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Asymmetric balance in symmetry breaking
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Spontaneous symmetry breaking is central to our understanding of physics and explains many natural
phenomena, from cosmic scales to subatomic particles. Its use for applications requires devices with a high level
of symmetry, but engineered systems are always imperfect. Surprisingly, the impact of such imperfections has
barely been studied, and restricted to a single asymmetry. Here, we experimentally study spontaneous symmetry
breaking with two controllable asymmetries. We remarkably find that features typical of spontaneous symmetry
breaking, while destroyed by one asymmetry, can be restored by introducing a second asymmetry. In essence,
asymmetries are found to balance each other. Our study illustrates aspects of the universal unfolding of the
pitchfork bifurcation, and provides insights into a key fundamental process. It also has practical implications,
showing that asymmetry can be exploited as an additional degree of freedom. In particular, it could enable
sensors based on symmetry breaking or exceptional points to reach divergent sensitivity even in presence
of imperfections. Our experimental implementation built around an optical fiber ring additionally constitutes
observation of the polarization symmetry breaking of passive driven nonlinear resonators.
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I. INTRODUCTION

Spontaneous symmetry breaking (SSB) is a concept of
fundamental importance [1–3]. It is central to the standard
model of particle physics [4–6], underpins phenomena as
diverse as ferromagnetism and superconductity [7–9], and
plays a key role in convection cells and fluid mechanics [10],
morphogenesis [11], embryo development [12], and more
generally self-organization [13]. SSB has also been exten-
sively studied in the field of optics, and several applica-
tions have been proposed in that context [14–19]. In par-
ticular, unique ways to manipulate light have recently been
demonstrated in structures engineered to exhibit parity-time
(PT ) symmetry breaking [20]. Engineered systems however
often exhibit deviations from perfect symmetry because of
naturally occurring imperfections [21–23]. Surprisingly, the
impact of asymmetries on SSB-related dynamics has barely
been considered in experiments, and essentially restricted to
situations with only one asymmetry parameter [22,24]. One
exception is results obtained by Benjamin four decades ago
on Couette flow between rotating cylinders, which are clearly
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linked to the presence of two imperfections, albeit only one
was controlled [25]. Here, using polarization dynamics in a
laser-driven nonlinear optical resonator [26], we report an ex-
perimental study of a system that exhibits spontaneous mirror-
symmetry breaking with two fully controllable asymmetry pa-
rameters. While the characteristic dynamics of SSB—random,
spontaneous selection between two mirrorlike states with
opposite symmetries—are destroyed by one asymmetry, we
remarkably observe that a second asymmetry can restore
them. In essence, the two asymmetries can balance each other.

Spontaneous symmetry breaking is underlain by the funda-
mental pitchfork bifurcation [27]. For a system with left/right
or mirror symmetry, that bifurcation describes how a sym-
metric state transitions to two equivalent, stable, mirror-
like asymmetric states [see, e.g., Fig. 1(b)]. The pitchfork
is however a structurally fragile, degenerate bifurcation: in
the presence of small asymmetries, it separates into two
disconnected branches. As a result, one of the asymmetric
states is favored while the other cannot be spontaneously
excited [25,28,29]. It turns out that only two parameters are
needed to describe all the possible topologies of the perturbed
pitchfork—its so-called universal unfolding [25,29–31]—and
our observations are fundamentally related to this property.
This argument has been used in a number of theoretical
studies to reduce the number of parameters in the search of
simplified models of complex problems. This includes, e.g.,
limb coordination [32]—a feature found in movements of a
huge range of animals—or the emergence of the ubiquitous
homochirality of biological molecules [33]. It has also guided
recent engineering research in buckling-resistant structures
and led to the discovery that optimal designs with imperfect
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FIG. 1. Illustration of polarization symmetry breaking.
(a) Schematic diagram of a driven passive nonlinear fiber ring
resonator. (b) Pitchfork bifurcation diagram showing how the
intensities of the two polarization modes part above a certain
threshold. The control parameter can be either the driving power or
the driving laser frequency. (c) Resonance of the system illustrating
how in an asymmetric state the stronger mode (large blue dot) can
undergo a smaller effective nonlinear shift (black arrow) and be
closer to resonance than the weaker mode (small orange dot). This
occurs when the driving laser (green line) is red-detuned (left side of
the resonance).

symmetry only emerge when considering two asymmetry
parameters [34]. We note that evolution, which is inherently
guided by optimization, has produced countless designs with
near but not perfect symmetry, including the functional neural
wiring of the brain [35]. Clearly, considering two asymmetry
parameters instead of one in the study of SSB can have
dramatic and intriguing consequences. Yet, very few features
of the two-parameter unfolding of the pitchfork bifurcation
have been reported experimentally [25]. The particularity of
the nonlinear optical system that we consider here is that it
enables the study of SSB and the underlying pitchfork bifur-
cation with full adjustability of the two unfolding (asymmetry)
parameters.

