to be compact, then this phase of
2π should not affect the physics at all, and the configuration
in Eq. (74) corresponds to a holonomy of our rank-2 gauge
field.

Let us now consider the effect of this gauge transformation
on the Chern-Simons action. To avoid complications due to
boundaries of the manifold in time, we consider periodic
boundary conditions in time and space. (Here, as for usual
rank-1 Chern-Simons theories, this choice is important since
open boundaries require additional fields to preserve gauge
invariance.) The net change in our Chern-Simons action is

SCS → SCS − s

2π

∑
�r

∫ (
2πδx,x0δz,z0 E2

)
dt

= −s
∑

y

∫
E2(x0, y, z0, t )dt . (76)

Note that to obtain the factor of 2 here comes from integrating
by parts in time, which does not induce boundary terms with
our choice of periodic boundary conditions.

To complete our analysis, we must understand the quan-
tization of

∑
y

∫
dt E2. With periodic boundary conditions in

time, we may consider only processes in which the initial and

final gauge field configurations are equivalent (up to a gauge
transformation). Thus, let E2 be the electric field generated by
turning on a second holonomy, by taking

A2 = 2πt

τ
δy,y0δz,z0 , (77)

where τ is the radius of the circular time dimension. Then, E2

is constant in time, and∑
y

∫
E2(x0, y, z0, t )dt = 2π. (78)

Thus, in order to ensure that the gauge transformation (74)
does not change the partition function, the appropriate quanti-
zation for our Chern-Simons coefficient is

s ∈ Z. (79)

It is worth noting that the above argument must be modified
slightly in the continuum theory, where the gauge field has
dimensions 1/length2, and the Chern-Simons coupling s thus
has dimensions of length. In this case, any quantization of the
Chern-Simons coupling must depend on some fundamental
length scale in the problem, suggesting that the quantized
theory requires a fixed ultraviolet cutoff. For this reason, it is
natural to quantize the lattice theory, rather than its continuum
cousin.

B. Canonical commutation relations

Having established that for compact U(1) gauge transfor-
mations the Chern-Simons couping coefficient is quantized,
we are ready to quantize our higher-rank lattice Chern-Simons
theory. From the lattice action (68), the canonical commuta-
tion relations of the gauge fields A1, A2 are

[A1(�r, t ), A2(�r′, t )] = i
2π

s
δ�r,�r′ . (80)

Formally, we wish to work within the constrained subspace
where B = 0, and quantize the remaining gauge-invariant
ribbon operators. As discussed in Sec. III A, it is sufficient
to consider only ribbon operators involving A1 and A2, as the
values of the remaining ribbon operators involving the linear
combination −A1 − A2 are not independent. Two such ribbon
operators necessarily intersect on a single cube, and hence the
sums involved share only a single site. Thus, the commutators
between intersecting ribbon operators along the major cubic
axes are

WxWz = WzWxe−i 2π
s ,

WxWy = WyWxei 2π
s , (81)

WzWy = WyWze
−i 2π

s .

Evidently,

[Wu,Wx] = [Wv,Wy] = [Ww,Wz] = 0 (82)

while

WuWy = (
ei 2π

s
)b

WyWu, (83)

where b counts the number of times that a line along the u
direction intersects a line along the y direction. For example, if
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Ly � Lz then b = 1; if Ly = mLz with m ∈ Z, b = m. Similar
commutators apply for the remaining directions.

Equation (81), together with the fact that the Wi are com-
pact operators, implies that in the quantized theory they are
discrete, with a finite set of eigenvalues:

Wi, j = e2π ili j/n, (84)

where n = s/a, and li j ∈ Z.

C. Ground-state degeneracies

Since this theory is fully gapped, one telling quantity is
the number of ground states. For topological quantum field
theories, this number can depend only on the topology of the
underlying spatial manifold. In the present case, the ground-
state degeneracy is sensitive not only to the topology of the
underlying manifold, but also to geometrical factors including
the system size and twist angle of the boundary conditions.
Here, we will examine this dependence.

The ground states are fully characterized by the eigenval-
ues of the gauge-invariant line operators in the absence of
matter fields. For the case at hand, these are given by the six
ribbon operators:

Wx, Wu, Wy, Wv, Wz, Ww. (85)

We begin by considering periodic boundary conditions along
the x, y, and z directions. In this case, as discussed above, there
are Lz/a + Ly/a − 1 operators of the type Wx, and Lx/a +
gcd(Ly/a, Lz/a) − 2 additional independent operators of the
type Wu. These can all be simultaneously diagonalized.

Let us first diagonalize all line operators Wx running par-
allel to the x axis. Since every line along y (z) intersects at
least one straight line along x, we cannot simultaneously di-
agonalize Wx and Wy (Wz). Because the lines are straight, how-
ever, we may simultaneously diagonalize all Lz/a + Ly/a − 1
operators Wx, and all independent operators of the form
Wy(x, z0)(Wy(x0, z0))−1. Since ∂x∂zWy = 0, there are Lx/a − 1
independent operators of this type. (The logic here is that they
must be independent of z since the derivative in x cannot
vanish.) This set fails to commute with any combinations
of line operators parallel to the z axis. Thus, there are a
total of Lx + Ly + Lz − 2 simultaneously diagonalizable line
operators along the cubic directions.

Next, we consider whether any of the operators along
the u direction can be diagonalized simultaneously with
this entire set. The operator Wu commutes with Wx, but
in general not with Wy ribbons with which it intersects.
However, one can choose a set of linear combinations
Wu(x0, y0 + z0)(Wu(x0, yi + zi ))−1 which commute with all
Wy(x, z0)(Wy(x0, z0))−1 operators and hence these Wu lines
can be simultaneously diagonalized with the full set described
above, leading to an additional L − 1 line operators on an
L × L × L system.

Finally, we must determine how many eigenvalues each
line operator may take. From taking linear combinations of
Eq. (81), we see that lines that intersect once change each
others’ values by 2π/s, leading to s possible eigenvalues for
each ribbon operator in our set. If we choose Lx = Ly = Lz ≡
L (in which case the diagonal ribbons do not contribute to

FIG. 11. Schematic of the statistical processes of dipoles in the
quantized lattice theory. Red lines represent Wilson ribbons connect-
ing the dipole (represented by a red dot) to a distant antidipole; blue
lines represent the ribbon operators of a cage net. Green dots indicate
where the dipole and cage-net ribbons cross.

the ground-state degeneracy), we obtain a total degeneracy of
(s)4L/a−3 states.

D. Statistical interactions

From the commutation relations between the operators Wi,
it is straightforward to infer the quasiparticle statistics. In
general, statistical interactions between particles with one-
dimensional motion (lineons) can be nontrivial only if both
particles move in the same plane, such that their world lines
intersect. In our model, not all intersecting line operators fail
to commute, meaning that some pairs of lineon excitations
have trivial mutual statistics. An example are the excitations
that travel along the x direction, and those traveling along the
y-z direction, both of which are associated with integrals of
the gauge field A1.

