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Nonequilibrium thermodynamics and optimal cooling of a dilute atomic gas
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Characterizing and optimizing thermodynamic processes far from equilibrium is a challenge. This is especially
true for nanoscopic systems made of a few particles. We here theoretically and experimentally investigate the
nonequilibrium dynamics of a gas of a few noninteracting cesium atoms confined in a nonharmonic optical
dipole trap and exposed to degenerate Raman sideband cooling pulses. We determine the axial phase-space
distribution of the atoms after each Raman cooling pulse by tracing the evolution of the gas with position-
resolved fluorescence imaging. We evaluate from it the entropy production and the statistical length between
each cooling step. A single Raman pulse leads to a nonequilibrium state that does not thermalize on its own,
due to the absence of interparticle collisions. Thermalization may be achieved by combining free phase-space
evolution and trains of cooling pulses. We minimize the entropy production to a target thermal state to specify the
optimal spacing between a sequence of equally spaced pulses and achieve in this way optimal thermalization. We
finally use the statistical length to verify a refined version of the second law of thermodynamics. Altogether, these
findings provide a general theoretical and experimental framework to analyze and optimize far-from-equilibrium
processes of few-particle systems.
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I. INTRODUCTION

Nonequilibrium processes are omnipresent in nature. Ow-
ing to their complexity and diversity, their description far
away from thermal equilibrium is nontrivial [1]. A defining
property of out-of-equilibrium systems is that they dissipate
energy in the form of heat, leading to an irreversible increase
of their entropy. The irreversible entropy production is thus
a central quantity of nonequilibrium thermodynamics, the
same way that entropy is a central quantity of equilibrium
physics [1]. In the past decades, the laws of thermodynamics
have been successfully extended to small nonequilibrium
systems [2–6]. In these systems, thermal fluctuations can no
longer be neglected and thermodynamic variables are there-
fore random. In particular, the second law has been gener-
alized in the form of fluctuation theorems that quantify the
occurrence of negative entropy production events [2–6]. The
stochastic properties of the nonequilibrium entropy produc-
tion have been extensively investigated, both theoretically and
experimentally, for microscopic systems such as colloidal par-
ticles [2–12]. On the other hand, only a few experiments have
probed nonequilibrium thermodynamics in nanoscopic sys-
tems so far. These include one-particle systems, such as a sin-
gle spin-1/2 [13,14] or a single harmonic oscillator [15,16],
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two-spin systems [17,18], and many-particle systems, such
as cold-atomic gases [16,19–21]. However, to our knowledge,
no such nonequilibrium thermodynamic experiment has been
realized in the intermediate regime of few-particle systems.

The laws of thermodynamics are not only of fundamental
but also of practical importance. A primary objective of ther-
modynamics is thus to optimize processes. Optimization goals
vary depending on the application, ranging from the mini-
mization of dissipation to the maximization of work output
or of cooling power [22]. For macroscopic systems, the prop-
erties of optimal transformations have been studied within
finite-time thermodynamics [23–26]. The two central quan-
tities of this approach are the entropy production, which char-
acterizes energy dissipation, and the thermodynamic length,
which measures the distance from equilibrium at which a
system operates. Both are commonly calculated in the lin-
ear response regime by expanding thermodynamic potentials,
such as entropy or internal energy, to second order around
equilibrium [23–26]. Optimization schemes are usually devel-
oped by minimizing one of the two. These techniques have
been employed to optimize fractional distillation and other
processes [23–30]. On the other hand, for microscopic sys-
tems, where thermal fluctuations are sizable, this optimization
framework has been extended to the level of single trajec-
tories within stochastic thermodynamics for linear [31] and
nonlinear [32] systems. Methods to theoretically compute and
experimentally evaluate the thermodynamic length have been
proposed [33–36]. However, despite these theoretical studies,
such nonequilibrium optimization schemes have still to be
demonstrated experimentally. In particular, thermodynamic
distances have not been measured yet.
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A further complication arises in atomic systems. A cen-
tral assumption of finite-time thermodynamics and stochastic
thermodynamics is indeed that systems are coupled to ideal
heat baths that induce full phase-space thermalization, that
is, of both position and momentum degrees of freedom.
However, this hypothesis is often not fulfilled at the atomic
level. A prominent instance is provided by laser cooling of
atoms which plays an essential role in the study of new states
of matter and high-resolution spectroscopy [37]. Most laser
cooling schemes only induce thermalization of the momentum
degrees of freedom [38]. In dense atomic samples, frequent
atomic collisions redistribute the energy and establish thermal
equilibrium. By contrast, in dilute gases with rare interpar-
ticle collisions, these nonideal reservoirs lead to far-from-
equilibrium states that do not thermalize on their own. Their
description thus lies outside the currently existing framework.
New experimental and theoretical tools are hence required to
achieve their thermalization.

We here report the theoretical and experimental investiga-
tion of the nonequilibrium dynamics and the thermalization
of a dilute gas of cesium atoms confined in an optical dipole
trap [38], and illuminated by laser pulses for degenerate
Raman sideband cooling (DRSC) [39–41]. This technique is
a standard subrecoil cooling scheme for a variety of atomic
systems [42–51]. The present study of a few-particle system
coupled to an engineered bath allows us to experimentally ac-
cess key nonequilibrium quantities in a well-controlled atomic
setup. It further gives us the opportunity to illustrate and
validate our general nonequilibrium optimization approach
with a common laser cooling example. We determine in
particular, for each thermalization step, the nonequilibrium
entropy production and a generalized thermodynamic length
appropriate for these nonideal reservoirs. We use the former
quantity to optimize the cooling of the few-atom system and
the latter one to gain physical insight into the optimal cooling
process and verify a refined version of the second law of
thermodynamics known as the horse-carrot theorem [26,27].