II. POLARIZATION SYMMETRY BREAKING

Our experiment is based on a passive nonlinear optical fiber
ring resonator (akin to a Fabry-Pérot etalon) that presents two
distinct orthogonal polarization modes. The resonator is exter-
nally, coherently driven by intense laser light [Fig. 1(a)] so as
to excite both of these modes; hereafter E+ and E− denote the
modes’ complex electric-field amplitudes inside the resonator.
Ideally, when the two polarization modes are equally driven
and are degenerate (i.e., the resonator material is isotropic, and
the modes have identical resonance frequencies), the system
is symmetric with respect to an interchange of the two modes,
E+ � E−. In the simplest case, the stationary intracavity field

solution assumes that symmetry, E+ = E−, and the two modes
have the same intensities. Symmetry breaking occurs above a
certain threshold [26,36], and manifests itself by the parting of
the intensities of the two polarization modes, |E+|2 �= |E−|2
[Fig. 1(b)]: the symmetric solution loses its stability in favor
of two mirrorlike asymmetric solutions. The instability stems
from the cubic (Kerr) nonlinearity of silica optical fibers [37],
by which the phase of one mode is affected by the intensity
of the other (cross-phase modulation, or XPM). Critically,
in optical fibers, XPM between polarization modes can be
stronger than self-phase modulation (SPM) so that the weaker
mode can experience a larger nonlinear phase shift than the
stronger mode [37,38]. In these conditions, the weaker mode
is pushed away from resonance while the stronger mode is
pulled towards it, reinforcing any initial intensity imbalance
[Fig. 1(c)] [18]. This polarization SSB is formally identical
to the SSB that occurs in the same system when considering
two counterpropagating beams [39], and which was recently
studied experimentally [18]. In both cases, an imbalance
of driving power between the two modes (beams) readily
provides an adjustable asymmetry/unfolding parameter. In
our experiment, we have also manipulated the wave numbers
of the two driven polarization components as the second
asymmetry/unfolding parameter.

Passive driven scalar Kerr resonators can be efficiently
described by a mean-field approach [26,40]. For two inco-
herently coupled polarization modes, assuming continuous-
wave (cw) driving and neglecting chromatic dispersion, the
evolution of E+ and E− over time t is given by (using the
same normalization as in [41])

∂E+
∂t

= [−1 + i(|E+|2 + B|E−|2 − �+)]E+ +
√

X cos χ,

(1)
∂E−
∂t

= [−1 + i(|E−|2 + B|E+|2 − �−)]E− +
√

X sin χ.

(2)

In these equations, the incoherent coupling between the two
modes is determined by the XPM coefficient B (B > 1). Other
terms on the right-hand side represent, respectively, losses,
SPM, the detuning of the driving frequency with respect to
resonance, and the driving strengths of each mode. Here X
represents the total driving power, while a driving power im-
balance between the modes is accounted for by introducing an
effective driving polarization ellipticity angle χ . An ellipticity
angle χ of 45◦ represents perfectly balanced driving. Because
of residual birefringence in our fiber resonator, the resonances
of the two polarization mode families are normally observed
for different driving laser frequencies, which correspond to
having different detunings in the equations above, �+ �= �−.
The difference in detuning, δ� = �+ − �−, equivalently
represents the difference in wave numbers with which the two
polarization components propagate inside the resonator (see
Appendix A) and is our second asymmetry parameter. It is
tuned in our experiment by shifting the carrier frequency of
the E− mode with a frequency shifter as explained below.
Symmetry for the interchange of the two modes in Eqs. (1)
and (2) is obtained with χ = 45◦ and δ� = 0. Note also
the absence of rotational phase invariance in these equations
because of the external driving terms, which is a key feature
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FIG. 2. Experimental setup. PC: polarization controller; PBS: polarization beam-splitter; AM: amplitude modulator; AOM: acousto-optic
modulator (frequency shifter); EDFA: Erbium-doped fiber amplifier; BPF: bandpass filter; OI: optical isolator. Blue lines: optical fibers. Green
lines: polarization-maintaining (PM) optical fibers. Black lines: rf connections. The actual resonator is highlighted with a green background.
Vertical (orange) and horizontal (blue) double arrows symbolize the two different polarization modes at various places in the setup.

of the passive driven resonator considered here, in contrast to,
e.g., laser resonators.

III. EXPERIMENTAL SETUP

Figure 2 illustrates the experimental setup. The passive
ring resonator (highlighted in green) has a total length of
about 10.5 m, corresponding to a free spectral range (FSR)
of 19.76 MHz (±20 kHz) and a round-trip time tR of 50.60 ns
(±50 ps). It is built around a fiber coupler (beam splitter) that
recirculates 90% of the intracavity light, and allows for the
injection of the coherent driving field (entering from the top
right in the figure). Another 1% tap coupler extracts a small
fraction of the intracavity field for analysis through three pho-
todiodes monitoring respectively the total output intensity as
well as the individual intensities of the two polarization modes
(more details are given below). The rest of the resonator is
made up of “spun” single-mode silica optical fiber, a type of
fiber which presents very little polarization anisotropy (bire-
fringence) [42]. At the 1550-nm driving wavelength, that fiber
exhibits normal group-velocity dispersion (−40 ps/nm/km),
which has been selected to avoid modulation instabilities [37].
The measured resonator finesse is 24.1 (±0.1), amounting to
total losses of 26% per round trip. The associated photon life-
time and resonance linewidth are, respectively, about 4 tR and
820 kHz. The resonance linewidth is much broader than that
of our driving laser, a distributed-feedback cw erbium-doped
fiber laser (Koheras AdjustiK E15), with a linewidth <1 kHz,
therefore guaranteeing coherent driving. The driving laser
frequency, which can be tuned via a piezoelectric actuator,

offers a simple way to scan the cavity resonances. It is the
control parameter we use to cross the SSB bifurcation.

