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Fractional Brownian motion (fBm) is a ubiquitous diffusion process in which the memory effects of the
stochastic transport result in the mean-squared particle displacement following a power law 〈�r2〉 ∼ tα , where
the diffusion exponent α characterizes whether the transport is subdiffusive (α < 1), diffusive (α = 1), or
superdiffusive (α > 1). Due to the abundance of fBm processes in nature, significant efforts have been devoted
to the identification and characterization of fBm sources in various phenomena. In practice, the identification
of the fBm sources often relies on solving a complex and ill-posed inverse problem based on limited observed
data. In the general case, the detected signals are formed by an unknown number of release sources, located
at different locations and with different strengths, that act simultaneously. This means that the observed data
are composed of mixtures of releases from an unknown number of sources, which makes the traditional inverse
modeling approaches unreliable. Here, we report an unsupervised learning method, based on non-negative matrix
factorization, that enables the identification of the unknown number of release sources as well the anomalous
diffusion characteristics based on limited observed data and the general form of the corresponding fBm Green’s
function. We show that our method performs accurately for different types of sources and configurations with a
predetermined number of sources with specific characteristics and introduced noise.

DOI: 10.1103/PhysRevResearch.2.023248

I. INTRODUCTION

Anomalous diffusion has been observed in numerous sys-
tems, and a variety of underlying mechanisms have been
discussed [1,2]. Anomalous diffusion is associated with the
nonlinear dependence of the mean-square displacement on
time, 〈�r(t )〉 ∼ tα with α �= 1. Different mechanisms can
lead to the same asymptotic dependence of the mean-square
displacement on time, or alternatively, to the same diffusion
exponent. However, such processes can differ in their prop-
agator, probability distribution function [1,2], aging [3], and
ergodic properties [4]. Fractional Brownian motion (fBm) is
a common model for anomalous diffusion which stems from
long-range correlations, stationarity, and scaling of the incre-
ments [5]. The fBm has applications in many fields including
finance, climate, solar activity, hydrology, turbulence, and
many others [6]. The fBm diffusion exponent α determines
the diffusion regime. When α < 1, the process is subdiffusive;
when α > 1, the process is superdiffusive; and when α = 1,
we have the normal Brownian diffusion [1]. Examples of
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subdiffusion are the kinetics of passive molecular tracers in
lipid bilayers [7], hopping transport in disordered systems [8],
propagation of nonlinear waves in quasiperiodic potentials
[9], evolution of index prices in financial systems [10], and
many others. Superdiffusion is typically associated with active
processes, and has been observed in living cells [11], in
radiative transport [12], in intracellular particle motion [13],
in transport processes in porous media [14–16], and in many
other cases.

Due to the non-Markovian nature of fBm, much effort
has been devoted to the development of inference methods
for the diffusion characteristics from observed data. Most
of this research has focused on parameter inference using
inverse modeling [17–26]. Inverse modeling typically re-
quires identification of the characteristics of the sources as
well as of the medium. For fractional diffusion, there is
the additional complexity of the propagator describing the
process, which has focused the inverse modeling efforts on
one-dimensional problems [18,19,21,22,24,25,27], while less
attention has been devoted to two- and three-dimensional
problems [23,28]. Furthermore, most research in this field
assumes that the measurements exist at high spatial and
temporal resolutions, a situation that is rarely encountered.
Usually, the identification of release sources relies on solving
a complex ill-posed inverse model against limited amounts of
observed data. Importantly, in most of the naturally occurring
fBm phenomena, the number of the release sources (and their
locations and strengths) is unknown, which severely limits the
reliability of the classical inverse modeling.
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FIG. 1. The configuration of point sources (red diamonds) and the array of detectors (black points). The panels in each row correspond to
different values of the diffusion exponent α (as specified), while the columns correspond to the denoted times. All the sources emitted at time
t0 = −5 years. The source strengths are q1,2,3 = 0.25, 0.6, 0.15 × 1012 mg/km, respectively, and their positions are (in km) [−0.36, −0.2],
[−0.08, 0.2], and [−0.16, 0], respectively. The color denotes the concentration at the different locations and times for each type of diffusion.