In our experiment, short pulses of Raman cooling lasers
are applied to an initial thermal cloud along the axial di-
rection of our nonharmonic trap. Axial and radial directions
are only weakly coupled, rendering the problem essentially
one-dimensional. The Raman pulses thermalize the atomic
momentum distribution to the Raman temperature, thus cool-
ing the system, but leave the position distribution unchanged.
They hence create for most initial conditions a nonequilibrium
state that does not thermalize on its own, due to the absence
of interparticle collisions. In order to realize complete phase-
space thermalization at the Raman temperature, we devise
protocols consisting of a train of Raman pulses separated
by intervals of free evolution (Fig. 1). For concreteness, we
consider a sequence of three equally spaced pulses. The first
Raman pulse (RP1) decreases the energy of the gas and moves
it out of equilibrium. The second and third pulses (RP2 and
RP3) drive the gas back toward a thermal state while cooling it
further. For quasiharmonic trapping potentials, thermalization
is routinely established by using a pulse spacing of a quarter
of the trap period [52]. This method has, for instance, recently
led to the all-optical Bose condensation of Rb atoms without
an evaporative cooling stage [53]. For the strongly anhar-
monic potential of our experiment, the trap leads to nontrivial

en
er

gy

thermal

Raman pulse 1

RP2

RP3

non-thermal

FIG. 1. An initial thermal state ρ0 of a noninteracting gas of
Cs atoms at temperature T0 is cooled and rethermalized toward a
final state ρ f at the lower (Raman) temperature TR. This is achieved
by applying a train of equally spaced degenerate Raman sideband
cooling pulses (red, orange, and blue), which only thermalize the
momentum degree of freedom. The first cooling pulse thus creates a
nonthermal state while the successive Raman pulses, combined with
free evolution, drive the system toward the target thermal state ρ f .

dynamics of the nonequilibrium states and raises the question
of the choice of the pulse spacing in this case. We seek the
optimal pulse spacing τ by minimizing the entropic distance
to the equilibrium target state ρ f at the Raman temperature,
employing both a static and a dynamical criterion, which lead
to the same result. An analysis of the nonequilibrium statis-
tical length furthermore reveals that optimal thermalization is
mainly reached during the first two cooling stages, with nearly
equal statistical distances.

The outline of the paper is as follows. We begin in Sec. II
by deriving the nonequilibrium entropy production and the
statistical length for the nonideal reservoirs occurring in the
experiment. We further introduce the horse-carrot theorem
and the two criteria used to optimize the thermalization. In
Sec. III we illustrate the physical meaning of the static and dy-
namical optimization criteria for the analytically solvable case
of a harmonic trapping potential. We additionally present the
experimental setup in Sec. IV and the numerical phase-space
reconstruction of the phase-space distributions in Sec. V.
Finally, in Sec. VI, we demonstrate optimal thermalization in
a strongly nonharmonic trap and an experimental verification
of the horse-carrot theorem.

II. NONEQUILIBRIUM QUANTITIES AND
OPTIMIZATION CRITERIA

As illustrated in Fig. 1, the goal of the DRSC protocol is to
reach the final thermal state

ρ f (z, pz ) ∝ exp

(
−V (z)

kTR
− p2

z

2mkTR

)
(1)

at the DRSC temperature TR (k is the Boltzmann constant),
where ρ(z, pz ) is the projected phase-space density onto the
(z, pz ) plane, which is the relevant subspace for our experi-
ment, and V (z) denotes the axial potential. In order to quantify
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the approach of a nonthermal state ρi produced by the DRSC
scheme to the final target state ρ f , we employ the relative
entropy between these two states [60]:

D(ρi||ρ f ) =
∫

dzd pz ρi(z, pz ) ln

(
ρi(z, pz )

ρ f (z, pz )

)
. (2)

Similarly, the corresponding quantities D( fi|| f f ) =∫
dz fi ln( fi/ f f ) and D( f̃i|| f̃ f ) = ∫

d pz f̃i ln( f̃i/ f̃ f ) can
be defined for the respective position and momentum
projections, f (z) and f̃ (pz ), of the phase-space distribution.
The relative entropy is an information-theoretic quantity
that satisfies the property that D(ρi||ρ f ) � 0, equality being
achieved only for ρi = ρ f [60]. This renders the relative
entropy a useful indicator for the approach to the final target
state.

The relative entropy also possesses a simple thermody-
namic interpretation [61–64]. For a nonequilibrium process
from an initial thermal state ρ0, at inverse temperature β0 =
(kT0)−1, to a final thermal state ρ f , at inverse tempera-
ture β f = (kTf )−1, the (axial) Gibbs-Shannon entropy, S =
− ∫

dzd pz ρ ln ρ, satisfies [61–64]

�S = S f − S0 = β f Q + �. (3)

Here, Q = ∫
dzd pz(ρ f − ρ0)H is the heat absorbed by the

system, H its Hamiltonian, and � = D(ρ0||ρ f ) the nonequi-
librium entropy production given as the relative entropy be-
tween initial and final states.

For a discrete sequence of nonthermal intermediate states
ρi (i = 1, 2, 3), as created after each Raman cooling pulse in
our experiment, the entropy production associated with each
step reads �i = D(ρi−1||ρ f ) − D(ρi||ρ f ) (Appendix A). The
statistical length, defined as

Li =
√

2�i = √
2[D(ρi−1||ρ f ) − D(ρi||ρ f )], (4)

then quantifies the distance from equilibrium at which the
system operates. It vanishes when ρi = ρ f for all i. Equa-
tion (4) reduces to the usual thermodynamic length in the limit
of quasistatic processes where all the intermediate states are
close to thermal [25–29]. The above nonequilibrium quanti-
ties allow the investigation of not only the final state reached
after the application of the DRSC protocol but also of the
cooling process itself, by providing direct information on the
intermediate states.

The total entropy production � = ∑n
i=1 �i (multiplied by

Tf ) is a measure of the amount of energy that is irreversibly
extracted from the system during thermalization [61–64]. It
is bounded from below by the square of the total statistical
length L = ∑n

i=1 Li divided by twice the number of steps
(Appendix A),

� � L2

2n
, (5)

in analogy to the horse-carrot theorem [26–28]. The name
horse-carrot process finds its origin in the analogy with a
system (the horse) which is coaxed along a sequence of states
by controlling the state of its environment (the carrot). The
importance of the horse-carrot theorem stems from the fact

that it provides a sharper lower bound to the nonequilibrium
entropy production than the second law of thermodynamics
which only requires � � 0. It additionally implies that opti-
mal quasistatic horse-carrot processes (for which inequality
is replaced by an equality) correspond to steps of equal ther-
modynamic length [23–29]. We shall find that this also holds
exactly for a harmonic confining potential and approximately
for a nonharmonic trap for the generalized nonequilibrium
statistical length (4) (Sec. VI).

Commonly considered optimization schemes minimize the
nonequilibrium entropy production with fixed initial and final
states [25–29]. By contrast, the state ρi produced by the
DRSC protocol depends on the entire cooling sequence and
is hence not fixed. Our strategy is therefore to minimize the
entropic distance to the target thermal state ρ f and identify
the final temperature with the Raman temperature, β f = βR.
We concretely consider two optimization criteria:

(1) Static criterion: the first condition minimizes the rela-
tive entropy between ρi and the target state ρ f , D(ρi||ρ f ). This
corresponds to minimizing the entropy production �i [Eq. (4)]
in the case of successful thermalization.