Due to unavoidable fiber bending and other imperfections,
the two polarization modes of the resonator are slightly
linearly coupled [43]. As a consequence, the interactions
between the two modes are not only dependent on the
modal intensities as described above, but are also phase
sensitive [17]. To avoid this complication, we drive the two
polarization modes with slightly different carrier frequencies.
At the same time, we purposefully introduce some fixed
birefringence in the resonator through an intracavity polar-
ization controller [44], PCintra in Fig. 2, to counterbalance
the associated difference in wave numbers, and to realize
effective isotropic (or close to isotropic) conditions for the
two driven polarization components. In practice, we have
separated the two families of orthogonally polarized cavity
resonances by about 45% of the FSR; the precise value is
not critical. The dual carrier driving field is prepared, ahead
of injection into the resonator, by splitting the output of the
single frequency driving laser into two components with a
polarization beam-splitter (PBS), and frequency-shifting one
of these with an acousto-optic modulator (AOM). The other
path incorporates a variable attenuator (V) set to introduce the
same losses as the AOM. The two components are then recom-
bined in a second PBS. Together with the use of polarization-
maintaining fibers (shown in green in Fig. 2) in between the
two PBSs, no polarization-dependent losses are introduced.
Behind the second PBS, the two carriers have orthogonal
polarization and are mapped onto the two resonator modes
using another PC (labeled PCmap in Fig. 2), so that each
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drive a separate mode. PCmap is adjusted with the AOM off,
which suppresses one of the polarization components of the
driving beam, so as to excite a single family of cavity reso-
nances, carefully canceling any trace of the other (orthogo-
nally polarized) family through observation of the total output
intensity.

Our experimental arrangement enables simple and repro-
ducible tuning of the two asymmetry/unfolding parameters.
On the one hand, adjusting the frequency of the rf signal
applied onto the AOM (around 80 MHz) controls the effective
isotropy, specifically the difference in wave numbers δ� with
which the two polarization components propagate inside the
resonator. On the other hand, adjusting the polarization state
of the beam ahead of the first PBS changes the ratio of
driving power between the two modes, or equivalently the
driving ellipticity χ , without affecting the total driving power.
This is achieved with an electronic polarization modulator,
complemented with a manual bias (PCχ ).

To calibrate the measurement of δ�, we first observe
the AOM frequency at which the linear resonances of the
two polarization modes overlap and have maximal total peak
intensity; this point corresponds to δ� = 0. Note that this
calibration stage is performed when the resonator is operated
purely in the linear regime. From that starting position, any
change � f in the frequency applied to the AOM corresponds
to a change of δ� of 2F (� f /FSR) (see Appendix A). With
the uncertainties quoted above for F and FSR, this is obtained
to within 0.5%.

Because of environmental fluctuations, the driving ellip-
ticity χ typically slowly varies over time at the input of the
resonator. To stabilize the system against these perturbations,
we measure and monitor χ close to the resonator input,
and apply appropriate feedback to the polarization modu-
lator through a PID controller. The value of χ is obtained
by tapping 1% of the driving beam, and by measuring the
intensities of the two polarization components of the light,
separated with another PBS, with two carefully calibrated
photodetectors. A PC (PCmonitor in Fig. 2) placed ahead of
the PBS is adjusted such that each diode is only sensitive
to one particular cavity polarization mode. Specifically, this
is obtained by verifying that one of the photodiode reads
zero when the AOM is off (a similar procedure was used to
separate the modes at the output). We have made sure that the
photodetectors are operated strictly in a linear regime. Also,
we have measured a calibration factor that corrects for the
small difference in responsitivities between the two diodes, so
that we get the same reading when they are illuminated by the
same intensity. Finally, before each set of measurements, we
carefully measure the zero level of both diodes. tan2 χ is then
obtained as the ratio of the two photodiodes readings after
zeroing and responsitivity correction. This leads to the value
of χ with an uncertainty that we estimate at less than 0.5◦. The
experimental setup incorporates a second feedback loop (not
shown in Fig. 2) that offers the possibility to lock the driving
laser at a set detuning from resonance, using the method
of Ref. [45]. Note that changing the laser frequency (the
control parameter) changes the two detunings �+ and �−, or
equivalently the wave numbers of the two driven polarization
components, by the same amount and does not introduce any
asymmetry. When both feedback loops are engaged, all the

parameters of the resonator are quantifiably controlled and
stable.

Finally, to reach more easily the peak power level neces-
sary to observe SSB, the resonator is synchronously driven by
flat-top 1.04-ns-long pulses carved into the cw beam of our
driving laser with an amplitude modulator (AM). For reasons
explained below, two such pulses are launched per round trip,
separated by 24.5 ns. The separation is chosen large enough
to minimize unwanted ripples in the AM driving electronics,
while at the same time avoiding the acoustic echo generated
down the optical fibers by the leading pulse and that would
affect the shape of the trailing pulse for separations in the 20–
22-ns range [46]. The use of pulses also avoids the detrimental
effect of stimulated Brillouin scattering that is typical of silica
optical fibers, and which would otherwise deplete the driving
beam [37]. Calibration of the normalized driving power X was
obtained by observing the nonlinear shift of the resonance as
a function of driving power. Note that X could be used as an
alternative control parameter, but it is simpler to manipulate
the laser frequency. Accordingly, we simply set X above the
SSB threshold, and kept it at the same level for all the mea-
surements presented below. Specifically, we used X = 10.8,
which corresponds to about 2.7 W of peak power (equivalent
to 110 mW of total averaged power) at the resonator input.
None of our results are fundamentally affected by this choice.
The nonlinear cross-coupling coefficient B was obtained from
the ratio of the nonlinear shift of the cavity resonance peak for
balanced driving conditions (χ = 45◦) to that observed when
only one mode was driven (χ = 0◦). That ratio is (1 + B)/2,
and is independent of driving power. Two separate measure-
ments gave values of B of 1.55 and 1.6, and the value was
refined to B = 1.57 (±0.01) by fitting experimental data to
the numerical model. Note that the occurrence of asymmetric
balance does not depend critically on the actual value of B.

