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We demonstrate the equivalence between two distinct Luttinger liquid impurity problems. The first concerns
a one-dimensional topological superconductor coupled at one end to the ends of two single-channel Luttinger
liquids. The second concerns a point contact in the quantum spin Hall effect, where four helical Luttinger liquids
meet at a point. Both of these problems have been studied previously and exhibit several stable phases, depending
on the Luttinger parameter K , that can be characterized in terms of simple conformally invariant boundary
conditions describing perfect normal (or Andreev) transmission or reflection. In addition, both problems exhibit
critical points that are described by “intermediate” fixed points similar to those found in earlier studies of an
impurity in a Luttinger liquid with spin. Though these two models have different symmetries and numbers
of modes, we show they are equivalent and are related by a duality transformation, and we show that the
nontrivial intermediate critical points are the same. In the noninteracting limit, K = 1, the duality involves two
distinct free fermion representations that are related by a nonlocal transformation that derives from the triality
of SO(8). Using the explicit translation between the two theories, we translate results from one problem to the
other and vice versa. This allows us to make predictions about the topological superconductor–Luttinger liquid
junction, including predictions about the global behavior of the critical conductance G∗(K ), as well predictions
for the critical exponents and universal crossover scaling functions. In this paper, we introduce both models
from scratch, using a common notation that facilitates their comparison, and we discuss in detail the dualities
that relate them, along with their free fermion limits. We close with a discussion of open problems and future
directions.
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I. INTRODUCTION

Quantum impurity problems have played a central role in
the development of quantum many-body theory. A central
paradigm, introduced by Affleck and Ludwig [1,2], is that the
fixed points characterizing the low-energy phases of a (0 + 1)-
dimensional impurity coupled to a bath are in correspondence
with the allowed conformally invariant boundary conditions
of the conformal field theory describing the bath. Applying
the powerful techniques of boundary conformal field theory
[3] allows for a detailed characterization of non-Fermi-liquid
behavior that arises in the multichannel Kondo problem [1,2],
the single-impurity problem in a Luttinger liquid [4–6], the
theory of point contacts in the fractional quantum Hall effect
[7,8], and many related problems.

In the Luttinger liquid problem, the simplest boundary
conditions for a weak link are the “perfectly transmitting”
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(“perfectly reflecting”) limits, which are stable for attractive
(repulsive) interactions. In a Luttinger liquid with spin, there
are additional fixed points in which charge is perfectly trans-
mitted and spin is perfectly reflected, or vice versa [5,6]. The
CI, IC, CC, and II (charge conductor, spin insulator, etc.)
phases are stable or unstable, depending on the values of the
Luttinger parameters Kρ and Kσ characterizing the interac-
tions, and are described by simple boundary conditions in the
charge and spin sectors. However, for certain ranges of Kρ , Kσ ,
it was found that all of the “simple” fixed points are unstable
or that more than one is stable. This implies the existence of
nontrivial additional fixed points. A perturbative analysis of
these fixed points is possible in limits where they are close to
the simpler fixed points [5], and for certain specific values of
the interactions the intermediate fixed points can be mapped to
solvable models [9,10]. However, a complete theory of these
“intermediate” fixed points has remained elusive.

In the problem of the spinful Luttinger liquid, the inter-
mediate fixed points arise in a rather unphysical parameter
regime, Kρ < 1 and Kσ > 1. However, Hou et al. [11] pointed
out that a point contact in a quantum spin Hall insulator maps
to a weak link in a spinful Luttinger liquid with Luttinger
parameters Kρ = 1/Kσ = K , where K is the Luttinger pa-
rameter characterizing the helical edge state of the quantum
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spin Hall insulator, which forms a nonchiral Luttinger liquid
[12,13]. This led Teo and Kane [14] (TK) to develop a theory
of the critical behavior of the pinch-off transition of a helical
point contact. For the helical point contact, both the pinched-
off and the open limits (which both correspond to simple
conformally invariant boundary conditions) are perturbatively
stable when 1/2 < K < 2. In both cases, the perturbative cor-
rections involve tunneling of electrons between the middles
of two Luttinger liquids, which is irrelevant for any K �= 1.
For 1/2 < K < 2, the pinch-off transition is controlled by an
intermediate unstable fixed point. At zero temperature, the
conductance changes discontinuously at the transition, while
at finite temperature, the transition has a finite width and is
described by a universal crossover scaling function. For K <