World lines that intersect and fail to commute, such as Wx

and Wy, imply that the dipoles have “lineon mutual statistics.”
Following Refs. [55,57,62], we define these statistics by com-
paring two processes. In process (a), we first place a dipole at
the origin, and then create a dipole-antidipole pair and move
the antidipole around in a plane surrounding the origin. As
discussed above, any turns in the antidipole’s trajectory create
other (anti)dipoles; hence, to return the system to its ground
state these other dipoles must also be brought together and
annihilated; the entire process is represented by a cage net,
as shown in Fig. 11. In process (b) we first create, move,
and reannihilate the other dipoles to create the cage net, and
then (after all of these excitations have vanished) we bring our
dipole to the origin. Evidently, the restricted mobility of our
dipoles constrains both the planes in which they can encircle
each other, and the shapes of the corresponding cage nets.

The braiding phase is determined by the phase differ-
ence between processes (a) and (b), which results from the

023249-14



FRACTONIC CHERN-SIMONS AND BF THEORIES PHYSICAL REVIEW RESEARCH 2, 023249 (2020)

commutator between two intersecting ribbon operators, as
shown in Fig. 11. For example, if the ribbon ending on the
dipole runs along the x̂ direction, and the cage net has a
surface in the x-y plane, we obtain

Mab = WxWy

WyWx
= ei2π/s. (86)

Similarly, as described in Refs. [34,57], the available cage-
net moves can be used to define a type of self-statistics for the
lineons. Note that though some aspects of our theory, such as
the ground-state degeneracy, are explicitly cutoff dependent,
these statistical interactions are scale invariant, depending
only on the pattern of crossings between the cage frame and
the Wilson ribbon associated with our dipole.

VII. QUANTIZING AND CONSTRAINING: FRACTONIC
CHERN-SIMONS THEORY AND THE CHAMON CODE

Since much of our current understanding of fracton order is
based on studying commuting projector lattice Hamiltonians,
we now turn to the question of what lattice model of this type
could potentially be described by our Chern-Simons theory.
To do this, we will consider first quantizing the lattice theory
in Sec. V, and then imposing the constraints. We will see how
at the second step a mass gap for matter fields results in a
Hamiltonian that can be viewed as a Zs generalization of the
Chamon code [14].

We begin with the commutation relations

[A1(�r, t ), A2(�r′, t )] = i
2π

s
δ�r,�r′ . (87)

Recall that here �r, �r′ refer to sites on the dual cubic lattice,
and that gauge fields on different dual lattice sites commute.
If A1 is compact, then this commutation relation implies that
A2 is quantized in units of 2π/s; similarly, if A2 is compact,
then A1 is quantized. Thus, if the gauge fields are compact,
our quantized theory is described by an s-state spin on each
dual lattice site, with

eiA1 = U, eiA2 = V, (88)

where U,V are s-state clock matrices, given by

Umn = δmne2π in/s,

Vmn = δm,(n+1 mod s) (89)

such that UV = e2π i/sVU .
Next, we must impose the constraint B = ρ at the lattice

level. Recall that the lattice magnetic field at site �r on the
direct lattice is given by B(�r, t ) = D̂2A1(�r, t ) − D̂1A2(�r, t ),
where the combination of gauge fields is shown in Fig. 9. We
have

eiB(�r,t ) = e−i[A1(�r−x̂−ŷ,t )+A2(�r−x̂−ŷ,t )]eiA1(�r−x̂,t )eiA1(�r−ŷ−ẑ,t )

× eiA2(�r−ŷ,t )eiA2(�r−x̂−ẑ,t )e−i[A1(�r−ẑ,t ))+A2(�r−ẑ,t )], (90)

where we have used the fact that gauge fields on different sites
commute.

In terms of the spin matrices identified in Eq. (88), this
product can be expressed as

eiB(�r,t ) = U †
�r−x̂−ŷV

†
�r−x̂−ŷU�r−x̂U�r−ŷ−ẑV�r−ŷV�r−x̂−ẑV

†
�r−ẑU

†
�r−ẑ,

(91)

FIG. 12. (a) The magnetic field operator in our quantized (but
unconstrained) theory. Adding a mass term for matter fields and
imposing the Chern-Simons constraint B = ρ leads to a Hamiltonian
that can be expressed as the product of the six operators shown, plus
its Hermitian conjugate. (b) For s = 2, this construction gives the
tilted Chamon code.

where we have used

e−i[A1(�r,t )+A2(�r,t )] = e−iA1(�r,t )e−iA2(�r,t )e−iπ/s. (92)

The result is a product of six spin operators at the corners of
the cube, as shown in Fig. 12.

The lattice Hamiltonian corresponding to our pure Chern-
Simons theory is then

H = −1

2

∑
�r

(eiB(�r,t ) + e−iB(�r,t ) ). (93)

Clearly, the ground states of this model obey B(�r, t ) ≡ 0,
corresponding to the manifold of states of the Chern-Simons
theory in the absence of sources. The excited states can be
understood as the result of introducing gapped, nondynamical
matter sources on the sites of our lattice. After imposing
the constraint B(�r, t ) = 2π

s ρ(�r, t ), the mass gap for these
nondynamical sources leads to a Hamiltonian of the form (93).

An interesting example is s = 2. In this case, we have
σ x = U, σ z = V , and UV = −iσ y, which obeys the required
algebra UV = −VU . In this case, our Hamiltonian (93) be-
comes

H = −
∑

�r
σ x

�r−x̂σ
x
�r−ŷ−ẑσ

y
�r−x̂−ŷσ

y
�r−ẑσ

z
�r−x̂−ẑσ

z
�r−ŷ. (94)

This is exactly the Chamon code [14] with a tilted geom-
etry [63]. In retrospect, this correspondence is quite natural:
the Chamon code has six types of lineon operators, along the
three cubic axes and three diagonal directions, each of which
creates a distinct lineon-type excitation free to move only
along that linear direction. The mobility of these excitations,
together with the Wilson-line algebra of the Chamon code,
coincide with our Chern-Simons gauge theory at s = 2. By
counting the number of independent stabilizers in Eq. (94),
one can also see directly that the ground-state degeneracy
of the tilted Chamon code is 24L−3 on an L × L × L lattice
with periodic boundary conditions, exactly as predicted for
our Chern-Simons theory.

The original Chamon code on the fcc lattice, which has
full cubic symmetry, can be obtained by quantizing the gen-
eralized fracton Chern-Simons theory described in Sec. III C,
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FIG. 13. Geometry of the α = 2, β = 1 theory corresponding to
the Chamon code on the fcc lattice. (a) The gauge fields A1, A2 live
on the dual lattice (star) at the centers of octahedral plaquettes. The
matter fields live at sites (dot) of the direct lattice. eiA1 is coupled to
the four charges at the corners of the red plaquette; eiA2 is coupled
to the four charges at the corners of the green plaquette. (b) The
cage-net configuration. (c) The magnetic field operator for s = 2 (i.e.,
for the Chamon code). Sites shown here represent sites on the dual
lattice.

with s = 2. Specifically, by taking differential operators of the
form (42), with α = 2, β = 1, we obtain

D1 = (∂y + ∂z )(∂y − ∂z ) = (
∂2

y − ∂2
z

)
,

D2 = (∂z + ∂x )(∂z − ∂x ) = (
∂2

z − ∂2
x

)
. (95)

To get a lattice model in agreement with Chamon’s code, we
define the discretized differential operators as

D1 = (dyd̂y − dzd̂z ), (96)