IV. EXPERIMENTAL RESULTS

We start by characterizing our system in symmetric condi-
tions: the driving ellipticity χ is maintained at 45◦ by the feed-
back loop while δ� is set to zero. To this end, we repeatedly
scan the driving laser frequency (the control parameter) across
several cavity resonances while resolving the two polarization
modes (Fig. 3, blue and orange curves respectively). Here,
the modal intensities are measured with slow photodiodes that
do not resolve the individual driving pulses. Note that similar
results would be obtained by scanning the driving power [26].
In Figs. 3(a) and 3(b), we present histograms of each mode
intensity obtained by combining seven measurements com-
prising about 100 resonance scans each. Remarkably, while
the two modes have equal intensities near the base of the
resonance (in line with the symmetric conditions), the peak
of the resonance exhibits a high degree of variability [47]. We
observe that high intensity in one mode always correlates with
low intensity in the other mode, as is made evident by the
two individual scans shown in Figs. 3(c) and 3(d): symmetry
is markedly broken. Note that the scanning rate of 1 FSR
per millisecond, corresponding to one resonance linewidth
per 200 photon lifetime, is slow enough to guarantee that
transients do not affect the mode selection.
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FIG. 3. Nonlinear resonances in the spontaneous symmetry-
breaking regime illustrated by plotting averaged modal intensities
(blue and orange curves) recorded as the cavity detuning is ramped
up in symmetric conditions (χ = 45◦, δ� = 0). In (a) and (b),
measurements are taken over several hundreds of scans, and the
data are presented as color coded %-age-of-occurrence histograms.
(c),(d) Two individual scans highlighting the anticorrelated behavior
of the modal intensities, selected to illustrate the mirror symmetry
of the system. The total intensity is also shown as black curves.
Note: the orange curves are associated with the component up-shifted
by the AOM.

In Figs. 3(c) and 3(d), we have also plotted the total
output intensity (black curves) measured at the resonator
output. The total intensity does not display any sign of the
underlying pitchfork instability, thus highlighting that the SSB
studied here is a purely polarization phenomenon. Such a
polarization SSB was theoretically predicted more than three
decades ago in passive driven resonators, but never observed
before [26,36]. Additionally, a comparison between Figs. 3(c)
and 3(d) highlights the very high degree of mirror symmetry in
our system, with the two sets of curves very nearly matching
each other. The high variability in Figs. 3(a) and 3(b) can
be interpreted as due to different subparts of the two pulses
circling the resonator spontaneously breaking their symmetry
one way or the other, randomly. Since these are not resolved
by our slow photodetectors, this leads to averaged intensities
spanning the entire range of values between those observed
when pulses switch as a whole [panels (c) and (d) correspond

to that latter case] even though the system has only two
stationary solutions that are mirror of each other [26]. This
latter fact will be formally confirmed below.

Departing from symmetric conditions through a change
in χ or δ� (asymmetry/unfolding parameters) leads to the
disappearance of the behavior reported in Fig. 3. The system
then always favors the same mode: resonance scans look
either like the one presented in Fig. 3(c), or the one in
Fig. 3(d), depending on the direction of the change [25,29].
A secondary state, an almost mirror image of the first one,
is never excited spontaneously although it might be present
in the system [24,30]. In order to probe its existence under
asymmetric conditions, and to identify all the cw stationary
solutions of the system for each set of asymmetry/unfolding
parameters (χ and δ�), we proceeded as follows. With the
detuning locked and total driving power kept constant, we
measured the instantaneous output intensities of the two po-
larization components with 10-GHz-bandwidth photodiodes
that resolve individual pulses, and acquired the data over
about 8000 successive cavity round trips with a 40 Gsample/s
oscilloscope. In the middle of these acquisitions, we apply
strong perturbations to the two driving pulses through the
polarization modulator (see top left of Fig. 2) for about 100
round trips. The two pulses driving the resonator are subject
to opposite perturbations to maximize the chance that one
of the pulses will switch to the other solution, irrespective
of which solution is initially spontaneously excited. For each
oscilloscope trace, the instantaneous intensity levels of all the
recorded pulses are then built into histograms, separately for
the two pulses driving the resonator, and before and after the
perturbation. Care is taken to avoid any transients following
the perturbation, and pulses that are only partly switched. The
maxima of the histograms allow us to identify the intensity
levels of the steady-state stable asymmetric solutions for each
polarization. Note that the use of two driving pulses provides
two independent realizations of the experiment in the same
conditions and clearly reveals the coexistence of the identified
states. These measurements are repeated as we step χ (by
adjusting the corresponding feedback loop setting point) and
for different values of δ�.

The results are summarized in Fig. 4, where we plot the
modal intensities of the identified stationary solutions (rounds
and squares). The error level is indicated by the size of the
markers. Panel 4(a) has been obtained with δ� � 0. The two
solutions identified for χ = 45◦ are exact mirror images of
each other, as expected from perfect symmetry conditions (see
Fig. 3). These measurements also confirm that in these condi-
tions the system presents two and only two stable asymmet-
ric solutions, validating our interpretation of the histograms
above. As χ is varied around that point, we can observe that
both solutions continue to exist, even though their degeneracy
is lifted. Theoretical predictions (smooth curves) obtained by
looking for the stationary solutions of Eqs. (1) and (2) for
the experimental parameters agree very well with the mea-
surements (X = 10.8, �+ = 5.45, and B fitted to 1.57). Note
that some solutions predicted theoretically are not observed
in the experiment because they are only metastable in our
pulsed driving conditions [48]. The range of coexistence is
highlighted as a yellow band, and is reasonably wide, covering
almost 10◦ of ellipticity change. Outside that band, however,
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FIG. 4. Measured modal intensities of identified stationary SSB
solutions vs driving ellipticity χ for different values of δ� and fixed
frequency detuning �+ = 5.45. (a)–(d) Each solution is associated
with two points (one for each mode, blue and orange) while different
solutions are distinguished by using respectively darker round (when
the “blue” mode dominates) and lighter square (“orange” domi-
nates) symbols. Smooth lines correspond to theoretical predictions,
with dashed lines denoting unstable states. The yellow band high-
lights the region of coexistence of states with opposite symmetries.
(e) Combination of all the experimental results shown in (a)–(d), plus
extra data obtained for δ� = 1.00 and 1.49.