1/2 (K > 2), the system flows to the charge insulator–spin
conductor (charge conductor–spin insulator) fixed point with
zero (perfect) conductance. By piecing together perturbative
solutions at K = 1/2 + ε, K = 2 − ε, and 1 ± ε, along with
symmetry arguments at K = 1/

√
3 and K = √

3, and assum-
ing there are no additional fixed points, TK predicted the
behavior of the intermediate critical point as a function of K .

In a subsequent but independent development, Affleck and
Giuliano [15,16] (AG) studied the problem of a junction
between Luttinger liquids and a topological superconductor.
This was motivated by the proposal to realize one-dimensional
topological superconductivity in nanowires proximitized by a
superconductor [17–19]. When the Majorana zero mode at the
end of a one-dimensional (1D) topological superconductor is
weakly coupled to a Fermi liquid lead, then at high energy
the electrons are normally reflected, but in the limit of low
energy the electrons exhibit perfect Andreev reflection [20].
At low energy, the Majorana mode is effectively absorbed by
the lead, resulting in a change in the boundary condition from
normal to Andreev reflection. A similar phenomenon occurs
when a one-dimensional Luttinger liquid is coupled to the
Majorana mode, provided the interactions are not too large
[21]. For K > 1/2, the Majorana mode is absorbed, resulting
in Andreev reflection, while for K < 1/2, there is normal
reflection, with a decoupled Majorana mode.

AG considered the case in which the Majorana mode is
coupled to two Luttinger liquid leads. When K < 1/2, the
Majorana mode is decoupled from both leads, which both
have normal reflection (the NN phase). For K > 1/2, when
lead 1 is more strongly coupled than lead 2, then at low energy
the Majorana mode is absorbed by lead 1, leading to Andreev
(normal) reflection in lead 1 (2) (the AN phase). When the
couplings to leads 1 and 2 are equal, however, the Majorana
mode is frustrated. AG showed that the low-energy behavior
in this case is controlled by a nontrivial intermediate fixed
point, which can be described perturbatively for K = 1/2 + ε

and for free fermions when K = 1.
In this paper, we show that the helical point contact de-

scribed by the TK model and the Luttinger liquid–topological
superconductor junction described by the AG model are
equivalent and related by a duality transformation. The (II,
CC, IC, CI) phases of the TK model correspond to (NA, AN,
NN, AA) phases of the AG model, and the intermediate fixed
point that describes the pinch-off transition is the same as
the fixed point that characterizes the symmetric junction. The
mapping between the models allows us to transfer many of the
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FIG. 1. A point contact in a quantum spin Hall insulator in the
(a) pinched-off limit and (b) the open limit.

results from TK to the AG model. Specifically, we show that
the critical conductance of the AG model exhibits a symmetry
under K ↔ K−1, and we adopt the perturbative results of TK
for K = 1 + ε, as well as the behavior at K = 1/

√
3 and K =√

3 to form a more complete picture of the behavior of the
conductance as a function of K . In addition, we translate the
results of TK for the critical exponents and universal crossover
scaling functions to the AG model.

In Sec. II, we introduce the TK model of the helical point
contact and describe the web of dualities that provide equiv-
alent descriptions of the model and are useful for describing
the different phases. Much of the material in this section is
contained in the work of TK. We include it here to introduce
notation that facilitates comparison with results of AG. In
Sec. III, we introduce the AG model, and in Sec. IV, we
demonstrate the equivalence with the TK model by explic-
itly describing the duality that relates them. In addition, we
consider the free fermion limit K = 1 and show that the two
models correspond to two inequivalent free fermion represen-
tations that are related by a transformation that derives from
the triality of SO(8). Finally, in Sec. V we describe predictions
about the AG model that follow from our identification before
concluding in Sec. VI.