Recently, a hybrid method based on matrix factorization
(NMF) combined with Brownian diffusion Green’s function,
called hNMF, was proposed for identifying the properties of
unknown number of emission sources releasing simultane-
ously [29].

Here, we report a generalization of hNMF that enables
identification of fBm diffusion processes (subdiffusion, su-
perdiffusion, or normal diffusion) based on limited observed
data and fBm Green’s functions. To demonstrate the per-
formance of our generalized method, we generate examples
that include anisotropic two-dimensional fBm with drift and
a predetermined number of release sources. We show that
our method determines accurately the unknown number, lo-
cations, and properties of the release sources used to gen-
erate the data (including point sources as well as spatially
and temporally extended sources). We also demonstrate that
the generalized hNMF correctly determines the generalized
diffusion coefficients, the advection velocity, and the diffu-
sion exponent α, and that it accurately estimates the spatial
and temporal extension of the emission in the presence of
noise.

II. PROBLEM FORMULATION

We focus on the problem of identifying the anomalous
diffusion process characteristics based on a limited number of
concentration time series recorded by spatially fixed detectors.
This is fundamentally an inverse problem, but unlike many
previous works, our method is based on the recording of
the concentration at specific locations rather than on single-
particle tracking. The general problem is complex due to the
large number of parameters and the need to identify several
different characteristics. The fundamental step is to be able to
identify the unknown number of sources and their locations
and strengths. This is not a simple task due to the fact
that the concentrations, recorded by each detector, potentially
contain contributions from all sources. Further, each source
may have a finite extent in space and may have a temporally
varying amplitude of emission. In addition to the number of
sources Ñs, their locations xs, ys, and strengths qs (where
s = 1, 2, . . . , Ñs) the medium characteristics must also be de-
termined. The medium, in which the fBm process takes place,
has the following characteristics: (1) the type of diffusion,
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FIG. 2. The concentrations recorded by a detector for three different types of diffusion as denoted by the values of the diffusion exponent
α. The shown time series corresponds to concentration at the circled detector in the top rightmost panel of Fig. 1 at position (xd , yd ) =
(0.4 km, −0.2 km). All three sources (S1, S2, and S3 marked by red diamonds in Fig. 1) release at t0 = −5 years.

i.e., superdiffusion, subdiffusion, or normal diffusion, which
is estimated by the value of the diffusion exponent α (see
Sec. III A); (2) the generalized diffusion coefficients Dx and
Dy, which for the general anisotropic case, can be different in
the two (x and y) directions; and (3) the drift velocity �u, which
for transport in porous media, affects the diffusion.

To illustrate the complexity of the problem, we present in
Fig. 1 temporal snapshots of concentration profiles for subdif-
fusive (α = 0.2), normal diffusive (α = 1), and superdiffusive
(α = 1.8) transport (to generate the synthetic data, we used
parameters that are typical of the transport and dispersion
of contaminants in an aquifer [29]). In each case, emission
originates instantaneously at t0 = −5 years from three point
sources S1, S2, and S3, marked by red diamonds. In all three
cases, the flow is subjected to a drift velocity u = (ux, 0),
where ux = 0.05 km/year in the x direction. In the subdiffu-
sive case, the contribution from each source remains relatively
distinct throughout the illustrated time period of 20 years.
However, for the normal diffusive and superdiffusive cases,
the contributions from the three sources increasingly mix and
become indistinguishable. In reality, complete spatiotemporal
concentration profiles as shown in Fig. 1 are unavailable. Con-
centration information is only available at a limited number of
locations, where the detectors are positioned, shown as black
points in Fig. 1. Examples of concentration times series from
a single detector located at (xd , yd ) = (0.4 km,−0.2 km)
(marked by a red circle in the upper right panel of Fig. 1)
are given in Fig. 2 for the three different types of diffusion
discussed in Fig. 1. Again, as a result of the slow diffusion in
the subdiffusive case α = 0.2, the signal arrives at the detector
in the form of a narrow and concentrated peak. However,
for normal diffusion α = 1 and superdiffusion α = 1.8, the
signal is less concentrated and spread over a much longer
time period as a result of the faster dispersion processes
and the mixing of the source contributions. The extension
of hNMF, we report here, correctly estimates the unknown

number of point sources and evaluates the sources’ loca-
tions and strengths, as well as the medium properties (diffu-
sion exponent, anisotropic generalized diffusion coefficients,
and drift), from a limited number of time series similar to
those shown in Fig. 2. More complicated scenarios, such as
temporally varying emission rates and spatially extended
sources, were also considered.