D2 = (dzd̂z − dxd̂x ), (97)

where di and d̂i are forward and backward difference operators
on the cubic lattice (59). As Chamon’s code is defined on the
fcc lattice, we place gauge fields A1(�r, t ) and A2(�r, t ) on the
a sublattice of the simple cubic lattice, while the matter fields
[and α(�r, t )] live on the b sublattice. The a sublattice on which
A1 and A2 live therefore forms an fcc lattice. Consequently,
the E and B fields of this lattice model live on the a and
b sublattice, respectively. The resulting gauge theory has
charge conservation on (1 1 1), (1 1 −1), (−1 1 1), (1 −1 1)
planes. The gauge-invariant cage nets form symmetric tetra-
heda, whose edges lie in the x ± y, y ± z, x ± z directions, as
shown in Fig. 13. The corresponding lattice gauge theory can
be obtained by gauging a plaquette ring-exchange model with
ring-exchange terms on the three plaquettes of the octahedron
shown in Fig. 13. These ring-exchange processes conserve
charge on (1 1 1), (1 1 −1), (−1 1 1), (1 −1 1) planes. After
gauging the resulting U(1) subsystem symmetries following
the method described in Sec. V, we obtain two gauge fields
A1, A2 at the center of each octahedron, with gauge transfor-
mations,

A1 → A1 + (dyd̂y − dzd̂z )α,

A2 → A2 + (dzd̂z − dxd̂x )α. (98)

The resultant gauge theory contains lineon excitations ex-
tended along the î ± ĵ directions, whose end points carry
dipoles oriented in î ∓ ĵ. With this definition of D1, D2, we
obtain a lattice Hamiltonian

H = −
∑

�r
cos (B(�r, t ))

= −
∑
�r∈b

σ x
�r+x̂σ

x
�r−x̂σ

y
�r+ŷσ

y
�r−ŷσ

z
�r+ẑσ

z
�r−ẑ (99)

which, as above, can be viewed as resulting from introduc-
ing massive nondynamical matter sources, and imposing the
Chern-Simons constraint B(�r, t ) = ρ(�r, t ). Here, �r ∈ b sums
over b sublattice sites denoted by the dots in Fig. 13. This
exactly reproduces the Hamiltonian and one-dimensional ex-
citations of the Chamon code on fcc lattice formed by the a
sublattice of our simple cubic lattice.

One can also define lattice Chern-Simons theories with
s > 2 in this geometry, following the procedure outlined
above. Note, however, that despite the seeming cubic symme-
try of this model, for s > 2 our lattice Chern-Simons theories
do not have cubic symmetry. This is because for s > 2 the
operator B, and therefore the Chern-Simons action, is odd
under Ci

4 rotations. Interestingly, however, in the absence of
matter we have B = 0, and the resulting ground states of the
lattice model are invariant under full cubic symmetry.4

VIII. GAPLESS HIGHER-RANK CHERN-SIMONS
THEORIES WITH THREE GAUGE FIELDS

IN THREE DIMENSIONS

The theories described thus far are tensor gauge theories
in the sense that the gauge transformations are quadratic in
derivatives; however, they do not correspond to any higher-
rank gauge theories discussed in the literature so far. This
is because, if our charge is a scalar, then our Chern-Simons
theory is gapped only if we have at most two gauge fields.
In three-dimensional symmetric tensor gauge theories, the
natural number of gauge fields is either 3 (if Ai j is an off-
diagonal symmetric tensor) or 6 (for a general symmetric
tensor). To make contact with these theories, here we will
briefly describe the fate of Chern-Simons theory of the sym-
metric, off-diagonal tensor gauge theory. The main interesting
feature of this theory is that, unlike the pure Maxwell theory
[56], Maxwell-Chern-Simons theory of off-diagonal symmet-
ric tensor gauge fields in three dimensions is deconfined.

We consider a symmetric off-diagonal tensor gauge theory
with the gauge fields Axy, Axz, and Ayz. This off-diagonal
tensor structure is not invariant under continuous rotations
in three dimensions, but rather only under the symmetries of
a cubic lattice. The gauge transformations of this theory are
[26,29,34,45]

Ai j → Ai j + ∂i∂ jα, A0 → A0 + ∂tα. (100)

Note that our gauge parameter α is a scalar, indicating
that this is a scalar charge theory, in the language of

4For s = 2, the ±π fluxes are equivalent, so in this case the full
theory has cubic symmetry.
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Refs. [26,29,34,45]. The gauge-invariant electric and mag-
netic fields are

Ei j = ∂t Ai j − ∂i∂ jA0,

Bx = ∂yAxz − ∂zAxy,

By = ∂zAxy − ∂xAyz,

Bz = ∂xAyz − ∂yAxz. (101)

The magnetic fields satisfy
∑

i Bi = 0, such that there are
only two independent field components. The gauge-invariant
ribbon operators have the form∮

C(x,y)

∑
Aizdli (102)

for C(x, y) any closed curve in the x, y plane, and similarly in
the other directions. Note that unlike the theories discussed in
previous sections of this paper, coupling this theory to matter
leads to dipolar excitations (planeons) that are mobile in two-
dimensional planes.

In this theory, it is not possible to write a Chern-Simons
action imposing the constraint B = ρ since our charge ρ

is a scalar, but the magnetic field B is not. As
∑

i Bi = 0,
the lowest-order constraint that does not violate threefold
rotational symmetry about the (1,1,1) direction is therefore

s

2π
∂iBi = ρ. (103)

To enforce this constraint, we choose the Chern-Simons action
to be

LCS = s

4π
εi jk (Ajk∂t Ai j + 2∂ jA0∂iA jk ) − A0ρ − Ai jJi j .

(104)

Because constraint (103) is not sufficient to fully fix the
magnetic field, the pure Chern-Simons theory is unstable, and
contains an extensive number of ground states in any geome-
try. Instead, we consider a Maxwell-Chern-Simons theory, of
the form

L = − 1

2g2

⎛
⎝∑

i j

E2
i j +

∑
i

B2
i

⎞
⎠ + LCS. (105)

In the absence of sources, the equations of motion are∑
i j

∂i∂ jEi j + s

2π

∑
i

∂iBi = 0,

∂t Exy + s

2π
(Eyz − Exz ) = ∂z(Bx − By),

∂t Eyz + s

2π
(Exz − Exy) = ∂x(By − Bz ),

∂t Exz + s

2π
(Exy − Eyz ) = ∂y(Bz − Bx ). (106)

In addition, the analogs of the homogeneous Maxwell equa-
tions are ∑

i

Bi = 0,

∂zExy − ∂yExz = −∂t Bx,

∂yExz − ∂xEyz = −∂t Bz,

∂xEyz − ∂zExy = −∂t By. (107)

One can solve Eqs. (107) and (106) to reveal two modes,
with frequencies

ω2
± = �k2 + 3

2
s2 ±

√
�4

�k + s2(kx + ky + kz )2 + 9

4
s4, (108)

ω− is gapless as �k → 0, while ω+ has a gap proportional to
the Chern-Simons coupling s. Thus, in the infrared our action
(105) describes a symmetric off-diagonal tensor gauge theory
with a single propagating gapless mode.

To better understand this gapless fixed point, it is conve-
nient to add off-diagonal couplings in the electric fields; the
symmetric combination of these violates no lattice symme-
tries and is thus allowed. This allows us to consider the action

L = s

4π
[
√

3(−Au∂t Av + Av∂t Au) − 2A0∂iBi]

+ 1

2g2

(
E2

� +
∑

i

B2
i

)
, (109)

where

E� =
∑

i j

Ei j . (110)

We note that this particular choice of Lagrangian has the
peculiarity that the massive branch of solutions to Maxwell-
Chern-Simons theory are entirely absent; thus, we do not need
to project out any high-energy modes in order to study the
long-wavelength theory.