II. HELICAL POINT CONTACT

A point contact in the quantum spin Hall effect involves
four helical edges, labeled by a = 1, . . . , 4, that meet at a
point. Each helical edge consists of counterpropagating Dirac
fermions modes, described by ψa,p(x), where p = out, in
(also denoted by p = +1, −1) specifies the direction of
propagation, and x is the distance from the contact. In the
spin Sz conserving model that we consider, the spin of each
mode is correlated with its propagation direction and given by
Sz = p(−1)ah̄/2.

The point contact admits a simple description in the
pinched-off and open limits, shown in Figs. 1(a) and 1(b).
These lead to the simple boundary conditions on the chiral
fermion modes. For the pinched-off junction, we have

ψ1,out (0) = ψ4,in(0); ψ2,out (0) = ψ3,in(0);

ψ3,out (0) = ψ2,in(0); ψ4,out (0) = ψ1,in(0), (1)

while for the open junction we have

ψ1,out (0) = ψ2,in(0); ψ2,out (0) = ψ1,in(0);

ψ3,out (0) = ψ4,in(0); ψ4,out (0) = ψ3,in(0). (2)
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For noninteracting fermions, a more general boundary con-
dition can be expressed in terms a unitary 4 × 4 transmission
matrix. We will discuss this in Sec. IV B. Here we focus on the
interacting case, where the helical edge states form a Luttinger
liquid. The Luttinger liquid theory can be formulated by
expanding perturbatively about either of the above limits.

A. Luttinger liquid model

1. Four-channel variables

In the presence of short-ranged electron interactions, each
of the four helical edges forms a nonchiral Luttinger liquid.
This is most easily described by bosonizing

ψa,p = ei(ϕa+pθa )

√
2πxc

, (3)

where xc is a short-distance cutoff, and the boson fields satisfy
[θa(x), θa′ (x′)] = [ϕa(x), ϕa′ (x′)] = 0 along with

[∂xθa(x), ϕa′ (x′)] = iπδaa′δ(x − x′). (4)

The boundary condition at x = 0 is determined by (1) or (2).
In general, (3) and (4) should be augmented with either a

Klein factor in (3) or a specification of the commutator of the
zero modes of θa and ϕa that ensures that the Fermi fields ψa,p

all anticommute with one another. For the problem at hand,
which will involve tunneling of electrons between the helical
edges, while conserving charge and spin, the zero modes and
the Klein factors have no effect and can be ignored.

In the presence of interactions, the Hamiltonian has the
form

H =
∫ ∞

0
dx

4∑
a=1

H0
a(x), (5)

where

H0
a = v

2π
[K−1(∂xθa)2 + K (∂xϕa)2]. (6)

K is the dimensionless Luttinger parameter characterizing
the forward scattering interactions and v is the velocity.
K < 1 (K > 1) for repulsive (attractive) interactions. For the
operators built from products of electron operators ψa,mn =
exp i(mϕa + nθa) (for n = m mod 2), K determines the scaling
dimension

�mn = (K−1m2 + Kn2)/4. (7)

The densities of the conserved charge and spin in lead a
are nρ

a = ∂xθa/π and nσ
a = (−1)a−1∂xϕa/π . It follows that the

electric current flowing into lead a is

Iρ
a = ∂tθa/π = vK∂xϕa/π (8)

and the spin current into lead a is

Iσ
a = (−1)a−1∂tϕa/π = v(−1)a−1K−1∂xθa/π. (9)

Of interest are the currents of charge and spin flowing from
left to right (from leads 1 and 4 to leads 2 and 3),

Iρ
X = (

Iρ
1 − Iρ

2 − Iρ
3 + Iρ

4

)
/2, (10)

Iσ
X = (

Iσ
1 − Iσ

2 − Iσ
3 + Iσ

4

)
/2, (11)

and the currents flowing from top to bottom (from leads 1 and
2 to leads 3 and 4),