III. METHODS

A. Fractional Brownian motion Green’s function

There are various mechanisms that lead to anomalous dif-
fusion [1,2]. The simplest mechanism is fractional Brownian
motion (fBm). fBm relies on a memory effect that can be in-
troduced into the Langevin equation describing the dynamics
of a particle [30]. The mechanism was suggested to be relevant
to many processes [6]. Despite the memory effects, fBm is a
Gaussian process, in which, unlike classical Brownian motion,
the increments of the fBm are not independent. The two-
dimensional (2D) Fokker-Planck equation describing Galilei
invariant fBm is

∂C

∂t
= αtα−1

(
Dx

∂2C

∂x2
+ Dy

∂2C

∂y2

)
− ux

∂C

∂x
+ Q, (1)

where C is the concentration, α is the diffusion exponent (0 <

α < 2), Dx, Dy are the generalized diffusion coefficients in the
x and y directions, respectively, ux is the drift velocity in the x
direction (the coordinate system is chosen such that uy ≡ 0),
and Q(�r, t ) is the source function.

The Green’s function (propagator) of the above Fokker-
Planck equation, with a physical boundary condition request-
ing the concentration to vanish at an infinite distance from the
source, is given by (see [31] for the 1D propagator)

GfBm(�r, t ) = 1

4π
√

DxDytα
e− (x−uxt )2

4Dxtα e− y2

4Dytα . (2)
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For Ñs instantaneous point sources [i.e., Q(�r, t ) =∑Ñs
s=1 qsδ(�r − �rs)δ(t − ts)], the concentration is given by the

sum of the contributions of the different sources [the contri-
bution of each point source is give by Eq. (2) multiplied by
the source strength qs]:

C(�r, t ) =
Ñs∑

s=1

qs

4π
√

DxDy(t − ts)α

× e− [x−ux (t−ts )−xs ]2

4Dx (t−ts )α e− (y−ys )2

4Dy (t−ts )α . (3)

For release sources whose emission is finite in duration, the
source function QT (�r, t ) takes the form

QT (�r, t ) =
Ñs∑

s=1

qsδ(�r − �rs)�
(
t − t on

s

)
�

(
t f
s − t

)
, (4)

where �(t ) = 0, if t < 0, and �(t ) = 1, if t � 0, while t on
s , t f

s

are the beginning and end times of emission by the sth source,
respectively. In this case, for t > t f

s > t on
s for s ∈ [1, Ñs], the

concentration is given by

CT (�r, t ) =
∫ t

−∞
GfBm(�r − �r′, t − t ′)QT (�r′, t ′)dt ′

=
Ñs∑

s=1

qs

∫ t f
s

t on
s

GfBm(�r − �rs, t − t ′)dt ′. (5)

Here, the limits of integration in Eq. (5) arise from the finite
emission duration of the sources.

For spatially extended rectangular sources, the source func-
tion QS (�r, t ) takes the form

QS (�r, t ) =
Ñs∑

s=1

qs�
(
x − xl

s

)
�

(
xr

s − x
)

×�
(
y − yl

s

)
�

(
yr

s − y
)
δ(t − ts). (6)

Here, xl
s, xr

s are the left and right boundaries of the sth
source and similarly for the y coordinate to define rectangular
sources. ts is time at which the sth source emitted. The
concentration in this case is given by

C(�r, t ) =
∫ ∞

−∞

∫ ∞

−∞
GfBm(�r − �r′, t )QS (�r′, t )d�r′ =

Ñs∑
s=1

qs

∫ xr
s

xl
s

∫ yr
s

yl
s

dx′dy′GfBm(�r − �r ′, t − ti )

=
Ñs∑

s=1

qs

4

[
erf

(
ux(t − ts) + xr

s − x√
4Dx(t − ts)α

)
− erf

(
ux(t − ts) + xl

s − x√
4Dx(t − ts)α

)][
erf

(
yr

s − y√
4Dy(t − ts)α

)
− erf

(
yl

s − y√
4Dy(t − ts)α

)]
. (7)