(2) Dynamical criterion: the second condition minimizes
the amplitude of oscillations of the positional relative entropy,
�D = maxt D( fi(t )|| f f ) − mint D( fi(t )|| f f ), during the free
time evolution of the atomic cloud after the Raman pulse.
This criterion is based on the stationarity of a thermal state:
for an equilibrium state, the distribution fi is constant in time
and hence �D = 0. The closer the state is to equilibrium, the
smaller the oscillation amplitude �D.

The application of both optimization criteria requires us to
extract the relative entropy D from measured data.

III. HARMONIC CASE

In order to better understand the physical meaning of the
above optimization criteria, we first consider the problem of
a harmonic potential which is analytically solvable. In this
case, the optimal pulse spacing is given by a quarter of the
oscillation period [52,53]. This result is intuitively clear as
it corresponds to the time needed to switch position and
momentum axes in phase space during free evolution. Phase-
space compression, and hence cooling and thermalization, is
therefore optimal.

We analyze the phase-space dynamics by solving the
Boltzmann equation for the density ρ(z, pz, t ) [65],

(
∂

∂t
+ pz

m

∂

∂z
+ F (z)

∂

∂ pz

)
ρ(z, pz, t ) = Icoll(ρ, pz ), (6)

where m is the atomic mass, F (z) = −mω2
z x the force acting

on the atom, and Icoll the collision integral which takes into
account atomic interactions. For the few-atom samples that we
consider, atomic interactions are negligible and hence Icoll =
0. Equation (6) can then be solved exactly with the Gaussian
ansatz [76],

ρ(z, pz, t ) = A exp
[ − a(t )z2 − b(t )p2

z − c(t )zpz
]
. (7)
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(b)
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nonequilibrium state

initial thermal state nal thermal state

FIG. 2. Illustration of the optimization criteria for the analyti-
cally solvable harmonic trap. For simplicity, a DRSC protocol with
only two pulses is considered. (a) Time evolution of the full and
positional relative entropies, Dzpz (t ) and Dz(t ). The vertical blue
lines indicate the cooling pulses applied at t = 0 and t = 0.75θ .
The colored background illustrates the different stages of the cooling
protocol. Dots highlight the initial values (black), as well as values
right after the first (red) and second (orange) DRSC pulse. (b) Map of
the cooling process, showing the full relative entropy Dzpz (t ) at the
points indicated in (a) over the amplitude �Dz(t ) in position. The
arrows indicate the impact of the two Raman pulses.

This leads to a system of three coupled linear differential
equations of first order for the time-dependent coefficients
a(t ), b(t ), and c(t ),

ȧ = mω2
z c, (8)

ḃ = −c/m, (9)

ċ = 2mω2
z b − 2a/m. (10)

Equations (7)–(10) can be used to compute analytical expres-
sions for the relative entropies (2) (Appendix B).

The evolution of the phase-space density ρ(z, pz, t ), to-
gether with the relative entropy Dzpz (t ) = D(ρ(t )||ρ f ) and the
positional relative entropy Dz(t ) = D( fi(t )|| f f ), are shown in
Fig. 2(a) as a function of time. The phase-space distribution
ρ(z, pz, t ) is circular (equilibrium) for the initial thermal state.
It is elliptic (nonequilibrium) after the first Raman pulse
applied at t = 0 and rotates with period tosc = 2π/ωz. It is

again circular (equilibrium) for the thermal state attained after
the second Raman pulse applied at t = (3/4)tosc. The relative
entropy Dzpz (t ) is constant during free evolution. Its value is
halved after each Raman pulse (dots) until it vanishes once
the target state ρ f is reached. This is the effect captured
by the first (static) thermalization criterion. On the other
hand, the positional relative entropy Dz(t ) is only constant
for equilibrium states and oscillates for nonequilibrium dis-
tributions, reflecting the rotation of the phase-space density
ρ(z, pz, t ). The amplitude of these oscillations vanishes once
the target state ρ f is reached. This is the physical content of
the second (dynamical) thermalization criterion. Note that we
have applied the second Raman pulse at t = (3/4)tosc in this
example only to display the oscillations of the intermediate
nonequilibrium state. Optimal thermalization can already be
achieved at t = (1/4)tosc. We may further characterize the
cooling process in one single diagram by combining the rele-
vant quantities for the static and dynamical criteria, Dzpz and
�D [Fig. 2(b)] in a schematic representation that qualitatively
resembles Fig. 1.

For the ideal harmonic trap, full phase-space thermaliza-
tion at the Raman cooling temperature TR is already obtained
after the second DRSC pulse. The situation is more involved
for nonharmonic potentials. Owing to the nonlinearity of
the trapping force, each atom has a different period which
depends on the oscillation amplitude. Determining the optimal
pulse spacing for arbitrary nonharmonic potentials is therefore
a highly nontrivial task. We will next show that our optimiza-
tion strategy successfully works for arbitrary potentials.

IV. EXPERIMENTAL SETUP

We initialize our system by trapping an average of 7 Cs
atoms from background vapor in a magneto-optical trap and
transfer them into a crossed optical-dipole trap which creates
a conservative potential [Fig. 3(a)]. The trap is formed by
a horizontal laser beam propagating along the z axis with a
beam waist of 21 μm and power of 0.25 W, and a second
crossed, vertical beam pointing in the −x direction with a
waist of 165 μm and power of 3.5 W. The atomic collision
rate of 36 Hz at peak density is smaller than the inverse evolu-
tion time used in the experiment. The cloud is thus effectively
noninteracting. We extract the atomic positions along the axial
z direction by employing fluorescence imaging in a 1D optical
lattice [54] and obtain the experimental position distribution
f (z) after binning [Fig. 3(b)]. Every measurement is repeated
several hundred times with identical parameters to get suf-
ficient statistics. The dipole trap potential is approximately
harmonic in the radial direction (x, y) with trap frequency
ωr = 2π × 1.1 kHz. The initial thermal state at temperature
T0 is prepared by applying a sufficiently long optical molasses
pulse [38]. The potential is markedly anharmonic in the axial
z direction and the position distribution features pronounced
wings. At the center of the trap, the harmonic approximation
yields an axial frequency of ωa = 2π × 60 Hz. We extract
the initial temperature of the gas, T0 = 12.1(11) μK, by com-
paring the measured position distributions f (z) to numerical
simulations of the three-dimensional trapping potential for
atoms at various temperatures in a χ2 analysis (Appendix C).
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FIG. 3. Experimental setup and analysis. (a) Cs atoms (blue) are
held in a crossed optical dipole trap (orange equipotential surfaces).
In order to realize the DRSC, four lattice beams (green arrows) and
a pump beam (red arrow) are employed which are tuned close to
the resonance of the Cs D2 transitions indicated in the sketch. The
polarizations of the beams are indicated by the corresponding small
arrows. The interference of the four DRSC lattice laser beams creates
the three-dimensional potential landscape illustrated in the inset. The
axial position distribution of the atoms is experimentally determined
by employing fluorescence imaging in a one-dimensional optical
lattice. (b) Typical measurement result, showing the initial position
distribution (gray bars) with temperature T0 = 12.1(11) μK in the
nonharmonic trapping potential (orange line).