the driving asymmetry becomes too strong, and only one so-
lution remains: the symmetry breaking instability effectively
disappears. In Fig. 4(b), we have introduced some asymmetry
between the wave numbers. Interestingly, we observe that the
coexistence region seems to simply shift to a different range
of values of χ . In particular, there exists a value of χ �= 45◦
where the two solutions again appear to be mirror images of
each other (where the blue and orange curves intersect). The

FIG. 5. Same as Fig. 3 but under conditions of asymmetric
balance, with δ� = 0.63 [same value as in Fig. 4(c)] and χ = 53.5◦.
These measurements illustrate that an SSB-like response can be
found under asymmetric conditions when asymmetries in χ and δ�

are critically balanced. In particular, a “blue” dominated solution
can still be spontaneously excited (c), even though the “orange”
mode is driven stronger. Grey lines in (c) and (d) highlight how the
two solutions observed for � = 5.45 are close mirror of each other,
corresponding to the crossing point in Fig. 4(c).

two asymmetries, in χ and δ�, are now balancing each other.
The balance can be realized continuously, i.e., it exists for
every value of δ� within a certain range (see Appendix B
for a geometric interpretation). It is also very robust: in
Fig. 4(c), δ� is large enough for the coexistence region not to
even overlap with the balanced driving condition at χ = 45◦.
Eventually, when too much asymmetry is present [Fig. 4(d)],
the coexistence region disappears: symmetry breaking is well
and truly destroyed and cannot be restored through a balance
of asymmetries. Figure 4(e) highlights how all the experimen-
tal data in Figs. 4(a)–4(d) (plus some extra measurements)
fit together (see also Appendix C for a three-dimensional
illustration of the system’s response). We must stress that the
theoretical fits shown in Fig. 4 have all been obtained for the
same parameters values and with the values of δ� directly
measured experimentally. This makes the overall agreement
quite remarkable.
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FIG. 6. Resonance scan histograms of average modal intensity levels (same color scheme as other figures) observed when bracketing
the asymmetric balance condition found with χ = 48.5◦ (1:1.3 driving power ratio). (a),(b) δ� = 0.27 − 0.015, and an “orange” dominated
solution is favored. (c),(d) δ� = 0.27, asymmetric balance is realized. (e),(f) δ� = 0.27 + 0.015, and the solution is dominated by the “blue”
mode. Blue curves at the top of (a), (c), and (e) also provide for each case a schematic illustration of the underlying perturbed pitchfork
bifurcation (dotted lines are unstable states). The histograms in balanced conditions include data from 650 forward resonance scans each,
while the other includes about 110 scans each. A change in δ� of 0.015 corresponds to a change of 6 kHz in the AOM driving frequency.

To explore further the regime of asymmetric balance, we
performed additional resonance scan measurements with pa-
rameters close to those where we find mirrorlike solutions.
For δ� = 0.63 [corresponding to Fig. 4(c)], this is illustrated
in Fig. 5, using the same format as in Fig. 3. Remarkably,
the histograms of Figs. 5(a) and 5(b) reveal that, for a critical
value of driving ellipticity χ � 53.5◦, and despite the strong
asymmetries, the system presents again a high degree of vari-
ability similar to that observed under symmetric conditions
of operation. The two individual scans plotted in Figs. 5(c)
and 5(d) highlight that the observed variability stems from the
random selection of one of two solutions of opposite symme-
tries, i.e., in which a different polarization mode dominates.
The fact that the “orange” mode is driven more strongly than
the “blue” mode (the driving ellipticity corresponds here to a
factor of about 1.8 difference in driving intensity) is evident in
Fig. 5, yet it does not preclude a “blue” dominant solution to
be spontaneously excited [Fig. 5(c)]. Similar to the symmetric
case, and perhaps more remarkably, we again observe no
sign of the instability in the total intensity [black curves
in Figs. 5(c) and 5(d)]. These results show that asymmetric
balance means more than just restoring mirrorlike solutions.
A pitchforklike spontaneous-selection dynamics is recovered
when asymmetries are balanced. We note that this behavior
agrees with what would be expected from the two-parameter
unfolding of an imperfect pitchfork bifurcation [25,29]. The
bifurcation point in Figs. 5(a) and 5(b) where the mode
selection takes place corresponds to what has been referred to
as the “transcritical point” in Refs. [25]. Note that the critical
value of χ found in Fig. 5 (53.5◦) is slightly different with
that observed to give mirrorlike solutions in Fig. 4(c) (51◦),
but this is consistent with the dependence of the critical point
on the cavity detuning �+ and matches numerical predictions.

When slightly offset from asymmetric balance conditions,
the system of course always favors one of the two solutions
and, unsurprisingly, a different mode is found to dominate
for opposite directions of change. We illustrate this point in
Fig. 6 for a different value of χ = 48.5◦, for which asym-
metric balance is realized with δ� = 0.27 [corresponding to
Fig. 4(b)]. Figures 6(c) and 6(d) show histograms in balanced
conditions for these parameters; the results are similar to those

shown for δ� = 0.63 in Fig. 5. In Figs. 6(a) and 6(b), δ� =
0.27 − 0.015, and the system preferentially selects the solu-
tion for which the “orange” mode dominates, while the op-
posite occurs when δ� = 0.27 + 0.015 [Figs. 6(e) and 6(f)].
The nonzero probability of occurrence of the other solution
is due to noise in the system, and to the proximity to the
critical point. Again, all these findings are compatible with
the behavior of the unfolded pitchfork around the transcritical
point [25,29]; see schematic illustration of the bifurcation at
the top of the blue panels of Fig. 6. Note that a small region of
hysteresis would be expected, but exists in such a small range
of parameters in our system that we cannot resolve it in the
experiment. Accordingly, the experimental results appear as
being due to a standard pitchfork, even though we are in the
presence of asymmetries.