B. Hybrid non-negative matrix factorization (hNMF) method

The hybrid non-negative matrix factorization (hNMF)
method reported in Ref. [29] combines the following: (i)
Green’s function of the Fokker-Planck equation (FPe) that
describes normal diffusion transport with (ii) a nonlinear
iterative minimization procedure and (iii) a customized clus-
tering, introduced previously as a method for estimating the
number of the latent features in NMF [32]. It was shown that
the hNMF can successfully identify the unknown number of
release sources, as well as the parameters of the FPe. To do
this, the hNMF’s algorithm explores the space of plausible
solutions and narrows the set of possibilities by estimating
the optimal number of release sources needed to reconstruct
the observed data in a robust manner. Here, we generalize
the hNMF to be adequate for fBm processes and show that
the extended method can accurately determine the number
of release sources and their locations and strengths, as well
as the diffusion exponent and the transport properties of the
medium (Dx, Dy, ux). We also demonstrate the importance of
this extension for the correct identification of the unknown
number of release sources. In what follows, we assume point
sources with the Green’s function given by Eq. (2); for the
other source types, it has to be replaced by the appropriate
Green’s function.

1. Non-negative matrix factorization (NMF)

The usual interpretation of NMF is as a method for a
low-rank matrix approximation of the observed data matrix

C, whose size is T × n, by two unknown matrices W and
H , C ≈ W H , both containing one small dimension Ns (which
is the estimate for the actual number of sources Ñs). This
approximation (that is, matrix decomposition) is performed
through nonconvex minimization with a given distance met-
ric || . . . ||dist : min||Ci j − ∑Ns

s=1 WisHs j ||dist constrained by the
non-negativity of W and H , Wis � 0; Hs j � 0. NMF has
proven very useful for face recognition, text recognition, di-
mension reduction, unsupervised learning, anomaly detection,
blind source separation (BSS), etc. [33]. NMF is underpinned
by a well-defined statistical model of superimposed compo-
nents that, when the distance metrics || . . . ||dist is the Eu-
clidean distance, can be treated as a Gaussian mixture model
[34]. In this probabilistic interpretation, NMF is equivalent
to the expectation-maximization (EM) algorithm [35]. EM
is developed to find the maximum likelihood estimates of
parameters in statistical models, when the model depends on
unobserved, i.e., latent or hidden, variables. In this proba-
bilistic interpretation of NMF, the observables c1, c2, . . . , cn

(ci is a column vector with T elements), which are the
columns of the data, C, are generated by Ns latent variables
h1, h2, . . . , hNs . Specifically, each observable ci is generated
from a probability distribution with mean, 〈ci〉 = ∑Ns

s=1 Wishs,
where Ns is the (unknown) number of latent variables. The
influence of hs on ci is through the basis patterns and features
of the considered phenomenon w:s represented by the columns
of W [36]. It is known that the probabilistic interpretation of
NMF is particularly valuable when dealing with stochastic
signals [34].
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In our case, the observed data C are formed by the mixing
of Ñs signals, at the locations of each one of the n detec-
tors, �rd ≡ (xd , yd ), d = 1, . . . , n, at the times of the records
tm, m = 1, 2, . . . , T . Each one of the n detectors is situated
at a different location, �rd = (xd , yd ), and measures a mixture
of the signals originating from Ñs point sources located at
the positions �rs = (xs, ys), s = 1, 2, . . . , Ñs, with respective
strengths qs. The fractional diffusion, characterized by the
diffusion exponent α, occurs in a medium with generalized
diffusion coefficient (Dx, Dy) and drift ux. The transient signal
recorded by the dth detector is assumed to be generated from
a normal probability distribution with mean