We cool the initial state of the atomic cloud by applying
a train of DRSC pulses following the scheme of Ref. [40].
Details on the experiment may be found in Refs. [55,57].
The setup comprises four DRSC lattice beams and a pump
beam, as illustrated in Fig. 3(a). At a detuning of −6 MHz
from the Cs D2 transition |F = 4〉 → |F ′ = 4〉, the DRSC
lattice lasers create an interference pattern with lattice sites at
a trap depth of URaman = k × 44 μK and trap frequencies of
ωtrap = 2π × (71, 29, 28) kHz along the principal axis of the
trap minimum. During a DRSC pulse the Cs atoms are tightly
confined in a lattice site. The magnetic background field of
100 mG applied along the x-y diagonal is chosen such that
neighboring Zeeman and vibrational states |mF + 1, ν〉 and
|mF , ν − 1〉 are energetically degenerate. A Raman coupling
induced by the DRSC lasers leads to the exchange of popula-
tion between these degenerate states and thereby facilitates the
transfer of vibrational energy to Zeeman energy. An additional
DRSC pumping beam which drives mainly σ+ transitions
at a detuning of 12 MHz to the |F = 3〉 → |F ′ = 2〉 tran-
sition dissipates the Zeeman energy, while preserving the
vibrational state during the absorption and subsequent emis-
sion of the pump photons. The Lamb-Dicke factors along
the three principal axes of the Raman lattice sites are η =
(0.17, 0.27, 0.27). This leads on average to a reduction of the

(a)

(b)

FIG. 4. Experimental sequence. (a) After the initial preparation,
three DRSC pulses RP1, RP2, and RP3 are applied with a pulse
spacing of τ . The final state is investigated by position-resolved
fluorescence imaging after an evolution time t . (b) The Raman pulses
convert the initial state ρ0 into the respective states ρ1, ρ2, and ρ3.
The time evolution of all the states is accessible experimentally by
successively disabling the DRSC pulses shown in (a) at the right
stage.

vibrational quantum number ν, and thereby to a decrease of
the kinetic energy of the atoms.

We apply a train of three such DRSC pulses with duration
of 10 ms each and equal spacing of τ to the atomic sample
as illustrated in Fig. 4(a). The state ρ3 resulting from this
protocol is imaged after a variable evolution time t , which
allows us to record the time evolution of the state. Interrupting
the DRSC protocol at any intermediate step i by disabling
subsequent pulses provides experimental access to the inter-
mediate states ρi [Fig. 4(b)].

V. NUMERICAL PHASE-SPACE RECONSTRUCTION

The specific properties of the DRSC interaction facilitate
a simple effective description of the cooling effect. First,
the tight confinement of the Cs atoms in the 3D DRSC lattice
potential pins the atomic position to a specific DRSC lattice
site. The lattice spacing of the DRSC lattice is on the order
of 1 μm, which is much less than the typical dimension of
the atomic sample in the optical dipole trap. The positions of
the atoms in the dipole trap are therefore effectively frozen
and the position distribution f (z) does not change during
the DRSC. Second, the cooling effect of the DRSC imposes
a new distribution of atomic momenta to the sample. This
distribution can be described in good approximation by a
Maxwell-Boltzmann distribution. The temperature TR that
characterizes the momentum distribution f̃ (pz ) will be re-
ferred to as Raman temperature. Since the potential energy in
the crossed dipole trap is unchanged, the DRSC pulse creates
in general a nonthermal state.

The validity of this effective description of the DRSC is
confirmed by experimental data in Fig. 5(a) for the first Raman
cooling pulse. The measurements of the position distribution
before and after the pulse verify that it remains unchanged
during the DRSC pulse. The effect of the DRSC in the
momentum distribution can be studied by observing the free
evolution of the system. The state ρ1 after the first pulse
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FIG. 5. DRSC characterization. (a) Effect of the first Raman pulse on the axial phase-space distribution. The cooling effect acts on the
momentum distribution only [red arrows in f̃ (pz )] and redistributes the momenta to a Maxwell-Boltzmann distribution corresponding to the
Raman temperature TR. The initial thermal state ρ0 is thereby driven into a nonequilibrium state ρ1, with position and momentum distributions,
f1(z) and f̃1(pz ), at a different temperature. This imbalance leads to the time evolution shown in (b). (b) Simulated free time evolution of the
phase space and corresponding projected axial density distribution (red solid line). The comparison with experimental data (red bars) allows
us to determine the Raman temperature TR = 2.9(2) μK.

is not thermal since position and momentum distributions
correspond to different temperatures, T0 and TR, respectively.
This imbalance gives rise to the phase-space dynamics shown
in Fig. 5(b) and can be employed to extract the Raman
temperature TR. We compare the measured evolution of the
position distribution f1(z) to numerical simulations of the
three-dimensional trapping potential with the temperature TR

being the only free parameter. We obtain a Raman tempera-
ture of TR = 2.9(2) μK in a χ2 analysis (Appendix C). The
simulation data can additionally be used as an efficient way to
extract the full phase-space information as shown in the insets
of Fig. 5(b). This information is commonly only available
at the price of additional technical effort or much larger
atom number than used here [58,59]. While the axial phase-
space distribution ρ1 would simply freely rotate in the two-
dimensional space (z, pz ) for a harmonic potential, we here
observe the creation of whorls induced by the nonlinearity
of the trap [67]. The projection onto the position axis shows
excellent agreement between numerics and experimental data
at all times. We may thus conclude that the effective model for
the DRSC captures all the relevant features of the phase-space
evolution. We can further simulate the full cooling protocol
without any free parameters, once we have determined the
initial and Raman temperatures.