V. THEORETICAL DISCUSSION

At this point, it must be clear that our findings are not
specific to the parameters of Figs. 5 or 6: spontaneous se-
lection and a pitchforklike dynamics can be restored over a
continuous range of values of δ� or driving power around
those illustrated. In fact, no parameters need to take a specific
value for the effects described here to be observed. This makes
clear that our observations are not the result of an accidental
symmetry. To illustrate this point further, we have calculated
(using numerical continuation [49]) the limits of the regions
of the (χ, δ�) asymmetry parameter space where Eqs. (1)
and (2) exhibit coexistence of two stable mirrorlike symmetry
broken solutions, as well as the conditions in which asymmet-
ric balance can be achieved. This is illustrated in Figs. 7(a)–
7(c), for different values of driving power X and for a fixed
detuning of the + mode, �+ = 5.45, matching the experi-
mental conditions. The black curves delineate the coexistence
region, also highlighted with a yellow background; this region
corresponds to that highlighted in a similar way in Fig. 4. In
the coexistence region, we have also plotted as a red curve
the combination of parameters for which asymmetric balance
is achieved (strictly speaking, where the upper intensities of
the two coexisting solutions match; see Appendix B). Overall,
these plots illustrate the wide range of parameters for which
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FIG. 7. (a)–(c) Region of coexistence (yellow, surrounded
by black line) of symmetry-broken mirrorlike solutions in the
(χ, δ�) parameter space evaluated numerically for different driving
powers X , with �+ = 5.45 and B = 1.57. The condition for asym-
metric balance is shown as a red curve in each graph. Blue-
and orange-shaded areas indicate which mode dominates outside
the coexistence region. The white area indicates a region where
there are no stable homogenous solutions. (d) Superposition of
the limit of the coexistence regions, for driving power X = 6–14,
in step of 2 (outward).

asymmetric balance can be realized (see also Appendix C).
Just outside the coexistence region, only one stable symmetry
broken solution survives; the background color in Figs. 7(a)–
7(c) then indicates which polarization mode of the intracavity
field is the most intense (blue when |E+|2 > |E−|2, and orange
otherwise). For large asymmetries, far from the coexistence
region, complex bistable cycles can occur, leading again to
multiple coexisting stable solutions, but we find that these
solutions never have a mirrorlike association: they all exhibit
the same dominant mode (we exclude the lower state in this
analysis), and we use the same color scheme. We note that
the plots in Figs. 7(a)–7(c) are not symmetric with respect
to the transformation (δ� → −δ�, χ → 90◦ − χ ) but this
is simply a result of maintaining �+ constant. Symmetric
diagrams would be found if instead the average detuning,
(�+ + �−)/2, was to be kept constant. Finally, Fig. 7(d)
is a superposition of the coexistence ranges observed for
different driving powers, showing how that range widens with
increasing driving power.

VI. CONCLUSION

In summary, we have studied experimentally a system
presenting an SSB instability in the presence of two asym-
metry parameters. By systematically tracking the different
stationary solutions of the system with controlled and quan-
tified asymmetries, we have observed that, while the SSB
dynamics is destroyed by one asymmetry, it can in practice
be restored by a second, properly balanced asymmetry. These

observations illustrate some aspects of the universal unfolding
of the pitchfork bifurcation. We must note that we have
also manipulated a standard control parameter to cross the
bifurcation, hence effectively investigating a codimension-3
situation. The results presented here are restricted to the Z2

symmetry group, and more work is needed to generalize them
to other symmetry groups. However, given the importance and
ubiquity of SSB in the physical sciences, our work is still
relevant to numerous fields. In particular, it could be extended
to other multimode systems, and it shows that applications of
SSB in sensing based on real, necessarily imperfect, physical
platforms, could potentially use asymmetry as an additional
degree of freedom to reach divergent sensitivity [14,19]. This
overlaps with theoretical investigations showing that so-called
exceptional points, recently heralded at providing greatly
enhanced sensitivity in optical sensors [50,51], can be found
under generic asymmetric conditions [52]. More generally,
other studies have also shown that asymmetry is sometimes
necessary for behavioral symmetry [53–55]. We must also
point out that our experiment, performed in the context of
nonlinear optics, constitutes observation of the polarization
symmetry breaking of a passive, coherently driven nonlinear
resonator [26,36]. It paves the way to the robust realization
of persistent polarization domain walls, which could be ap-
plied to novel computing schemes [38]. Finally, we note that,
because optical fiber ring resonators are formally equivalent
to Kerr microresonators [56], asymmetric balance could be
implemented in such miniaturized platforms, using either
polarization [57] or counterpropagating modes [17,18].

ACKNOWLEDGMENTS

We thank A. Nielsen for help with the last histogram mea-
surements, A. Giraldo for advice on continuation software,
and L. Hill for useful discussions. We acknowledge financial
support from The Royal Society of New Zealand, in the form
of Marsden Funding (18-UOA-310), as well as James Cook
(JCF-UOA1701, for S.C.) and Rutherford Discovery (RDF-
15-UOA-015, for M.E.) Fellowships. J.F. thanks the Conseil
régional de Bourgogne Franche-Comté, mobility (2019-7-
10614).