Iρ
Y = (

Iρ
1 + Iρ

2 − Iρ
3 − Iρ

4

)
/2, (12)

Iσ
Y = (

Iσ
1 + Iσ

2 − Iσ
3 − Iσ

4

)
/2. (13)

These define charge and spin conductances, computed by the
Kubo formula as Gα

IJ = limω→0�
α
IJ (ω)/(iω), for I, J = X or

Y , where the retarded current-current correlation function is

�α
IJ (t ) = θ (t )

〈[
Iα
I (t ), Iα

J (0)
]〉
. (14)

2. Charge and spin variables

Because of the conservation of charge and spin at the point
contact, it is useful to introduce new variables,

ϕρ± = (ϕ1 ± ϕ2 ± ϕ3 + ϕ4)/2, (15)

θρ± = (θ1 ± θ2 ± θ3 + θ4)/2, (16)

and

ϕσ± = (θ1 ∓ θ2 ± θ3 − θ4)/2, (17)

θσ± = (ϕ1 ∓ ϕ2 ± ϕ3 − ϕ4)/2. (18)

These variables satisfy [θα (x), θα′ (x′)] =
[ϕα (x), ϕα′ (x′)] = 0 for α, α′ = ρ±, σ±, along with

[∂xθα (x), ϕα′ (x′)] = iπδαα′δ(x − x′). (19)

In terms of these variables, the Hamiltonian is

H =
∫ ∞

0
dx

[
H0

ρ+ + H0
σ+ + H0

ρ− + H0
σ−

]
(20)

with

H0
ρ± = v

2π

[
K−1

ρ (∂xθρ±)2 + Kρ (∂xϕρ±)2
]
, (21)

H0
σ± = v

2π

[
K−1

σ (∂xθσ±)2 + Kσ (∂xϕσ±)2
]
, (22)

and

Kρ = K ; Kσ = K−1. (23)

In terms of these variables, we have

Iρ
X = ∂tθρ−/π = Kv∂xϕρ−/π, (24)

Iσ
X = ∂tθσ−/π = K−1v∂xϕσ−/π, (25)

along with

Iρ
Y = ∂tϕσ−/π = Kv∂xθσ−/π, (26)

Iσ
Y = ∂tϕρ−/π = K−1v∂xθρ−/π. (27)

The total charge and spin flowing out of the junction are
4∑

a=1

Iρ
a = 2∂tθρ+/π = 2vK∂xϕρ+/π, (28)

4∑
a=1

Iσ
a = 2∂tθσ+/π = 2vK−1∂xϕσ+/π. (29)

Charge and spin conservation implies that these operators
have zero expectation values.
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B. Boundary conditions and fixed points

Note that the currents depend only on the variables in the
ρ− and σ− sectors. The boundary conditions (1) or (2) imply
that the boundary condition in the ρ+ and σ+ sectors is

θρ+(0) = 0; θσ+(0) = 0. (30)

Since charge and spin conservation at the junction forbids
terms in the Hamiltonian proportional to exp iϕρ+ or exp iϕσ+,
the ρ+ and σ+ sectors are trivially perfectly transmitted and
decouple from ρ− and σ− sectors. The nontrivial behavior of
the point contact is all in the ρ− and σ− sectors, which we
describe perturbatively below.

1. Closed junction: II fixed point

For a closed junction, the boundary condition (1) implies
that

θρ−(0) = 0; θσ−(0) = 0. (31)

This corresponds to Gρ
XX = Gσ

XX = 0, which we refer to as the
charge insulator–spin insulator (II) phase. Given (31), we can
integrate out the degrees of freedom for x > 0 in an imaginary
time path integral to obtain an effective 0 + 1D action for
ϕα (τ ) ≡ ϕα (x = 0, τ ), given by

SII
0 =

∫
dω

(2π )2
[Kρ |ω||ϕρ−(ω)|2 + Kσ |ω||ϕσ−(ω)|2], (32)

where ω is a Matsubara frequency and Kρ,σ are given in (23).
The transfer of electrons across the junction can be de-

scribed perturbatively in terms of the tunneling Hamiltonian

VII = −te cos ϕρ− cos ϕσ− − tρ cos 2ϕρ− − tσ− cos 2ϕσ−.