The properties of the DRSC also enable the evaluation of
the relative entropy (2) right after a DRSC pulse [at evolution
time t = 0 in Fig. 5(b)]. Since the momentum distribution
is randomized to the same Maxwell distribution, f̃i(pz ) =
f̃ f (pz ), characterized by only the Raman temperature TR

during each Raman pulse, it is independent from the position
distribution fi(z). As a result, the phase-space distribution fac-
torizes ρi(z, pz ) = fi(z) f̃ f (pz ) directly after a Raman pulse.
We can thus determine the full axial phase-space distribution
ρi(z, pz ) immediately after each cooling pulse. Since the

factorization property also holds true for a thermal state, we
have for the final state ρ f (z, pz ) = f f (z) f̃ f (pz ). The additivity
of the relative entropy for independent distributions [60] then
implies that the entropic distance between ρi and the target
state ρ f simplifies to

D(ρi||ρ f ) = D( fi(z)|| f f (z)) + D( f̃ f (pz )|| f̃ f (pz )) (11)

= D( fi(z)|| f f (z)). (12)

The full relative entropy can hence be determined from the
measured position distribution fi(z). We next discuss how
this central quantity of nonequilibrium thermodynamics can
be evaluated from experimental data in order to optimize the
cooling of the few-particle gas.

VI. APPLICATION TO EXPERIMENTAL DATA

A. Optimal thermalization

The practical implementation of the two optimization cri-
teria based on the total and positional relative entropies faces
the problem that the relative entropy is only well defined
for probability distributions that are absolutely continuous
with respect to one another, that is, there exists no point
in phase space where one distribution vanishes, while the
other one does not [66]. Any occurrence of zero bins, due
to finite statistics, in the experimentally measured or in the
numerically simulated distribution in the denominator will
thus result, for a nonvanishing numerator, in a division by zero
(Appendix D). This issue does not seem to have been noticed
in the nonequilibrium thermodynamics literature so far [2–6].
We solve it by replacing the relative entropy by the closely
related K directed divergence, well known in engineering, and
defined as [66]

K (ρa||ρb) = D(ρa||(ρa + ρb)/2). (13)
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(c) (d)

(e) (f)

FIG. 6. Optimization criteria. (a) Directed divergence K (ρ3||ρ f )
between the state ρ3 after the last Raman pulse and the target
thermal state ρ f for different pulse spacings: small triangles (dots)
correspond to simulations of the harmonic (nonharmonic) trapping
potentials and large dots show experimental data. (b) Oscillation am-
plitude �K = maxt K ( f3(t )|| f f ) − mint K ( f3(t )|| f f ) for the position
distribution f3 after the last cooling pulse and the target position
distribution f f for various pulse spacings. Both conditions yield an
optimal spacing of 6.3 ms for the nonharmonic experimental trap
and 4.2 ms for the harmonic trap. (c)–(f) Time evolution of the
position contribution to the directed divergence K ( f3(t )|| f f ) after
each Raman pulse for the optimal time 6.3 ms: no oscillations are
seen for the initial thermal state (black), while they increase after the
first cooling pulse (red), before decreasing again after each Raman
pulse that leads to thermalization (orange and blue).

It satisfies K (ρa||ρb) � 0 and K (ρa||ρb) = 0 if and only if
ρa = ρb, like the relative entropy (2). It is always well defined
irrespective of ρa and ρb. It is further bounded by the relative
entropy, K (ρa||ρb) � D(ρa||ρb)/2 [66]. It thus provides a
lower bound to the energy irreversibly dissipated from the
system during thermalization. We shall see below that the use
of the K directed divergence allows the optimal thermalization
of the atomic gas.

Figure 6(a) presents the implementation of the first (static)
optimization criterion for the state ρ3. The K directed di-
vergence K (ρ3||ρ f ) is shown for various pulse spacings: the
triangles correspond to numerical simulations for a harmonic
trap, while the large dots are the experimental results for the
nonharmonic trap. The small dots are the related simulations
(Appendix D). We observe a vanishing minimum in the har-
monic case at 4.2 ms which corresponds to a quarter of a trap
period. The state ρ3 after the last Raman pulse is here equal
to the target thermal state ρ f , revealing perfect thermalization.
We experimentally find a minimum for the nonharmonic case
at 6.3 ms, in good agreement with the numerical simulations.
The entropic distance to the target state ρ f is reduced by
almost a factor of two at this point compared to the nonoptimal
protocols.

Figure 6(b) displays the results of the second (dynami-
cal) optimization criterion for the state ρ3. The oscillation

(a)

(c)

(d)

(e)

(c)

(d)

(e)

(b)

(c) (d) (e)

position z (µm)

FIG. 7. Cooling map. (a) Simulated cooling process in the plane
(K,�K ) of the two optimization quantities of Fig. 2. The initial
thermal state is shown in black. The red, yellow, and blue arrows
visualize the effect of the individual cooling pulses. The last states
for τ = 2.1 ms, 6.3 ms, and 10.5 ms are labeled with (c), (d), and (e).
(b) Corresponding experimental cooling process. The hollow point
includes the numerical contribution of the directed divergence of
the momentum distribution (Appendix E). (c)–(e) Atom distributions
after the last Raman pulse for τ = 2.1 ms, 6.3 ms, and 10.5 ms.
The experimental distribution (blue bars) and the corresponding
simulation (blue solid line) are shown with the simulated target
distribution (green solid line) as a reference. An overlap of 75% is
obtained for the optimal spacing (d).

amplitude �K = maxt K ( f3(t )|| f f ) − mint K ( f3(t )|| f f ) after
the last cooling pulse for a free evolution up to 9 ms is
shown for different pulse spacings, both for the harmonic
(triangles) and anharmonic (dots) potentials. We again ob-
serve a minimum at 4.2 ms for the simulated harmonic case
and at 6.3 ms for the experimental nonharmonic potential,
thus confirming the findings obtained with the first, static
condition. Figures 6(c)–6(f) show the time evolution of the
K directed divergence K ( f3(t )|| f f ) after each cooling pulse
for the optimal spacing. No oscillations are seen for the initial
thermal state ρ0 (black). These oscillations strongly increase
after the first cooling pulse (red), revealing the nonthermal
nature of state ρ1, before decreasing again for the states ρ2

and ρ3 after the application of each additional Raman pulse
(orange and blue). Finally, the oscillation amplitude reaches a
minimum for ρ3.