〈c�rd ,tm〉 =
Ns∑

s=1

Ws,(�rd ,tm )Hs, (8)

where the index �rd denotes the position of the recording
detector, and the index tm denotes the time point when the
observed data have been recorded. Further, Ws,(�rd ,tm ) are the
fBm Green’s functions [Eq. (2)] of each source. Ws,(�rd ,tm ) in
Eq. (8) can be considered as a specific kernel [37] that depends
on space-time. H contains Ns hidden variables, independent
of time and space, that generate the observables c(�rd , tm) at
points (�rd , tm) via the weights Ws,(�rd ,tm ). Note that both Ws,(�rd ,tm )

and Hs ≡ qs are non-negative.
For given detectors’ locations, time points, and the func-

tional form of the fBm Green’s function [Eq. (2)], our aim
is to estimate the (unknown ) number of sources Ñs and to
determine the source parameters xs, ys, qs (s ∈ [1, Ñs]) and
the medium transport characteristics ux, Dx, Dy, as well as the
diffusion exponent α. In this interpretation and from Eq. (8),
the minimization can be performed by nonlinear least squares
on the objective function O,

O =
n∑

d=1

T∑
m=1

(
C�rd ,tm −

Ns∑
s=1

Ws,(�rd ,tm )Hs

)2

, (9)

where d marks the detectors, and m marks the time points of
the records.

The minimization of the objective function O assumes
that each measurement at a given space-time point (�rd , tm)
is an independent Gaussian-distributed random variable. If
each detector has its own distinct (possibly time-dependent)
measurement error, the objective function in (9) should be
replaced by a weighted sum of least squares, where each
deviation from the corresponding observation is weighted by
the inverse square of its measurement error.

2. Custom clustering and NMFk

NMF is sufficient to carry a constrained optimization prob-
lem to extract desired parameters when the number of sources
Ñs is known; however, we rely on the signals measured by
the detectors, which record mixtures arising from an unknown
number of sources. To determine this unknown number of
sources (that is, the number of the latent features), we uti-
lize an approach called NMFk, introduced in earlier works
[29,32,38].

NMFk explores the possible number of sources Ns, starting
from Ns = 1, 2, . . . , P [P is less than min(n, T )]. For each
explored number of sources Ns, a set UNs (we call it a run)

of M ∼ 200 minimizations are computed, each minimiza-
tion generated from random initial guesses for the unknown
parameters (within specific physical bounds). The set of M
solutions in the set UNs , for Ns sources, is given by

UNs = ([(X,Y, Q)1, (ux, Dx, Dy, α)1],

. . . , [(X,Y, Q)M , (ux, Dx, Dy, α)M ]), (10)

where (X,Y, Q)i denotes the unknown coordinates and
strengths of the Ns sources; [(x1, y1, q1), . . . , (xNs , yNs , qNs )]i

in the ith NMF minimization with advection veloc-
ity, generalized diffusion coefficients and diffusion ex-
ponent (ux, Dx, Dy, α)i. After we build the set of M
NMF solutions (for Ns sources), the parameters pertain-
ing to sources [(x1, y1, q1), . . . , (xNs , yNs , qNs )]i are sub-
jected to customized clustering into Ns number of clus-
ters. For a single NMF run with Ns sources, a to-
tal of M ∼ 200 simulations are carried out, which gives
M tuples [(X,Y, Q)i, (ux, Dx, Dy, α)i]. Each of the tuples
[(X,Y, Q)i, (ux, Dx, Dy, α)i] represents a distinct solution for
nominally equivalent NMF minimizations, where the differ-
ence arises as a result of the random initial guesses. Next,
we perform customized clustering, assigning the parameters
of each Ws,(�rd ,tm ) of all M solutions to one of Ns clusters.
This customized clustering is similar to k-means clustering
but with an additional constraint which constrains the num-
ber of elements in each of the clusters to be equal to the
number of solutions M. For example, with M = 200, each
one of the Ns identified clusters must contain exactly 200
solutions. This condition has to be enforced since each NMF
minimization (producing a given [(X,Y, Q)i, (ux, Dx, Dy, α)i]
tuple) contributes only one solution, and accordingly has
to supply exactly one element to each cluster. During the
clustering, similarity between the elements is measured by
cosine similarity, which calculates the cosine of the angle
between two vectors and is a natural choice for similarity
between non-negative vectors [39].

Further, to identify the optimum number of sources, NMFk
calculates the clusters’ stability for each explored number of
sources Ns. The optimum number of sources Ns, which is used
to estimate the true Ñs, is the number of sources for which
the corresponding clusters are relatively stable and separable
and whose centroids result in a small reconstruction error (see
below).