APPENDIX A: NORMALIZATION OF WAVE NUMBERS
AND CAVITY DETUNINGS

The definitions below apply equally to both polarization
modes of the resonator (+ and −) but to simplify the notations
we start by focusing on the + mode. Assuming light driven in
that polarization component propagates with a wave number
β+, that wave accumulates over one round trip in the resonator
a linear phase shift β+L (with respect to the driving field),
where L is the resonator length. We define the corresponding
phase detuning δ+ = 2mπ − β+L as the distance (in phase)
to the closest resonance (of index m). A positive value of
phase detuning corresponds to a driving beam redshifted with
respect to the corresponding linear resonance. Normalized
detuning is defined as �+ = δ+/α, where α represents the
resonator losses, specifically half the percentage of power
lost per round trip. With that notation, the resonator finesse
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FIG. 8. Graphical interpretation of asymmetric balance. Each panel shows, for different parameter values, how the symmetry broken
solutions lie with respect to the resonances of the two polarization modes. Each solution is associated with two points (one for each mode, blue
and orange) while the black arrows represent the corresponding (normalized) nonlinear shifts with respect to the driving laser frequency (green
line at position φ = φ′ = −�+). Different solutions are distinguished by using respectively darker round (when the “blue” mode dominates)
and lighter square (“orange” dominates) symbols, as well as solid versus dashed arrows for the nonlinear shifts. Asymmetric balance is obtained
when the solutions coincide with the intersections of the two resonances. Other parameters are X = 10.8, �+ = 5.45, and B = 1.57, as in the
experiment.

is simply given by F � π/α. The normalized difference in
wave numbers is then defined as δ� = �+ − �−.

APPENDIX B: GEOMETRIC INTERPRETATION
OF ASYMMETRIC BALANCE

The conditions in which asymmetric balance is possible
can be qualitatively understood by a generalization to the
asymmetric case of the diagram shown in Fig. 1(c), and that
explains the origin of spontaneous symmetry breaking (SSB)
in the passive nonlinear Kerr resonator. Starting from Eqs. (1)
and (2), we can write the following two equations for the
intracavity modal intensity levels, Y = |E+|2, Z = |E−|2, of
the stationary (∂/∂t = 0) solutions:

Y = X cos2 χ

1 + (Y + BZ − �+)2
, (B1)

Z = X sin2 χ

1 + (Z + BY − �+ + δ�)2
. (B2)

These equations are nonlinear and do not have closed form
solutions. Their Lorentzian form, in terms of the total linear
and nonlinear phase shifts, nevertheless illustrate the resonant
behavior of the system. In the scalar case (χ = 0◦, Z = 0),
there exists a geometric construction of the solution to the
remaining nontrivial equation, which correctly explains all
the features of the scalar Kerr bistability [58]. This geometric
construction cannot be generalized to the vector case above,
because of the different dependence on Y and Z in the right-
hand sides of the two equations. Using some of the ideas
developed in [58], we can however gain interesting insights
about the stationary states, Eqs. (B1) and (B2). To this end,
we plot the two resonances above, respectively versus φ =
Y + BZ − �+ and φ′ = Z + BY − �+, along the same axis.
This is illustrated for three examples in Fig. 8. Note how by
construction the Z resonance is shifted by δ� with respect

to the Y resonance. The difference in amplitude on the other
hand reflects the driving ellipticity χ .

On these diagrams, we have represented the two symmetry-
broken solutions calculated numerically for the parameters of
the three examples considered. Each solution (Y, Z ) is plotted
as a pair of points at coordinates (φ,Y ) (blue) and (φ′, Z )
(orange). By representing the driving laser frequency as a
vertical green line at position φ = φ′ = −�+, the distances
between that line and the different points represent the corre-
sponding normalized nonlinear phase shifts, Y + BZ (for the
“blue” mode) and Z + BY (for the “orange” mode). The two
solutions are distinguished from each other by using respec-
tively dark round and light square symbols as in Fig. 4, as well
as with solid versus dashed arrows for the nonlinear phase
shifts. We can observe that the symmetry broken solutions
always lie on the right side of the resonances [59], where the
slopes are negative, and opposite from the driving laser (green
line). We remark that, in the case of scalar bistability, that side
is associated with the stable upper state. Geometrically, this
is explained by noting that the nonlinear phase shift has to
effectively push the driving across the resonance to reach that
state [58]. This correctly ties with the fact that SSB in the
passive Kerr resonator always originates on the upper branch
of the bistable response [26].

In the presence of asymmetries, the two symmetry broken
solutions are typically not mirror images of each other, and
the points corresponding to the two solutions are distinct. This
is in particular the case in presence of a single asymmetry
as in Fig. 8(a), where χ > 45◦ (the “orange” mode is driven
stronger than the “blue” mode) and δ� = 0. Starting from
that configuration, and introducing the second asymmetry by
increasing δ�, the two resonances as plotted in our diagram
can eventually intersect; see Fig. 8(b). Asymmetric balance is
achieved when one symmetry broken solution matches with
these intersection points [Fig. 8(c)], because at these points
Y = Z , φ = φ′, and each solution is the mirror image of the
other. In practice, we find that this match is rarely perfect,
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FIG. 9. Three-dimensional illustration of our system’s response. The graph shows the numerically calculated intensities of the two
polarization modes (blue and orange curves; dashed grey lines denote unstable states) vs driving ellipticity χ and difference in wave numbers
δ�. Other parameters are the same as in Fig. 4. The bottom projection corresponds to Fig. 7(b) and shows the coexistence range (yellow, and
associated vertical green panes) and asymmetric balance condition (red curve, and associated vertical dotted red lines). The behavior of the
fold points (filled circles) is tracked with thin lines, that illustrate the underlying cusp catastrophes, with associated projection on the back
plane (black lines).

but approaching it to within about 1% in terms of intensities.
This occurrence is nevertheless always a telltale sign that
the spontaneous selection between the modes, which is the
characteristic of SSB, can be restored for nearby parame-
ters. As stable symmetry broken solutions always lie on the
right side of the resonances, realizing asymmetric balance
requires that the intersection points lie on that same side.
Although this geometric argument cannot be turned into a
simple mathematical expression at present, it can still be used
to make qualitative predictions. In particular, it shows that a
wave-number difference δ� > 0 can only be balanced when
χ > 45◦ and vice versa. Also, a larger absolute value of δ�

requires χ to depart more significantly from 45◦. Both of these
trends agree with experimental observations.