Both criteria may be combined to draw a map
[Figs. 7(a) and 7(b)] of the cooling process in the plane
(K (ρi||ρ f ),�K ( fi )), similar to Fig. 1(a). Figures 7(c)
and 7(d) further show the overlap between the measured (blue
bars) and simulated (blue lines) axial distributions after the
last pulse, as well as the simulated target distribution (green
lines) for τ = 2.1 ms, 6.3 ms, and 10.5 ms. We observe an
overlap of 75% for the optimal spacing of 6.3 ms, twice the
value for the other two times (Appendix F). This offers an
additional confirmation of the validity of the two thermo-
dynamic optimization criteria. We note, however, that the

023245-7



DANIEL MAYER et al. PHYSICAL REVIEW RESEARCH 2, 023245 (2020)

(a) (b)

FIG. 8. Statistical length between cooling pulses. (a) Simulated
statistical length LK

i from the K directed divergence for i = 1, 2, 3
(red, yellow, blue), in the harmonic trap for various spacings.
(b) Measured statistical length for the anharmonic trap (large points)
and corresponding simulations. In both cases, thermalization is
mainly reached during the first two steps for the optimal spacing,
with nearly equal LK

i . The hollow points include the numerical
contribution of the directed divergence of the momentum distribution
(Appendix E).

overlap integral does not possess any simple thermodynamic
interpretation in contrast to the relative entropy or the K
directed divergence.

B. Statistical length and horse-carrot theorem

The experimental reconstruction of the axial phase-space
distribution after each Raman pulse allows us to analyze the
whole cooling process by evaluating the statistical length Li of
each cooling step. Figure 8(a) presents the simulated lengths
LK

i (i = 1, 2, 3) based on the K directed divergence for the
harmonic trap. We note that the first two steps (red and orange)
have equal length for the optimal spacing of 4.2 ms, while
the length of the last step vanishes. Optimal thermalization
thus occurs during the first two Raman pulses with identical
entropy production. This picture is still approximately true
for the nonharmonic potential [Fig. 8(b)]: the first two statis-
tical lengths are nearly equal for the optimal pulse spacing
of 6.3 ms, while the third one is much smaller. This is a
nontrivial result: it was originally theoretically derived for
close-to-equilibrium quasistatic processes [23–29] (see also
Refs. [68–70]) and has never been confirmed experimentally
to our knowledge. The fact that it also holds true (exactly
for the harmonic case and approximately for the anharmonic
trap) for the generalized statistical length (4) (even when the
relative entropy is replaced by the K directed divergence) is
remarkable. It suggests a quite general range of validity of
the principle of equal statistical distances (or of equipartition
of entropy production, as it is sometimes called [68–70])
for optimal nonequilibrium processes. Figure 9 additionally
shows an experimental verification of the generalized horse-
carrot theorem (5), �K � (LK )2/(2n) for the K directed di-
vergence, as a function of the pulse spacing. It shows that
the entropy production is maximal for the optimal pulse
spacing, corresponding to maximal heat extraction from the
system. This situation is somewhat different from the usual
one, where the system of interest is continuously coupled
to an ideal heat bath. In the present experiment, the phase-
space evolution is mostly nondissipative as the system is only
punctually coupled to a nonideal reservoir that thermalizes the

FIG. 9. Verification of the generalized horse-carrot theorem,
�K � (LK )2/(2n), for the K directed divergence, showing that the
total entropy production, �K = ∑n

i=1 �K
i (green dots, data; green

solid lines, simulations), is bounded from below by the square of the
total statistical length, LK = ∑n

i=1 LK
i , divided by twice the number

of steps n (gray dots, data; gray dashed lines, simulations).

momentum degree of freedom. Figure 9 confirms the validity
of a sharpened second law in this nonequilibrium situation.

VII. CONCLUSION

We have experimentally studied the nonequilibrium ther-
modynamics of a few-particle system consisting of a gas of
noninteracting cesium atoms driven by Raman laser cooling
pulses. Tracing the evolution of the gas with position-resolved
fluorescence imaging enabled us to access the full phase-space
density of the effectively one-dimensional system. We have
used this distribution to evaluate the nonequilibrium entropy
production and the statistical length based on the K directed
divergence. The latter quantity is always defined, in contrast to
the usual relative entropy, and provides a lower bound to it. It
further belongs to the family of f -divergences and shares their
properties [71]. As a first application, we have optimized the
thermalization of the atomic gas and determined the optimal
Raman pulse spacing for a nonharmonic trap potential by
minimizing the entropy production to a final target state. We
have additionally verified a horse-carrot theorem and analyzed
the entire cooling process with the help of the statistical
length. We have found that optimal thermalization is mainly
achieved during the first two cooling stages, corresponding
to nearly equal statistical lengths. Our findings demonstrate
an effective theoretical and experimental method to charac-
terize and optimize general nonequilibrium processes of few-
particle systems. They further highlight the practical useful-
ness of nonequilibrium concepts such as entropy production
and statistical lengths down to the atomic level. While we
have validated our generic approach with the example of
laser cooling of noninteracting atoms, the same theoretical
and experimental techniques can be straightforwardly em-
ployed to include external time-dependent drivings, tunable
interactions, or dissipation effects. Our results thus provide a
versatile platform to engineer nonequilibrium states and inves-
tigate complex far-from-equilibrium optimization protocols
for driven-dissipative interacting particles [72], as well as for
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power output mechanisms and thermal machines [73], both in
the classical and quantum regimes.
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APPENDIX A: ENTROPY PRODUCTION AND
STATISTICAL LENGTH

We begin by recalling the derivation of the entropy produc-
tion for a single equilibration step [64]. We consider a system
with Hamiltonian H in an initial state ρ0 that thermalizes
to the equilibrium state ρeq with inverse temperature β. The
entropy production is defined as � = �S − βQ, where �S =
− ∫

dzd pz (ρeq ln ρeq − ρ0 ln ρ0) is the entropy difference be-
tween final and initial states and Q = ∫

dzd pz H (ρeq − ρ0)
the corresponding heat. Using ρeq = exp(−βH )/Z , one read-
ily finds [61,62,64],

� = D(ρ0||ρeq) =
∫

dzd pz (ρ0 ln ρ0 − ρ0 ln ρeq). (A1)

Expression (A1) is the maximal amount of work that can be
extracted during thermalization [61,64]. Let us now consider
a multistep equilibration process with one intermediate (non-
thermal) state ρ1. The entropy production between this state
and the equilibrium state ρeq is �1 = D(ρ1||ρeq). Using the
additivity of the entropy production, � = �0 + �1, we obtain
the entropy production between state ρ0 and ρ1 as [63,64] (see
also Refs. [74,75]),

�0 = D(ρ0||ρeq) − D(ρ1||ρeq). (A2)

Equation (A2) can be generalized to an arbitrary number of
nonthermal intermediate steps by recursion, yielding

�i = D(ρi||ρeq) − D(ρi+1||ρeq). (A3)