A. Confinement vs Chern-Simons terms

It is known [56] that in the absence of the Chern-Simons
term, the Lagrangian (105) leads to a confining theory for all
values of the gauge coupling g. We now show that the Chern-
Simons term prevents confinement, by a mechanism similar
to that identified by Ref. [58] in (2 + 1)-dimensional Chern-
Simons theories.

First, let us review the nature of confinement in the
Maxwell theory. Reference [56] showed that in the absence
of a Chern-Simons term, if the U(1) gauge field is compact,
then 2π flux defects will proliferate, confining the theory.
These defects correspond to introducing a 2π branch plane in
the gauge parameter α, that emenates from the origin along,
for example, the x̂, ẑ axes. We define the branch plane by a
singularity in the derivative of α, as follows:

∂yα = 2πδ(y)θ (z)θ (x). (111)

From this, we see that ∂x∂yα = 2πδ(y)δ(x)θ (z) is well defined
away from z = 0, and similarly that ∂z∂yα = 2πδ(y)δ(z)θ (x)
is well defined away from x = 0. ∂x∂zα is well defined (and
vanishes) away from the origin.

To see that this branch cut introduces magnetic flux at the
origin, consider a region R about the origin bounded a curve
C in the x-y plane, and stretching from −l/2 to l/2 in the
z direction. Assuming that our gauge fields are pure gauge,
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along such a ribbon, we have∫
R

Bz =
∮

C

(∫ l/2

−l/2
Aizdz

)
dxi

=
∮

C

(∫ l/2

−l/2
∂z∂iα

)
dxi

= 2π

∮
C

δ(y)θ (x)dxi = 2π, (112)

where the last equality holds because the ribbon crosses the
x axis at a single point. For a ribbon that does not enclose
the origin, this quantity is 0. Thus, inserting a branch sheet of
this type in α can be viewed as a large gauge transformation,
which changes the z and x components of the magnetic flux by
±2π at the origin. These are precisely the topological defects
that proliferate to drive confinement [56].

Next, we show that such defects cannot proliferate in the
presence of a Chern-Simons term. To see this, we first note
that the Chern-Simons term is gauge invariant in the bulk
only when the homogeneous Maxwell equations (107) are
satisfied. Specifically, under a gauge transformation by α the
bulk Chern-Simons action changes according to

δLCS = s

2π
α∂i(ε

i jk∂ jEki + ∂t B
i ). (113)

However, large gauge transformations like the one de-
scribed above stem from processes in which the homogeneous
Maxwell equations are violated. To see this, we integrate
the homogeneous Maxwell equations (107) over some spatial
region R:

�̇i(R) =
∫ l

0
dxi

∫
S

∑
j,k

εi jk∂ jEki =
∫ l

0
dxi

∮
∂S

Ei j (dl ) j .

(114)
Here,

φi(R) =
∫

R
φi(R)d3r (115)

and we have taken the region R to have length l in the
direction parallel to i, and span a surface S in the transverse
directions. We can see that on a closed manifold, or on an
infinite manifold with appropriate boundary conditions, if we
take i = x and S to be the entire y-z plane, then the right-hand
side must vanish. Thus, processes that change the magnetic
flux through any planar region (of width l) necessarily fail to
satisfy the homogeneous Maxwell’s equations, and thus are
not gauge invariant in the presence of a Chern-Simons term.
Thus, exactly as in the case of usual Chern-Simons theories
in 2 + 1 dimensions, integrating over the gauge parameter
in the partition function suppresses these processes, and thus
prevents confinement.

An example of a continuum space-time process that inserts
a a flux of 2π in Bx is the monopole like solution

(−Exz, Exy, Bx ) = 1

2

(
y

(y2 + z2 + t2)3/2
,

z

(y2 + z2 + t2)3/2
,

t

(y2 + z2 + t2)3/2

)
. (116)

It is easy to check that with this solution,
∫

dy dz Bx =
2πθ (t ), so that the magnetic flux changes by 2π . On the other
hand, the homogeneous Maxwell equation (107) requires that
the divergence of the vector defined in Eq. (116) vanish. For
our solution this is the case everywhere except at y = z = t =
0, where it is singular; one can check that this singularity has
the form ∂zExy − ∂yExz + ∂t B = δ((y, z, t ) − (0, 0, 0)), lead-
ing to a gauge-dependent contribution to the Chern-Simons
action.

B. Quantized gapless theory

Finally, let us study the properties of our quantized gap-
less theory. The canonical commutation relations from our
Lagrangian (109) are[

Axy,
s

2π
(Axz − Ayz ) + 1√

3g2
E�

]
= i,

[
Axz,

s

2π
(Ayz − Axy) + 1√

3g2
E�

]
= i, (117)

[
Ayz,

s

2π
(Axy − Axz ) + 1√

3g2
E�

]
= i.

In addition, we have [Ayz − Axz, E�] = [Axy − Axz, E�] = 0. It
follows that

1√
3g2

[Ai j, E�] = i

3
. (118)

One can use this to determine the remaining commutation
relations between the Ai j :

[Axy, Axz] = 2π

3s
i,

[Axz, Ayz] = 2π

3s
i, (119)

[Ayz, Axy] = 2π

3s
i.

In Appendix D, we show that line operators of the form
(102) commute with the constraint, and are thus all allowed
within the low-energy theory. However, in general these line
operators do not preserve the magnetic field or E�. For exam-
ple, [∫

dx Axz(r), Bx(r′)
]

= is
∫

dx ∂yδ(r − r′) (120)

which is not, in general, 0. Thus, we conclude that the line
operators in general do not commute with the Hamiltonian,
and thus do not keep the system in its ground state. To see this
explicitly, let Ŵ = ei

∫
Ai j represent a unitary Wilson ribbon

operator. Since eiAi j is a raising operator for E� (for any i, j),
the energy difference between a state with and without having
acted with the Wilson ribbon is

〈Ŵ †�|E2
� |Ŵ �〉 − 〈�|E2

� |�〉
= 〈�|Ŵ †

[
E2

� ,Ŵ
]|�〉

= 〈�|Ŵ †E�Ŵ + E�|�〉

= 〈�| g2

√
3

+ 2E�|�〉.
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Thus, the Wilson ribbon creates a line of electric field along
the path of the Wilson ribbon, much as occurs in ordinary
Maxwell theory. A similar argument shows that a Wilson
line also generates magnetic flux. Thus, in the presence of
low-energy gapless modes, the Wilson-line operators do not
map between different quantum states of the same energy, in
spite of the fact that they relate different classical ground-state
configurations. Further, as Wilson lines are not associated
with large gauge transformations in the quantum theory, a
priori we do not expect the Chern-Simons coefficient to be
quantized in this case as the gapless gauge fluctuation could
modify the Chern-Simons coupling.

In our gapless theory, dipoles (which appear at the end of
open ribbon operators) create electric and magnetic fields as
they move about, and thus have long-ranged Coulomb-type
interactions. However, they also acquire a statistical interac-
tion from the nontrivial commutators of their ribbons. This
statistic is between dipoles of the same orientation (which are
restricted to move in the same 2D plane), though there is also a
contact interaction (that is not topological in nature) between
crossing lines of dipoles with different orientation.