To quantify the stability and separability of the clustering
for a given number of sources, NMFk utilizes the silhouette
statistics S [40], which is developed to measure the similarity
between an element and the elements of its own cluster
compared to the centroids of other clusters. The S values are
between [−1, 1], and S measures how well each element has
been classified by the clustering. The main idea of NMFk is
to use the cohesion of the clusters (how compact they are)
and the separation between them as a measure of the stability
of the solutions of the minimization with different random
initial guesses and hence the quality of a particular choice
of Ns. In previous works, NMFk even “shuffled” randomly
the observed data C to increase the effect of robustness of the
average solutions [41–43].

The intuitive reasoning behind the idea of stability is as
follows. In the case of underfitting, i.e., for solutions with a
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FIG. 3. Measured (black lines) and estimated signals (green, red, and blue markers) at three detectors. The left column (a) shows the
reconstructed signal for two, three, or four sources and α = 0.8, and the right column (b) shows the same information for α = 1.2. The
different rows correspond to different detectors whose coordinates are specified. The estimated signals are all for normal diffusion α = 1.

number of sources less than the actual number of sources, the
clustering could be good; for example, several of the sources
could be combined to produce a “supercluster.” However,
the clustering will break down significantly in the case of
overfitting, when the estimated number of sources exceeds the
true number of sources. Indeed, in this case, we do not expect
the solutions to be well clustered since there is no unique way
to reconstruct the solutions with number of clusters >Ñs, and
at least some of the clusters will be artificial, rather than real
entities.

The other metrics that NMFk utilizes is the relative re-
construction error R = ||C − W H ||/||C||, which measures the
relative deviation of the obtained solution W H from the orig-
inal data C. The reconstruction error R evaluates the accu-
racy with which the average solution, that is, the solution
constructed with the parameters taken from the centroids of
the clusters, reproduce the observed data C. In general, the
solution accuracy increases (while the stability of the clusters
decreases) with the increase in the number of the sources
(increasing the number of the parameters in the minimization).

In summary, NMFk calculates the average silhouette width
S and the average reconstruction error R for each choice of
the unknown number of sources, in order to estimate the true
number of release sources Ñs. NMFk determines Ñs to be
equal to the number of sources that accurately reconstruct
the observations (i.e., their relative reconstruction error R
is small enough) and the clustering of the sets of solutions
corresponding to Ns, obtained with random initial conditions,
to be sufficiently robust (i.e., the average silhouette width S to
be close to 1).

IV. GENERATION OF SYNTHETIC DATA

In order to validate the generalization of the hNMF
method, we generated synthetic data sets using Eq. (3)

for different types of diffusion (dictated by the values of
α). The parameters that were used here to generate the
synthetic data are typical for groundwater contamination [29].
The parameters correspond to the case of normal diffusion,
and for the case of anomalous diffusion, the values of the
Brownian dispersion coefficients were used as generalized
diffusion coefficients. We used Dx = 0.005 km2/yearα and
Dy = 0.00125 km2/yearα , t0 = −5 years and α ∈ [0, 2] (α <

1 corresponds to subdiffusion and α > 1 corresponds to su-
perdiffusion). The choices of source and detector positions
that were used for the results in Figs. 3 and 4 are shown in
Fig. 1. In Fig. 5, two different configurations are shown. Each
synthetic data set contains 30 time series for 0 years < t <

50 years with equal sampling intervals such that each series
includes a total of 80 concentration values (see Figs. 2 and 5
for examples).

V. NUMERICAL EXPERIMENTS

A. Generalized hNMF is needed for the accurate
identification of fBm sources

In order to illustrate the importance of the generalized
hNMF method, we considered synthetic data generated us-
ing α = 0.8 (subdiffusion) and α = 1.2 (superdiffusion), the
parameters listed in Sec. IV, and the configuration of sources
and detectors shown in Fig. 1. Both values of the diffusion
exponent are close to normal diffusion α = 1. We ran the
hNMF with α set to 1 (i.e., removing the degree of freedom
of the diffusion exponent). The reconstructed signals at the
locations of three different detectors are depicted in Fig. 3.
The synthetic data corresponding to α = 0.8 and 1.2 are
presented by solid black lines in the left (right) panels, and the
circles represent the reconstructed signals at these locations
using 2, 3, or 4 point sources. Figure 3 demonstrates that in all
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FIG. 4. The reconstruction and silhouette measures for different numbers of sources. The upper row (a), (b) corresponds to α = 0.8 and
the lower row (c), (d) to α = 1.2. The left column corresponds to the method with α set equal to one (i.e., looking for the best normal diffusion
parameters to describe the measurements), and the right column corresponds to the full method with α being extracted by the method.