Common optimization schemes consider equilibrium inter-
mediate states generated by coupling the system to different
baths at (slightly) different temperatures Ti [25–29]. In this
quasistatic case, �

qs
i = D(ρi||ρeq,i ), where ρeq,i is a thermal

state at inverse temperature βi. The square root, Lqs
i =

√
2�

qs
i ,

defines a statistical length in thermodynamic space [25–29]. It
is a proper (Riemannian) distance in contrast to the relative en-
tropy that does not satisfy the triangle inequality. Interestingly,
the total entropy production, �qs = ∑n

i=0 �
qs
i , is bounded

from below by the square of the total length Lqs = ∑n
i=0 Lqs

i ,
that is, �qs � (Lqs)2/(2n). This result, which follows from the
Cauchy-Schwarz inequality, is often referred to as the horse-
carrot theorem [26,27]. It is significant because it provides a
sharper lower bound to the entropy production than the second
law of thermodynamics, which only states that the entropy
production is non-negative. The lower bound can actually be
reached, showing that dissipation can be reduced by coaxing
the system along the desired path, much like guiding a horse
along by waving a carrot in front of it [26,27].

Similarly, the square root of Eq. (A3), Li = √
2�i, defines

a statistical length, which reduces to the usual thermodynamic
length for quasistatic processes [25–29]. The total entropy
production is still bounded from below by the square of

the total statistical length divided by twice the number of
steps, � � L2/(2n), generalizing the horse-carrot theorem to
nonthermal intermediate states.

APPENDIX B: ANALYTICAL SOLUTION IN THE
HARMONIC CASE

Using the analytical expression of the Gaussian phase-
space density given in the main text, the position and momen-
tum projections are easily integrated to

f (z) =
∫

ρ(z, pz )d pz =
√

a∗

π
exp(−a∗z2),

f̃ (pz ) =
∫

ρ(z, pz )dz =
√

b∗

π
exp

( − b∗ p2
z

)
,

where the time-dependent parameters a∗ = a − c2/4b and
b∗ = b − c2/4a are the corresponding projected variables.
The relative entropies follow as

Dzpz (ρ1||ρ2) = 1

2
ln

(
4a1b1 − c2

1

4a2b2 − c2
2

)
− 1

+ 2a1b2 + 2a2b1 − c1c2(
4a1b1 − c2

1

)2 , (B1)

Dz( f1|| f2) = 1

2

[
ln

(
a∗

1

a∗
2

)
+ a∗

2

a∗
1

− 1

]
. (B2)

The above expressions are employed for the calculations
presented in Fig. 2 of the main text. The effect of the DRSC
pulse is taken into account by setting the parameters a1, b1,
and c1 before the DRSC pulse to new values a2, b2, and
c2, determined by incorporating the constraints arising from
the characteristics of the cooling: First, the DRSC erases all
correlations of the state, implying c2 = 0. Second, the velocity
distribution is given by a Maxwellian at the Raman cooling
temperature TR. And third, the position distribution is not
influenced by the DRSC. Summing up these conditions yields
the parameters after the Raman cooling pulse to be

a2 = a1 − c2
1

4b1
, (B3)

b2 = m

2kTR
, (B4)

c2 = 0. (B5)

APPENDIX C: NUMERICAL SIMULATIONS

For the numerical simulation of the phase-space dynamics
in the DRSC protocols, the atomic motion in the trap is
modeled with a Monte Carlo approach where full three-
dimensional trajectories of N = 105 atoms are calculated.
This simulation only features two free parameters: First,
the initial temperature of the atomic cloud T0 determines
the initial, thermal phase-space distribution, which sets the
starting point for the simulation. Second, the Raman cooling
temperature TR is employed to model the effect of the DRSC
by resetting the atomic velocities to a Maxwell-Boltzmann
distribution corresponding to TR, whenever a DRSC pulse is
applied. Using these two temperatures together with precise
information on the trap, which was specified by independent
trap frequency and beam shape measurements, the effect of
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position z (µm)

position z (µm)

(b)(a)

(d)(c)

FIG. 10. Fitting of initial and final temperatures. (a) Experimen-
tal position distribution (bars) and best-fitting simulated distribution
with T0 = 12 μK (solid line). (b) The initial temperature is extracted
by calculating the χ 2 value for various initial temperatures (markers)
and then using a polynomial fit around the minimum of the curve
(solid line) to extract the best-fitting temperature T0 = 12.1(11) μK
(dashed line). (c) Experimental position distribution after a single
DRSC pulse and t = 6 ms evolution time (bars) and best-fitting
simulated distribution with TR = 3 μK (solid line). (d) Applying a
χ 2 analysis for every evolution time t yields different cooled temper-
ature estimates (markers). We extract the overall cooled temperature
TR = 2.9(2) μK by employing a weighted fit (solid line).

arbitrary pulse sequences on the phase-space distribution and
the ensuing dynamics can be computed. In this section, we
show how the experimental value for T0 is extracted from
the measured initial distribution f0(z) and the Raman cooling
temperature TR is determined from the measured evolution
after the first Raman cooling pulse f1(t, z).

In order to model the position distribution f0(z), we employ
a simulation scenario, where atoms are initially located at
the trap center. A heat bath at temperature T0 is emulated by
resetting the atomic velocities repeatedly to random velocities
corresponding to the desired initial temperature T0. Due to
the resulting damped motion of the atoms in the trap, the
atomic position distribution approaches a thermal distribution
at T0 [55]. We compare the simulated position distributions
fsim(z) for various temperatures T0 to the experimentally mea-
sured initial position distribution fexp(z) shown in Fig. 10(a)
by calculating the χ2 value,

χ2 =
∑

zi

(
fsim(zi) − fexp(zi )

� fsim(zi) + � fexp(zi)

)2

, (C1)

for the binned data as a measure for the goodness of the fit [56]
(� fsim and � fexp are the statistical uncertainties of fsim and
fexp). The χ2 value for simulations at various temperatures is
shown in Fig. 10(b), where we use a polynomial fit to the data
in order to extract the initial temperature T0 = 12.1(11) μK.