IX. OUTLOOK

We have investigated how a field-theoretically motivated
approach to constructing TQFT-like actions for higher-rank
gauge fields in three spatial dimensions leads to a number
of insights about the possibilities for fractonic tensor gauge
theories. First, we have outlined one general philosophy for
writing such terms, consisting of identifying gauge-invariant
(in the bulk) actions that impose a constraint binding charge
to the higher-rank gauge flux, and discussed its interplay with
symmetry. We have described both Chern-Simons–type and
BF-like versions of this construction, though our main focus
has been on the former.

Second, we have presented a detailed analysis of both
the classical and (lattice-regularized) quantum versions of
one particular gapped fractonic Chern-Simons theory. No-
tably, by analyzing the gauge transformations of Wilson-
type oeprators, we have seen how even in the absence of a
Gauss’ law constraint, the structure of gauge transformations
restricts charges’ mobility, giving an alternate perspective on
the paradigm developed by Ref. [31]. We have also identified
several ways in which this theory is qualitatively distinct
from fracton-inspired field theories in the existing literature,
including the presence of time-reversal symmetry-breaking
gapless boundary modes in the classical theory, and self-
statistics for charged particles upon quantization. Finally, we
have established a strong correspondence between our theory
and fracton order, both in terms of its physical properties
(such as restricted quasiparticle mobility and the scaling of
the ground-state degeneracy with system size), and by estab-
lishing a correspondence to a lattice Hamiltonian that can be
viewed as a generalized Chamon code. To the best of our
knowledge, this Zs generalization of the Chamon code has not
previously appeared in the literature.

Third, we have briefly described a scenario that has not
previously been considered in the context of higher-rank
gauge theories, of a gapless higher-rank Maxwell Chern-
Simons theory, with both spontaneously broken time-reversal

symmetry and long-ranged Coulomb-type interactions. This
scenario is interesting in part because it demonstrates how a
higher-rank Chern-Simons term can prevent confinement.

Our work raises several interesting questions. First, the
observation that our fractonic Chern-Simons theory is gauge
invariant only up to a boundary term is surprising in light
of the fact that our quantized lattice gauge theory can be
mapped exactly onto a commuting projector Hamiltonian. In
particular, this suggests that in spite of the chiral nature of
the resulting pattern of dipolar current flow on the boundary,
our fractonic Chern-Simons theory may not have ungappable
chiral boundary states, as are present in (2+1)D quantum Hall
systems. We defer a better understanding of how our lattice
model preserves gauge invariance at the boundary for future
work.

Second, here we have used a lattice regularization in order
to quantize our theory. This avoids several issues that arise in
the continuum with a compact U(1) theory. Further, a lattice
regularization naturally captures the geometrical aspects of
fracton theories, such as the dependence of the ground-state
degeneracy on system size. Nevertheless, it would be inter-
esting to study other possible regularizations, and understand
whether, or in what sense, a truly continuum version of these
quantum field theories exists.

Third, it is clear that the construction described here admits
several generalizations. First, the higher-rank BF theories de-
scribed in Sec. II can be constructed for theories whose gauge
transformations are not purely second order in derivatives, but
more general polynomials in the momenta. This framework
can potentially be used to explore field theories with fractonic
current conservation laws that result from general subsystem
symmetries [49], including type-II fracton theories [10,31].
Second, our construction can be extended to vector-charge
theories, or (in the case of BF-like actions) to hybrid the-
ories with both vector and scalar charges. This allows one
to contemplate actions that impose a much broader class
of constraints. Such generalizations are clearly necessary to
capture many known fracton orders, and replicate existing
field theories such as Ref. [16]’s description of the X-cube
model.
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APPENDIX A: ALLOWED DIRECTIONS
OF LINE OPERATORS

To see that the line operators must run along certain direc-
tions, we consider an arbitrary linear combination of the two
gauge fields

Al = aAu + bAv. (A1)
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Under gauge transformations,

Al → Al + (a + b)∂x∂yα − (a − b)∂x∂zα − 2b∂y∂zα. (A2)

In order for a line operator of the form
∫

A0dxl to be gauge
invariant, it must be the case that Al → Al + (

∑
k ak∂k )∂lα; in

other words, the gauge transformation must factor. However,
since the gauge transformation contains no terms quadratic in
derivatives along any of the cubic axes, it must have the form

(a + b)∂x∂yα − (a − b)∂x∂zα − 2b∂y∂zα = (c∂x + d∂y)∂zα

(A3)
or similarly with the x, y, and z labels permuted on the
right-hand side. It is easy to check that the only solutions to
this equation have d = −c, for which we obtain the linear
combinations of gauge fields Au, Au∗ , and Au∗∗ given above.
Thus, the six line operators identified in the text exhaust all
gauge-invariant line operators in our model.

APPENDIX B: IRREDUCIBLE REPRESENTATIONS OF C3

The rotation group C3 in three dimensions has four irre-
ducible representations: two scalar representations 	A1 , 	A2 ,
and two two-dimensional representations which we will call
	a, 	b. These descend from the vector (L� = 1) and tensor
(L� = 2) representations of continuous rotations about the
(1,1,1) axis, respectively; in this case, since angular momen-
tum L� = 3 represents a state invariant under C3 rotations,
these are analogous to two vector representations.

For our purposes, it is convenient to describe these ir-
reducible representations using differential operators of the
form ∂i∂ j . Specifically, we represent the matrix element in
the basis of ∂2

l , (∂2
û⊥ + ∂2

u ), ∂l∂u, ∂l∂û⊥ , (∂2
u − ∂2

û⊥ ), ∂u∂û⊥
which form irreducible representations of the quadratic
derivative operator.

In this notation, we have

	A1 = ∣∣∂2
l

〉〈
∂2

l

∣∣, 	A2 = ∣∣∂2
u + ∂2

û⊥

〉〈
∂2

u + ∂2
û⊥

∣∣,
	a = −1

2
(|∂l∂u〉〈∂l∂u| − |∂l∂û⊥〉〈∂l∂û⊥|)

+
√

3

2
|∂l∂û⊥〉〈∂l∂u| −

√
3

2
|∂l∂u〉〈∂l∂û⊥|, (B1)

	b = −1

2

(∣∣∂2
u − ∂2

û⊥

〉〈
∂2

u − ∂2
û⊥

∣∣ + |2∂u∂û⊥〉〈2∂u∂û⊥|)
−

√
3

2
|2∂u∂û⊥〉〈∂2

u − ∂2
û⊥

∣∣ +
√

3

2

∣∣∂2
u − ∂2

û⊥

〉〈2∂u∂û⊥|.

From these, we deduce the form (22) for the operators Da
i , Db

i
transforming in the 2D irreps 	a and 	b.

APPENDIX C: THE CASE β = 0

As discussed in the main text, taking Di to transform purely
in the 	a irreducible representation of C3 yields a theory that
is reminiscent of a stack of decoupled 2D layers. Here, we
give a few more details on the nature of the gauge-invariant
operators and mobility of sources in this theory.

The 	a irreducible representation leads to Di operators of
the form

D1 = d�du, D2 = d�du⊥ . (C1)

In this case, the line operator∮
(A1du + A2du⊥) (C2)

is gauge invariant for any closed curve in the (u, u⊥) plane.
The charge in, and consequently dipole moment perpendicular
to, each (u, u⊥) plane is also conserved.