cases, the detector observations are well approximated despite
the wrong propagator used and the wrong number of sources.
It is, therefore, clear that the ability to approximate detector
observations alone is not sufficient to determine the number
of sources and their locations or the diffusion characteristics.

If the α is not forced, we see slightly better reconstructions as
generalized hNMF recognizes the correct number of sources
with the appropriate diffusion characteristics.

In Fig. 4, we present the reconstruction metrics R and
average silhouette S for the different numbers of sources (Ns)
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FIG. 5. Generalized hNMF benchmarks for two spatial configurations with four (upper panel 1) and five (bottom panel 2) release
sources. Subfigures, noted by (ai), (bi), (ci), and (ei), i = 1, 2, represent (ai) spatial configuration of sources and detectors, (bi) time series
of the concentration measured by a detector at �rd = (0.6, 0.6) with the reconstructed signal; solid line represents recorded signals, and
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determined by the hNMF.
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FIG. 6. Reconstruction error and average silhouette for noisy data. The three panels correspond to the denoted values of α. The
configuration is the same as shown in Fig. 1 and the noise amplitude is μ = 0.03 [see Eq. (11)]. The shaded area represents the range of
values obtained from 50 realizations of the noise.

for α = 0.8 (subdiffusion) (upper row) and α = 1.2 (superdif-
fusion) (lower row). The left column corresponds to a forced
α = 1, that is, to the old hNMF. The right column corresponds
to the results of the generalized hNMF with the diffusion
exponent derived by the minimization described in Sec. III B.
From Fig. 4, it can be concluded that with α set to one (left
column), both the reconstruction R and the average silhouette
S decrease as the number of sources increases, for both sub-
diffusion and superdiffusion. This observation implies that,
despite the better fit of the data by the estimated parameters,
the increase in the number of sources worsens the clustering
quality (a reduced silhouette). The reduction of the average
silhouette stems from the fact that the old hNMF model used
to describe the data does not account for anomalous diffusion.
In the right column, we show that when the generalized
hNMF is used, with the diffusion exponent extracted by the
minimization, for both subdiffusion and superdiffusion, the
maximum value of the silhouette and the minimal value of the
reconstruction are obtained for the correct number of sources
(three) that was used to generate the synthetic data.

B. Generalized hNMF accurately identifies fBm
sources and properties of the medium

We applied the generalized hNMF method to different con-
figurations of point sources and detectors and found that the
method provides a correct estimate of the number of sources,
their strengths and positions, and medium characteristics (drift
velocity, generalized diffusion coefficients, and the diffusion
exponent). Figure 5 demonstrates the results of our extended
hNMF method, for two different numbers of release point
sources and spatial configurations, and for three values of the
diffusion exponent corresponding to subdiffusion, normal dif-
fusion, and superdiffusion. Figures 5(b1) and 5(b2) show the
reconstruction of the original signal measured by the detector
located at (0.6,0.6). The solid line represents the original sig-
nal recorded by the detector, and the markers are the solution
estimates by the extended hNMF method. It is clear that the
signals are well reconstructed for all cases of the diffusion
exponent α. Figures 5(c)–5(e) demonstrate that the extended
hNMF identified the correct number of release sources.

Figures 5(c)–5(e) of the two panels show the average
reconstruction errors (left, blue) and average silhouette widths
(right, red) used to determine the unknown number of release
sources present in the system. It is clear from these figures
that our extended method correctly estimates the number of
sources, their characteristics, and the transport characteristics
for all the cases of the diffusion exponent considered here.