The final temperature TR which corresponds to the DRSC
temperature is not visible in the position distribution directly

after a DRSC pulse. However, as illustrated in Fig. 5(b) of
the main text, the evolution in the trapping potential after the
first DRSC pulse shows clear evidence of the cooling effect by
featuring a breathing behavior. In order to extract the value of
TR, we simulate the time evolution of atomic samples which
are prepared at the initial temperature T0 and then reset the
atomic velocities to values corresponding to different Raman
cooling temperatures TR. For every evolution time t , we
extract a Raman cooling temperature TR with a χ2 analysis,
analogous to the strategy employed for the initial distribution,
by comparing the simulations for different Raman cooling
temperatures to the experimental distribution [Fig. 10(c)]. We
combine the results of all measured evolution times shown
in Fig. 10(d) by a weighted-constant fit to the data, thereby
extracting the DRSC temperature TR = 2.9(2) μK. The red
shaded area in the plot indicates small evolution times t
where the χ2 analysis fails, because the information about
the velocity distribution is not yet transformed into the po-
sition distribution. This behavior is also visible in the size
of the error bars, which first decreases until t = 6 ms and
then increases again. Combining the extracted values for T0

and TR, the simulation data set corresponding to T0 = 12 μK
and TR = 3 μK is the best-fitting simulation. Therefore, this
data set is employed for the calculation of the simulation
data points presented in the main text. Accordingly, the final
thermal state ρ is also represented by the simulation data for
a thermal state at temperature TR = 3 μK.

DRSC is in general a subrecoil cooling scheme, because it
fundamentally allows us to reach subrecoil temperatures. The
temperature of 2.9 μK observed in the experiment is clearly
above the recoil temperature of Cs which is 0.1 μK for the
DRSC laser light. This optimum is not reached due to techni-
cal limitations such as laser power noise, laser linewidths, and
off-resonant photon scattering.

APPENDIX D: NUMERICAL CALCULATION OF THE
RELATIVE ENTROPY

For the analysis of our data, we typically bin the atomic
positions from an experiment or a Monte Carlo simulation in
order to create a numerical representation of the density distri-
bution. The integral for the relative entropy then corresponds
to a sum over all bins zi, where

D( f1|| f2) =
∑

zi

f1(zi) log

(
f1(zi )

f2(zi )

)
δzi (D1)

=
∑

zi

Diδzi. (D2)

As discussed in Ref. [66], typical data with finite statistics
may exhibit bins where f2(zi ) = 0, meaning that no atom has
been observed in this bin. However, this corresponds to a
division by zero in Eq. (D1), rendering the calculation of the
integrand value Di impossible for this specific bin. In contrast,
the directed divergence [66],

K ( f1|| f2) =
∑

zi

f1(zi ) log

(
f1(zi )

f1(zi ) + f2(zi )

)
δzi (D3)

=
∑

zi

Kiδzi, (D4)
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(b)

(a)

(c)

(b)

(a)

(c)

FIG. 11. Numerical calculation of the relative entropy. (a) Monte
Carlo simulations for an initial distribution at T0 = 1 μK (gray bins)
and a final distribution at TR = 0.25 μK (green bins). At these
temperatures, the trapping potential is approximately harmonic;
Gaussian distributions (solid lines) can thus be fitted to the Monte
Carlo results. (b) Integrand Di for the calculation of the relative
entropy D( fi|| f f ). (c) Integrand Ki for the calculation of the directed
divergence K ( fi|| f f ). Bins correspond to the calculation based on the
Monte Carlo data, while solid lines represent the integrands based on
the fitted Gaussian distributions shown in (a).

can be evaluated even at bins where f2(zi) = 0. It is therefore
much more robust especially when analyzing experimental
data, where statistical errors are usually even more pro-
nounced.

In order to illustrate the problem, we employ the data
set used for the harmonic approximations shown in Figs. 6
and 8 of the main text. The corresponding initial temperature
for the simulation is T0 = 1 μK and the final temperature is
TR = 0.25 μK. While these values are more than one order of
magnitude colder than the experimental parameters, the ratio
of the two temperatures is the same as in the experiment,
thereby providing a comparable cooling process. Neverthe-
less, at these low temperatures, the harmonic approximation
of the trapping potential holds also in the axial direction.
In fact, the density distributions of the Monte Carlo simu-
lation (bars) shown in Fig. 11(a) fit very well to Gaussian
distributions (solid lines) which are expected for the harmonic
case. Figures 11(b) and 11(c) show the integrands Ki and Di,
where again the bars correspond to the numerical data and
the solid lines show the Gaussian fit. The missing bars seen in
Fig. 11(b) clearly indicate the numerical problem connected to
the relative entropy. By contrast, the integral for the directed
divergence in Fig. 11(c) can be evaluated in the whole range.

APPENDIX E: CONTRIBUTIONS OF THE MOMENTUM
DISTRIBUTION

For factorized distributions ρi = fi(z) f̃i(pz ) the relative
entropy D can be split into two contributions D(ρi||ρ f ) =

(b)(a)

FIG. 12. Overlap calculation. (a) The overlap of the distribution
after the last cooling pulse f3(0) with the final distribution f f shows
a maximum at 6.3 ms in agreement with our optimization result.
(b) Illustration of the experimental distribution f3(0) for the optimum
pulse spacing (blue bars) and the renormalized final distribution
(green line).

D( fi(z)|| f f (z)) + D( f̃i(pz )|| f̃ f (pz )), where the first term ac-
counts for the position distribution and the second takes
into account the momentum distribution. After a Raman
cooling pulse (for i = 1, 2, 3), the contribution of the mo-
mentum distributions is zero, because fi(pz ) and f f (pz )
are identical. For the initial distribution (i = 0), however,
this contribution is not zero, as here the momentum dis-
tributions are not equal. In the measured position distri-
butions f0(pz ) at t = 0, this contribution is not visible.
However, as the initial (T0) and final (TR) temperatures
are known, the contribution D( f̃0(pz )|| f̃ f (pz )) can be calcu-
lated from the thermal momentum distributions f̃ (pz, T ) =
(1/

√
2πmkT ) exp[−p2

z/(2mkT )]. We find for the directed
divergence employed in Figs. 6 and 7 this contribution of
the momentum distribution to be K ( f̃ (pz, T0)|| f̃ (pz, TR)) =
0.071 by solving the integral numerically. The hollow exper-
imental points in Figs. 6 and 7 are thus a combination of
the measured contribution to the directed divergence from the
position distribution and the numerically deduced contribution
from the momentum distribution.

APPENDIX F: OVERLAP CALCULATION

The overlap of the distribution after the last cooling pulse
f3(0) with the final distribution f f is evaluated in the fol-
lowing way. We first renormalize the final distribution (green
line) to the maximum of the experimental data (blue bars).
Integration of the renormalized final distribution then yields
the number of atoms in the experimental distribution that
match the final distribution. We identify this value with the
overlap. We find the largest overlap at a pulse spacing of
6.3 ms which corresponds to our optimization result (Fig. 12).
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