APPENDIX C: THREE-DIMENSIONAL ILLUSTRATION

To give a more complete picture of our system’s be-
havior, we provide in Fig. 9 a three-dimensional illustra-
tion of the system response. The graph combines infor-
mation from Figs. 4 and 7(b) and shows the numerically
calculated intensities of the two polarization modes ver-
sus the two asymmetry parameters (χ and δ�) for condi-
tions corresponding to our experiment (�+ = 5.45, X = 10.8,
and B = 1.57).
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J. Wiersig, and L. Yang, Exceptional points enhance sensing in
an optical microcavity, ibid. 548, 192 (2017);

[51] Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, and K. Vahala,
Observation of the exceptional-point-enhanced Sagnac effect,
Nature (London) 576, 65 (2019).

[52] Y. Kominis, T. Bountis, and S. Flach, The asymmetric active
coupler: Stable nonlinear supermodes and directed transport,
Sci. Rep. 6, 33699 (2016). Y. Kominis, K. D. Choquette,
A. Bountis, and V. Kovanis, Exceptional points in two dis-

similar coupled diode lasers, Appl. Phys. Lett. 113, 081103
(2018).

[53] T. Nishikawa and A. E. Motter, Symmetric States Requiring
System Asymmetry, Phys. Rev. Lett. 117, 114101 (2016).

[54] S. Majhi, P. Muruganandam, F. F. Ferreira, D. Ghosh, and S. K.
Dana, Asymmetry in initial cluster size favors symmetry in a
network of oscillators, Chaos 28, 081101 (2018).

[55] J. D. Hart, Y. Zhang, R. Roy, and A. E. Motter, Topological
Control of Synchronization Patterns: Trading Symmetry for
Stability, Phys. Rev. Lett. 122, 058301 (2019).

[56] S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, Mod-
eling of octave-spanning Kerr frequency combs using a gen-
eralized mean-field Lugiato-Lefever model, Opt. Lett. 38, 37
(2013).

[57] W. Weng and A. N. Luiten, Mode-interactions and polarization
conversion in a crystalline microresonator, Opt. Lett. 40, 5431
(2015).

[58] F. J. Fraile-Peláez, J. Capmany, and M. A. Muriel, Transmission
bistability in a double-coupler fiber ring resonator, Opt. Lett. 16,
907 (1991).

[59] This is assuming B > 1. Symmetry broken solutions of
Eqs. (B1) and (B2) also exist for B < 1 but these are always
unstable, and are not considered here.

023244-12

https://doi.org/10.1098/rspa.1997.0140
https://doi.org/10.1098/rspa.1997.0140
https://doi.org/10.1098/rspa.1997.0140
https://doi.org/10.1098/rspa.1997.0140
https://doi.org/10.1140/epjd/e2017-80133-7
https://doi.org/10.1140/epjd/e2017-80133-7
https://doi.org/10.1140/epjd/e2017-80133-7
https://doi.org/10.1140/epjd/e2017-80133-7
http://indy.cs.concordia.ca/auto/
https://doi.org/10.1038/nature23280
https://doi.org/10.1038/nature23280
https://doi.org/10.1038/nature23280
https://doi.org/10.1038/nature23280
https://doi.org/10.1038/nature23281
https://doi.org/10.1038/nature23281
https://doi.org/10.1038/nature23281
https://doi.org/10.1038/nature23281
https://doi.org/10.1038/s41586-019-1777-z
https://doi.org/10.1038/s41586-019-1777-z
https://doi.org/10.1038/s41586-019-1777-z
https://doi.org/10.1038/s41586-019-1777-z
https://doi.org/10.1038/srep33699
https://doi.org/10.1038/srep33699
https://doi.org/10.1038/srep33699
https://doi.org/10.1038/srep33699
https://doi.org/10.1063/1.5040036
https://doi.org/10.1063/1.5040036
https://doi.org/10.1063/1.5040036
https://doi.org/10.1063/1.5040036
https://doi.org/10.1103/PhysRevLett.117.114101
https://doi.org/10.1103/PhysRevLett.117.114101
https://doi.org/10.1103/PhysRevLett.117.114101
https://doi.org/10.1103/PhysRevLett.117.114101
https://doi.org/10.1063/1.5043588
https://doi.org/10.1063/1.5043588
https://doi.org/10.1063/1.5043588
https://doi.org/10.1063/1.5043588
https://doi.org/10.1103/PhysRevLett.122.058301
https://doi.org/10.1103/PhysRevLett.122.058301
https://doi.org/10.1103/PhysRevLett.122.058301
https://doi.org/10.1103/PhysRevLett.122.058301
https://doi.org/10.1364/OL.38.000037
https://doi.org/10.1364/OL.38.000037
https://doi.org/10.1364/OL.38.000037
https://doi.org/10.1364/OL.38.000037
https://doi.org/10.1364/OL.40.005431
https://doi.org/10.1364/OL.40.005431
https://doi.org/10.1364/OL.40.005431
https://doi.org/10.1364/OL.40.005431
https://doi.org/10.1364/OL.16.000907
https://doi.org/10.1364/OL.16.000907
https://doi.org/10.1364/OL.16.000907
https://doi.org/10.1364/OL.16.000907