In addition, the line operators∮
A1d�,

∮
A2d� (C3)

are also gauge invariant. Open line operators of this type can
be made gauge invariant by binding dipoles along the u and u⊥
directions, respectively. However, these are one-dimensional
line operators, in the sense that they are not free to bend. To
see this, consider

δ

(∫ y

x
A1d�

)
= ∂1α

y
x, δ

(∫ y

x
A2d�

)
= ∂2α

y
x . (C4)

By contrast, we have

δ

(∫ y

x
A1du

)
= δ

(∫ y

x
A2du⊥

)
= ∂�α

y
x . (C5)

A similar result holds if we replace u, u⊥, � with any three
distinct directions. Correspondingly, in three dimensions we
also find that

∮
B d� = 0, so the charge along and dipole

moment perpendicular to each � line is also conserved.
If l1, l2, and l3 are not linearly independent, we can,

however, have trivalent junctions between one line in the l1, l2
plane and two lines in the l3 direction. But, this is redundant
since in this case l3 lies in the plane spanned by l1 and l2.

Thus, this theory resembles a stack of decoupled vector
gauge theories, but with extra conservation laws pertaining to
dipole moments in the (u, u⊥) plane. We expect objects with
a dipole moment along � that are free to move in the (u, u⊥)
planes, and objects with dipole moment along u or u⊥ can
move only in the � direction.

We finish by noting that the Chern-Simons term described
here does not fully gap this theory. Specifically, in this case
we may add a Maxwell term that is of the same order in
derivatives as the Chern-Simons term since the operator b =
∂u⊥A1 − ∂uA2 is gauge invariant. Adding a term of the form∑

i E2
i + b2, where Ei is the electric field defined in Eq. (3),

leads to a gapless theory due to the presence of a collective
mode with k� = 0 that is not affected by the Chern-Simons
constraint.

APPENDIX D: LINE OPERATORS IN THE GAPLESS
CHERN-SIMONS THEORY

The constraint obtained by taking the variation of our
Lagrangian with respect to A0 is

s

2π
∂iBi + 1√

3g2

∑
i j

∂i∂ jE� = ρ. (D1)

In order to calculate the commutators of our line operators
with the constraint, it is useful to switch to commutators
between fields in momentum space. We have

[Axy(q), Axz(q′)] = ikδ(q + q′),

[Axy(q), Ayz(q′)] = −ikδ(q + q′), (D2)
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where here

k = −i
[
Axy, Axz

] = 2π/(3s). (D3)

Then,

[Axy(q), Bx(q′)] = ikq′
yδ(q + q′),

[Axy(q), By(q′)] = ikq′
xδ(q + q′), (D4)

[Axy(q), Bz(q′)] = −ik(q′
y + q′

x )δ(q + q′).

Similarly,

[Axz(q), Bx(q′)] = ikq′
zδ(q + q′),

[Axz(q), By(q′)] = −ik(q′
z + q′

x )δ(q + q′), (D5)

[Axz(q), Bz(q′)] = ikq′
xδ(q + q′)

and

[Ayz(q), Bx(q′)] = −ik(q′
y + q′

z )δ(q + q′),

[Ayz(q), By(q′)] = ikq′
zδ(q + q′), (D6)

[Ayz(q), Bz(q′)] = ikq′
yδ(q + q′).

From these, we obtain that

s

2π
[Axy(q′), qiBi(q)] = i

3
(2qxqy − qxqz − qyqz )δ(q + q′),

(D7)
where we have used the fact that ks/2π = 1

3 . Similarly,

1√
3g2

⎡
⎣Axy(q′),

∑
i j

qiq jE�(q)

⎤
⎦

= i

3
(qxqy + qxqz + qyqz )δ(q + q′). (D8)

Combining these, we find that⎡
⎣Axy(q′),

s

2π
∂iBi + 1√

3g2

∑
i j

∂i∂ jE�

⎤
⎦

= i

3
(3qxqy)δ(q + q′). (D9)

Thus, Axy per se does not commute with the constraint.
However, the line operators

∫
Axydx,

∫
Axydy do. Letting C

denote our constraint, we have[∫
dx Axy(r),C(r′)

]

=
∫

dx
∫

d3q
∫

d3q′[Axy(q′),C(q)]ei(q′ ·r+q·r′ )

= i
∫

dx
∫

d3q eiq·(r′−r)qxqy

= i
∫

dx ∂y′∂x′δ(r − r′). (D10)

If we allow ourselves to interchange the derivatives and the
integration, this clearly vanishes since integral is 1 no matter
what x′ is. Although this sounds questionable, I believe that
the derivative of the δ function is defined by integrating by
parts under the integral, which would give the same result.
(In contrast, the derivative of a δ function that is not under an
integral cannot be defined in this way.) Thus, we conclude that
the line operators do commute with the constraint. In general,
this result will hold for any line integral of Axy along a curve
in the xy plane.

[1] X.-G. Wen, Int. J. Mod. Phys. B 4, 239 (1990).
[2] R. Dijkgraaf and E. Witten, Commun. Math. Phys. 129, 393

(1990).
[3] X.-G. Wen and A. Zee, Phys. Rev. B 46, 2290 (1992).
[4] X.-G. Wen, Phys. Rev. Lett. 90, 016803 (2003).
[5] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,

1757 (2006).
[6] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803

(2007).
[7] X. Chen, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 84, 235141

(2011).
[8] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science 338,

1604 (2012).
[9] A. Y. Kitaev, Ann. Phys. (NY) 303, 2 (2003).

[10] J. Haah, Phys. Rev. A 83, 042330 (2011).
[11] G. B. Halász, T. H. Hsieh, and L. Balents, Phys. Rev. Lett. 119,

257202 (2017).
[12] S. Vijay, J. Haah, and L. Fu, Phys. Rev. B 94, 235157

(2016).
[13] S. Vijay, J. Haah, and L. Fu, Phys. Rev. B 92, 235136 (2015).
[14] C. Chamon, Phys. Rev. Lett. 94, 040402 (2005).
[15] T. H. Hsieh and G. B. Halász, Phys. Rev. B 96, 165105 (2017).
[16] K. Slagle and Y. B. Kim, Phys. Rev. B 96, 165106 (2017).

[17] W. Shirley, K. Slagle, and X. Chen, Annals Phys. 410, 167922
(2019).

[18] B. Yoshida, Phys. Rev. B 88, 125122 (2013).
[19] H. Ma, E. Lake, X. Chen, and M. Hermele, Phys. Rev. B 95,

245126 (2017).
[20] S. Vijay, arXiv:1701.00762.
[21] K. Slagle and Y. B. Kim, Phys. Rev. B 96, 195139 (2017).
[22] H. Ma, A. T. Schmitz, S. A. Parameswaran, M. Hermele, and

R. M. Nandkishore, Phys. Rev. B 97, 125101 (2018).
[23] K. Slagle and Y. B. Kim, Phys. Rev. B 97, 165106 (2018).
[24] W. Shirley, K. Slagle, Z. Wang, and X. Chen, Phys. Rev. X 8,

031051 (2018).
[25] M. Pretko and L. Radzihovsky, Phys. Rev. Lett. 120, 195301

(2018).
[26] H. Ma, M. Hermele, and X. Chen, Phys. Rev. B 98, 035111

(2018).
[27] A. Prem, M. Pretko, and R. Nandkishore, Phys. Rev. B 97,

085116 (2018).
[28] M. Pretko, Phys. Rev. B 95, 115139 (2017).
[29] D. Bulmash and M. Barkeshli, Phys. Rev. B 97, 235112 (2018).
[30] A. Prem, J. Haah, and R. Nandkishore, Phys. Rev. B 95, 155133

(2017).
[31] D. Bulmash and M. Barkeshli, arXiv:1806.01855.