(33)
Here te describes the tunneling of electrons (with ↑ or ↓)
across the junction and tρ describes the tunneling of a ↑↓ pair
of electrons. tσ describes the transmission of spin by tunneling
of a ↑ (↓) electron to the right (left). In general, one could also
consider higher order tunneling processes, but they will be less
relevant. The stability of the II fixed point is determined by
the RG flow equation dt/d� = (1 − �(t ))t , where from (7)
the scaling dimensions for the tunneling operators are given
by

�(te) = (K + K−1)/2; �(tρ ) = 2K−1; �(tσ ) = 2K.

(34)
For 1/2 < K < 2, all perturbations are irrelevant, and the II
fixed point is stable. For K < 1/2 (K > 2), tσ (tρ) is relevant
and flows to strong coupling.

2. Open junction: CC fixed point

When the junction is open, the boundary condition (2)
implies

ϕρ−(0) = 0; ϕσ−(0) = 0. (35)

In this case, the transmission of charge and spin is perfect,
Gρ

XX = Gσ
XX = 2Ke2/h, which we call the charge conductor–

spin conductor (CC) phase. We then have

SCC
0 =

∫
dω

(2π )2

[
K−1

ρ |ω||θρ−(ω)|2 + K−1
σ |ω||θσ−(ω)|2].

(36)
The perturbative corrections to this fixed point involve

tunneling electrons between the top and bottom edges and are
described by the tunneling Hamiltonian

VCC = ve cos θρ− cos θσ− + vρ cos 2θρ− + vσ cos 2θσ−.

(37)
ve describes the backscattering of electrons R ↑→ L ↑
and R ↓→ L ↓. vρ describes the backscattering of a pair
(R ↑, R ↓→ L ↑, L ↓), which also involves tunneling spin be-
tween the top and bottom edges. vσ describes backscattering
of spin (R ↑, L ↓→ L ↑, R ↓), which also involves tunneling
charge between the top and bottom edges.

The dimensions of these operators are

�(ve) = (K + K−1)/2; �(vρ ) = 2K ; �(vσ ) = 2K−1.

(38)
Comparing (34) and (38), it can be seen that they are the

same with ρ and σ interchanged. Indeed, the CC and the
II fixed points are precisely related by a reflection M that
interchanges lead 2 with lead 4. This exchanges the boundary
conditions (31) and (35) and takes ϕρ ↔ θσ and ϕσ ↔ θρ .
Thus, the M operation takes a Hamiltonian expanded about II
to a Hamiltonian expanded about CC, with the identification

M : (ϕρ−, ϕσ−) ↔ (θσ−, θρ−); (39)

(te, tρ, tσ ) ↔ (ve, vσ , vρ ); (40)

(Kρ, Kσ ) ↔ (
K−1

σ , K−1
ρ

)
; (K ↔ K ). (41)

The M operation relates two different physical systems.
However, if a system is invariant under M, then the two
systems are identical. M is not a physical symmetry for
a helical point contact because it exchanges the trivial and
quantum spin Hall insulators. In principle, M could be a
symmetry for helical modes on the surface of a topological
crystalline insulator. In either event, it is useful to consider
the possibility of symmetry under M because that exchanges
the II and CC phases. Thus, for 1/2 < K < 2, provided we
assume that the II and CC phases are separated by a single
critical point, then the presence of M symmetry tunes the
system precisely to the unstable intermediate fixed point of
interest.

When K < 1/2 or K > 2, (34) and (38) imply that both the
II and the CC fixed points are unstable. These lead to strong
coupling phases that will be identified as IC and CI, which we
will see are also invariant under M. These phases will have a
natural description in a dual theory described in the following
section.