We also tested the performance of the method with con-
figurations consisting of temporally extended and spatially
extended sources. In all these cases, the generalized hNMF
method provides accurate estimates of the duration of emis-
sion and the spatial extension of the sources. We also verified
that for the synthetic data that was generated using point
sources, when the method was implemented using the prop-
agator for spatially extended sources, the estimated size of the
sources was smaller than any spatial scale of the configuration
(the dispersion radius between sequential measurements, the
distance between detectors, the distance between sources, and
the drift distance between sequential measurements).

C. Noisy data

Real data often include noise. The noise can be due to
the measuring device(s) or due to other effects which are not
accounted for in the Green’s function describing the process.
In many realistic cases, the noise is proportional to the signal.
In order to test the applicability and robustness of the hNMF,
we considered noisy data. The data were generated in the
same way described in Sec. IV for the configuration shown
in Fig. 1. In order to add the noise, the precisely calculated
concentration (at each time and position) was multiplied
by a random number drawn from a uniform distribution
according to

C(�r, t ) = C(�r, t )[1 + μz(�r, t )]. (11)

The probability density function of z(�r, t ) is simply

p(z(�r, t )) =
{

1/2, −1 � z � 1
0, else. (12)

In Fig. 6, we present the reconstruction error and the
average silhouette for different numbers of sources. The three
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FIG. 7. The normalized hNMF estimated parameters and the associated uncertainties. The three panels correspond to the denoted values
of α. The configuration is the same as shown in Fig. 1 and the noise amplitude is μ = 0.03 [see Eq. (11)]. The error bars represent the range
of values obtained from 50 realizations of the noise.

panels correspond to the specified values of the diffusion
exponent α (corresponding to subdiffusion, normal diffusion,
and superdiffusion).

For the cases of subdiffusion (α = 0.5) and normal dif-
fusion (α = 1), the reconstruction error and the average sil-
houette show a similar behavior to that found for data in
the absence of noise, and the correct number of sources
is identified. For the superdiffusive case, where the mixing
of the signals from the three sources is stronger, for some
realizations of the noise, the average silhouette does not show
the same sharp decrease, and the identification of the number
of sources is more challenging. For lower values of the noise,
the hNMF shows the same performance as for the exact data.

The noise also introduces uncertainty in the estimated
values of the parameters. In Fig. 7, we present the estimated
values of the parameters for the same diffusion exponents
shown in Fig. 6. Each parameter was normalized by the true
value in order to present the relative error and uncertainty.
The uncertainty range is larger for larger diffusion exponents
where the mixing of the signals from the different sources
is larger. For the normal diffusion and the superdiffusion,
the uncertainty in the estimation of the amplitude of the
third source is the largest. The noise is proportional to the
total signal, and the third source has the smallest amplitude.
Therefore, the noise relative to the signal from this source is
much larger and it affects the uncertainty associated with its
estimated amplitude.

VI. CONCLUSIONS

Inverse modeling of anomalous diffusion is of great interest
in many fields, including material science, physics, finances,
biology, and many others. The value of an inverse modeling
approach lies in its ability to correctly estimate the unknown
number of release sources and their characteristics, as well

the medium characteristics and the diffusion exponent. We
demonstrated that the generalized hNMF introduced here,
which is based on the integration of unsupervised learning and
Green’s function of the fBm governing equation, is capable
of providing accurate estimates of the number of sources,
their properties, and the medium characteristics that result
in subdiffusion, Brownian diffusion, or superdiffusion. The
method was shown to work with different types of sources,
including point sources, temporally extended sources, and
spatially extended ones with various configurations. The gen-
eralized hNMF method also provides information regarding
the validity of the type of the propagator that is used. If the
propagator is not appropriate (e.g., if it is the propagator of
normal diffusion), the method showed that it is impossible to
have maximal silhouette and minimal reconstruction metrics
for any number of sources. When the adequate propagator is
used, the optima that were found corresponded to the con-
figurations that were used to generate the synthetic data. The
results presented here and previous successful applications
of the hNMF for inverse problems suggest that this method
might be further extended to account for different mechanisms
of anomalous diffusion (such as the continuous-time random
walk and quenched disorder). Of particular interest are gener-
alizations of the hNMF that would enable the extraction of the
scaling relations based on limited observations.
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