023249-21

https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1142/S0217979290000139
https://doi.org/10.1007/BF02096988
https://doi.org/10.1007/BF02096988
https://doi.org/10.1007/BF02096988
https://doi.org/10.1007/BF02096988
https://doi.org/10.1103/PhysRevB.46.2290
https://doi.org/10.1103/PhysRevB.46.2290
https://doi.org/10.1103/PhysRevB.46.2290
https://doi.org/10.1103/PhysRevB.46.2290
https://doi.org/10.1103/PhysRevLett.90.016803
https://doi.org/10.1103/PhysRevLett.90.016803
https://doi.org/10.1103/PhysRevLett.90.016803
https://doi.org/10.1103/PhysRevLett.90.016803
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevB.84.235141
https://doi.org/10.1103/PhysRevB.84.235141
https://doi.org/10.1103/PhysRevB.84.235141
https://doi.org/10.1103/PhysRevB.84.235141
https://doi.org/10.1126/science.1227224
https://doi.org/10.1126/science.1227224
https://doi.org/10.1126/science.1227224
https://doi.org/10.1126/science.1227224
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevLett.119.257202
https://doi.org/10.1103/PhysRevLett.119.257202
https://doi.org/10.1103/PhysRevLett.119.257202
https://doi.org/10.1103/PhysRevLett.119.257202
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevB.96.165105
https://doi.org/10.1103/PhysRevB.96.165105
https://doi.org/10.1103/PhysRevB.96.165105
https://doi.org/10.1103/PhysRevB.96.165105
https://doi.org/10.1103/PhysRevB.96.165106
https://doi.org/10.1103/PhysRevB.96.165106
https://doi.org/10.1103/PhysRevB.96.165106
https://doi.org/10.1103/PhysRevB.96.165106
https://doi.org/10.1016/j.aop.2019.167922
https://doi.org/10.1016/j.aop.2019.167922
https://doi.org/10.1016/j.aop.2019.167922
https://doi.org/10.1016/j.aop.2019.167922
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.95.245126
https://doi.org/10.1103/PhysRevB.95.245126
https://doi.org/10.1103/PhysRevB.95.245126
https://doi.org/10.1103/PhysRevB.95.245126
http://arxiv.org/abs/arXiv:1701.00762
https://doi.org/10.1103/PhysRevB.96.195139
https://doi.org/10.1103/PhysRevB.96.195139
https://doi.org/10.1103/PhysRevB.96.195139
https://doi.org/10.1103/PhysRevB.96.195139
https://doi.org/10.1103/PhysRevB.97.125101
https://doi.org/10.1103/PhysRevB.97.125101
https://doi.org/10.1103/PhysRevB.97.125101
https://doi.org/10.1103/PhysRevB.97.125101
https://doi.org/10.1103/PhysRevB.97.165106
https://doi.org/10.1103/PhysRevB.97.165106
https://doi.org/10.1103/PhysRevB.97.165106
https://doi.org/10.1103/PhysRevB.97.165106
https://doi.org/10.1103/PhysRevX.8.031051
https://doi.org/10.1103/PhysRevX.8.031051
https://doi.org/10.1103/PhysRevX.8.031051
https://doi.org/10.1103/PhysRevX.8.031051
https://doi.org/10.1103/PhysRevLett.120.195301
https://doi.org/10.1103/PhysRevLett.120.195301
https://doi.org/10.1103/PhysRevLett.120.195301
https://doi.org/10.1103/PhysRevLett.120.195301
https://doi.org/10.1103/PhysRevB.98.035111
https://doi.org/10.1103/PhysRevB.98.035111
https://doi.org/10.1103/PhysRevB.98.035111
https://doi.org/10.1103/PhysRevB.98.035111
https://doi.org/10.1103/PhysRevB.97.085116
https://doi.org/10.1103/PhysRevB.97.085116
https://doi.org/10.1103/PhysRevB.97.085116
https://doi.org/10.1103/PhysRevB.97.085116
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.97.235112
https://doi.org/10.1103/PhysRevB.97.235112
https://doi.org/10.1103/PhysRevB.97.235112
https://doi.org/10.1103/PhysRevB.97.235112
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevB.95.155133
http://arxiv.org/abs/arXiv:1806.01855


YOU, DEVAKUL, SONDHI, AND BURNELL PHYSICAL REVIEW RESEARCH 2, 023249 (2020)

[32] Y. You, T. Devakul, F. J. Burnell, and S. L. Sondhi, Phys. Rev.
B 98, 035112 (2018).

[33] T. Devakul, Y. You, F. Burnell, and S. Sondhi, SciPost Phys. 6,
007 (2019).

[34] Y. You, T. Devakul, F. Burnell, and S. Sondhi,
arXiv:1805.09800.

[35] W. Shirley, K. Slagle, and X. Chen, SciPost Phys. 6, 041 (2019)
[36] H. Song, A. Prem, S.-J. Huang, and M. A. Martin-Delgado,

Phys. Rev. B 99, 155118 (2019).
[37] D. Bulmash and T. Iadecola, Phys. Rev. B 99, 125132 (2019).
[38] A. Prem, S. Vijay, Y.-Z. Chou, M. Pretko, and R. M.

Nandkishore, Phys. Rev. B 98, 165140 (2018).
[39] G. Y. Cho, O. Parrikar, Y. You, R. G. Leigh, and T. L. Hughes,

Phys. Rev. B 91, 035122 (2015).
[40] K. Slagle, A. Prem, and M. Pretko, Annals Phys. 410, 167910

(2019).
[41] A. Gromov, Phys. Rev. Lett. 122, 076403 (2019).
[42] M. Pretko, Phys. Rev. B 98, 115134 (2018).
[43] S. Pai and M. Pretko, Phys. Rev. B 97, 235102 (2018).
[44] H. Ma and M. Pretko, Phys. Rev. B 98, 125105 (2018).
[45] M. Pretko, Phys. Rev. B 96, 035119 (2017).
[46] M. Pretko, Phys. Rev. B 96, 115102 (2017).
[47] H. Yan, O. Benton, L. D. Jaubert, and N. Shannon, Phys. Rev.

Lett. 124, 127203 (2020).

[48] Y. You and F. von Oppen, Phys. Rev. Res. 1, 013011 (2019).
[49] A. Gromov, Phys. Rev. X 9, 031035 (2019).
[50] T. Hansson, V. Oganesyan, and S. Sondhi, Ann. Phys. (NY) 313,

497 (2004).
[51] D. J. Williamson, Phys. Rev. B 94, 155128 (2016).
[52] D. J. Williamson, Z. Bi, and M. Cheng, Phys. Rev. B 100,

125150 (2019).
[53] M. Pretko, Phys. Rev. B 96, 125151 (2017).
[54] K. Slagle, D. Aasen, and D. Williamson, SciPost Phys. 6, 043

(2019).
[55] S. Pai and M. Hermele, Phys. Rev. B 100, 195136 (2019).
[56] C. Xu and C. Wu, Phys. Rev. B 77, 134449 (2008).
[57] A. Prem, S.-J. Huang, H. Song, and M. Hermele, Phys. Rev. X

9, 021010 (2019).
[58] E. Fradkin and F. A. Schaposnik, Phys. Rev. Lett. 66, 276

(1991).
[59] D. Eliezer and G. Semenoff, Ann. Phys. (NY) 217, 66 (1992).
[60] K. Sun, K. Kumar, and E. Fradkin, Phys. Rev. B 92, 115148

(2015).
[61] E. Witten, Commun. Math. Phys. 137, 29 (1991).
[62] T. Wang, W. Shirley, and X. Chen, Phys. Rev. B 100, 085127

(2019).
[63] W. Shirley, K. Slagle, and X. Chen, SciPost Phys. 6, 015

(2019).