In addition to the mirror operation, we can also consider
a change of variables that exchanges the charge and spin
variables:

E : (ϕρ−, ϕσ−) ↔ (ϕσ−, ϕρ−); (42)

(te, tρ, tσ ) ↔ (te, tσ , tρ ); (43)

(Kρ, Kσ ) ↔ (Kσ , Kρ ); (K ↔ K−1). (44)
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This transformation relates the partition functions of two
different problems with different values of K .

C. Constraints on the critical conductance

The presence of mirror symmetry constrains the form of
the conductance at the mirror invariant critical point. Consider
the conductance computed in an expansion about the II (CC)
fixed point, Gα

IJ (K, t) [Gα
IJ (K, v)], where t = (te, tρ, tσ , . . .)

and v = (ve, vρ, vσ , . . .). After applying the combination of
M and E , it follows that

Gρ
XX (K, t) = Gσ

YY (K−1, v = t). (45)

An additional relation follows from the fact that correlators
of ∂xθρ− and correlators of ∂xϕρ− are related. From (24) and
(27), this implies that Gρ

XX (K ) and Gσ
YY (K ) are related. In

Appendix A, we show that the precise relation is

K−1Gρ
XX (K, t) + KGσ

YY (K, t) = 2e2/h. (46)

If we now assume that in the presence of symmetry under
M the system flows to a unique mirror-invariant fixed point
with conductance Gα

IJ (K )∗, then it follows by combining (45)
and (46) that

K−1Gρ
XX (K )∗ + KGρ

XX (K−1)∗ = 2e2/h. (47)

Thus, the critical conductance obeys a symmetry under K ↔
K−1. A similar analysis shows that Gρ

YY obeys the same rela-
tion, and that Gσ

XX,YY obey similar relations with K replaced
by K−1.

In Ref. [14], it was also argued that for specific values
of K there is an additional symmetry that further constrains
the conductance [9]. The action SII

0 [ϕρ−, ϕσ−] in (32) is in-
variant under rotations of (ϕρ−, ϕσ−/K ). The cosine potential
VII (ϕρ−, ϕσ−) in (33) breaks this rotation symmetry, but when
te = 2tσ and tρ = 0 symmetry under C6 rotations is preserved.
The dual action expanded about SCC

0 has a similar symmetry.
Since the C6 symmetry is preserved under the renormalization
group, it is natural to expect that the intermediate critical point
has the C6 symmetry for K = 1/

√
3. A similar symmetry

arises for K = √
3, when te = 2tρ , tσ = 0. This enhanced

symmetry predicts that for these values of K the critical
conductance satisfies

Gρ
XX (K )∗ = K2Gσ

XX (K )∗. (48)

Combined with (47), this implies

Gρ
XX (K )∗ =

{
(1/

√
3)e2/h K = 1/

√
3,√

3e2/h K = √
3.

(49)

D. Web of dualities

Duality relations provide a connection between different
representations of the same problem. Problems with strong
interactions that are therefore intractable in one representation
can be weakly interacting, and therefore tractable, in a dual
representation. Duality relations have been a powerful tool
for understanding the global behavior of quantum impurity
problems, such as the problem of a single impurity in a
Luttinger liquid. In this section, we identify several dual
representations of the TK model. This will be useful for

identifying the mapping to the AG model, because the AG
model, when expressed in terms of natural variables, is dual
to the TK model. The AG model exhibits the same dualities
as the TK model, but in a different order.

We begin with the duality relating the CC and II limits
[5,9]. Starting from the II description in (21), (22), (31), and
(33), when te is large, the variables ϕρ− and ϕσ− will be pinned
in the deep minima of −te cos ϕρ− cos ϕσ− at (ϕρ−, ϕσ−) =
(nρπ, nσ π ) with nρ + nσ even. This implements the boundary
conditions (35) up to a constant shift. Fluctuations about these
minima will involve instanton processes where ϕρ− and ϕσ−
jump between nearby minima. Expanding the partition func-
tion in powers of these instantons is identical to expanding the
partition function of (21), (22), (35), and (37) in powers of ve.
veei(±θρ−±θσ− ) generates an instanton where (ϕρ−, ϕσ−) jumps
by (±π,±π ).