023249-22

https://doi.org/10.1103/PhysRevB.98.035112
https://doi.org/10.1103/PhysRevB.98.035112
https://doi.org/10.1103/PhysRevB.98.035112
https://doi.org/10.1103/PhysRevB.98.035112
https://doi.org/10.21468/SciPostPhys.6.1.007
https://doi.org/10.21468/SciPostPhys.6.1.007
https://doi.org/10.21468/SciPostPhys.6.1.007
https://doi.org/10.21468/SciPostPhys.6.1.007
http://arxiv.org/abs/arXiv:1805.09800
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.1103/PhysRevB.99.155118
https://doi.org/10.1103/PhysRevB.99.155118
https://doi.org/10.1103/PhysRevB.99.155118
https://doi.org/10.1103/PhysRevB.99.155118
https://doi.org/10.1103/PhysRevB.99.125132
https://doi.org/10.1103/PhysRevB.99.125132
https://doi.org/10.1103/PhysRevB.99.125132
https://doi.org/10.1103/PhysRevB.99.125132
https://doi.org/10.1103/PhysRevB.98.165140
https://doi.org/10.1103/PhysRevB.98.165140
https://doi.org/10.1103/PhysRevB.98.165140
https://doi.org/10.1103/PhysRevB.98.165140
https://doi.org/10.1103/PhysRevB.91.035122
https://doi.org/10.1103/PhysRevB.91.035122
https://doi.org/10.1103/PhysRevB.91.035122
https://doi.org/10.1103/PhysRevB.91.035122
https://doi.org/10.1016/j.aop.2019.167910
https://doi.org/10.1016/j.aop.2019.167910
https://doi.org/10.1016/j.aop.2019.167910
https://doi.org/10.1016/j.aop.2019.167910
https://doi.org/10.1103/PhysRevLett.122.076403
https://doi.org/10.1103/PhysRevLett.122.076403
https://doi.org/10.1103/PhysRevLett.122.076403
https://doi.org/10.1103/PhysRevLett.122.076403
https://doi.org/10.1103/PhysRevB.98.115134
https://doi.org/10.1103/PhysRevB.98.115134
https://doi.org/10.1103/PhysRevB.98.115134
https://doi.org/10.1103/PhysRevB.98.115134
https://doi.org/10.1103/PhysRevB.97.235102
https://doi.org/10.1103/PhysRevB.97.235102
https://doi.org/10.1103/PhysRevB.97.235102
https://doi.org/10.1103/PhysRevB.97.235102
https://doi.org/10.1103/PhysRevB.98.125105
https://doi.org/10.1103/PhysRevB.98.125105
https://doi.org/10.1103/PhysRevB.98.125105
https://doi.org/10.1103/PhysRevB.98.125105
https://doi.org/10.1103/PhysRevB.96.035119
https://doi.org/10.1103/PhysRevB.96.035119
https://doi.org/10.1103/PhysRevB.96.035119
https://doi.org/10.1103/PhysRevB.96.035119
https://doi.org/10.1103/PhysRevB.96.115102
https://doi.org/10.1103/PhysRevB.96.115102
https://doi.org/10.1103/PhysRevB.96.115102
https://doi.org/10.1103/PhysRevB.96.115102
https://doi.org/10.1103/PhysRevLett.124.127203
https://doi.org/10.1103/PhysRevLett.124.127203
https://doi.org/10.1103/PhysRevLett.124.127203
https://doi.org/10.1103/PhysRevLett.124.127203
https://doi.org/10.1103/PhysRevResearch.1.013011
https://doi.org/10.1103/PhysRevResearch.1.013011
https://doi.org/10.1103/PhysRevResearch.1.013011
https://doi.org/10.1103/PhysRevResearch.1.013011
https://doi.org/10.1103/PhysRevX.9.031035
https://doi.org/10.1103/PhysRevX.9.031035
https://doi.org/10.1103/PhysRevX.9.031035
https://doi.org/10.1103/PhysRevX.9.031035
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1103/PhysRevB.94.155128
https://doi.org/10.1103/PhysRevB.94.155128
https://doi.org/10.1103/PhysRevB.94.155128
https://doi.org/10.1103/PhysRevB.94.155128
https://doi.org/10.1103/PhysRevB.100.125150
https://doi.org/10.1103/PhysRevB.100.125150
https://doi.org/10.1103/PhysRevB.100.125150
https://doi.org/10.1103/PhysRevB.100.125150
https://doi.org/10.1103/PhysRevB.96.125151
https://doi.org/10.1103/PhysRevB.96.125151
https://doi.org/10.1103/PhysRevB.96.125151
https://doi.org/10.1103/PhysRevB.96.125151
https://doi.org/10.21468/SciPostPhys.6.4.043
https://doi.org/10.21468/SciPostPhys.6.4.043
https://doi.org/10.21468/SciPostPhys.6.4.043
https://doi.org/10.21468/SciPostPhys.6.4.043
https://doi.org/10.1103/PhysRevB.100.195136
https://doi.org/10.1103/PhysRevB.100.195136
https://doi.org/10.1103/PhysRevB.100.195136
https://doi.org/10.1103/PhysRevB.100.195136
https://doi.org/10.1103/PhysRevB.77.134449
https://doi.org/10.1103/PhysRevB.77.134449
https://doi.org/10.1103/PhysRevB.77.134449
https://doi.org/10.1103/PhysRevB.77.134449
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevLett.66.276
https://doi.org/10.1103/PhysRevLett.66.276
https://doi.org/10.1103/PhysRevLett.66.276
https://doi.org/10.1103/PhysRevLett.66.276
https://doi.org/10.1016/0003-4916(92)90339-N
https://doi.org/10.1016/0003-4916(92)90339-N
https://doi.org/10.1016/0003-4916(92)90339-N
https://doi.org/10.1016/0003-4916(92)90339-N
https://doi.org/10.1103/PhysRevB.92.115148
https://doi.org/10.1103/PhysRevB.92.115148
https://doi.org/10.1103/PhysRevB.92.115148
https://doi.org/10.1103/PhysRevB.92.115148
https://doi.org/10.1007/BF02099116
https://doi.org/10.1007/BF02099116
https://doi.org/10.1007/BF02099116
https://doi.org/10.1007/BF02099116
https://doi.org/10.1103/PhysRevB.100.085127
https://doi.org/10.1103/PhysRevB.100.085127
https://doi.org/10.1103/PhysRevB.100.085127
https://doi.org/10.1103/PhysRevB.100.085127
https://doi.org/10.21468/SciPostPhys.6.1.015
https://doi.org/10.21468/SciPostPhys.6.1.015
https://doi.org/10.21468/SciPostPhys.6.1.015
https://doi.org/10.21468/SciPostPhys.6.1.015