Thus, the same problem can be analyzed in two dual
representations: the (θρ−, θσ−) representation in which the
partition function is expanded in powers of the coefficient
of the cosine potentials, v, or the (ϕρ−, ϕσ−) in which the
partition function is expanded in powers of the fugacity of
the instantons, t . Alternatively, one can view t as the cosine
potential, where v the fugacity of instantons in ϕ. We denote
this duality transformation by

Dρσ : (ϕρ−, ϕσ−) ↔ (θρ−, θσ−); (50)

(te, tρ, tσ ) ↔ (ve, vρ, vσ )dual; (51)

(Kρ, Kσ ) ↔ (
K−1

ρ , K−1
σ

)
; (K ↔ K−1). (52)

Here, the superscript “dual” refers to the fact that v and t
are inversely related: Large v corresponds to small t and vice
versa.

In addition to the above duality transformation, one can
also perform partial duality transformations independently in
the charge or spin sectors. These lead to a natural descrip-
tion of the charge insulator–spin conductor (IC) and charge
conductor–spin insulator (CI) phases.

Consider the II description in (21), (22), (31), and (33),
and suppose that tρ is large, while te = tσ = 0. Then ϕρ− will
be pinned in the minima of cos 2ϕρ− at ϕρ− = nρπ , but ϕσ−
is free. Up to a constant shift, this implements the mixed
boundary condition

ϕρ−(0) = 0; θσ−(0) = 0. (53)

There are two kinds of perturbations about this limit. The
first comes from te cos ϕρ− cos ϕσ−, in which ϕρ− = nρπ is
pinned. The sign of this term, however, depends on the parity
of nρ . We therefore define the Z2 variable τz = (−1)nρ . The
second kind of perturbation involves a tunneling process, in
which ϕρ− jumps by π . This process changes nρ by 1 and flips
the sign of τz. We can therefore represent these perturbations
by the action S0

IC + ∫
dτVIC (τ ) with

SIC
0 =

∫
dω

(2π )2

[
K−1

ρ |ω||θρ−(ω)|2 + Kσ |ω||ϕσ−(ω)|2] (54)

and

VIC = t̃σ τz cos ϕσ− + ṽρτx cos θρ−. (55)
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Note that

�(t̃σ ) = K/2; �(ṽρ ) = K/2. (56)

Both t̃σ and ṽρ are irrelevant for K > 2. In that case, the IC
fixed point is stable. In addition, it is clear that the IC fixed
point is invariant under the mirror operation M.

A similar analysis can be applied to the CI fixed point.
For large tσ , with te = tρ = 0 we implement the boundary
condition

θρ−(0) = 0; ϕσ−(0) = 0. (57)

The expansion about this CI fixed point is generated by S +
S0

CI + ∫
dτVCI with

SCI
0 =

∫
dω

(2π )2

[
Kρ |ω||ϕρ−(ω)|2 + K−1

σ |ω||θσ−(ω)|2] (58)

and

VCI = t̃ρτz cos ϕρ− + ṽσ τx cos θρ−. (59)

For K < 1/2, t̃ρ and ṽσ are irrelevant. The CI fixed point is
stable and invariant under M.

We thus have implemented the partial dualities:

Dρ : ϕρ− ↔ θρ−; (60)

(te, tσ ) ↔ (
ṽdual

ρ , t̃σ
)
; (61)

(Kρ, Kσ ) = (K, K−1) ↔ (
K−1

ρ , Kσ

) = (K−1, K−1) (62)

and

Dσ : ϕσ− ↔ θσ−; (63)

(te, tρ ) ↔ (
ṽdual

σ , t̃ρ
)
; (64)

(Kρ, Kσ ) = (K, K−1) ↔ (
Kρ, K−1

σ

) = (K, K ). (65)

Clearly, Dρσ = DρDσ . Thus, a given physical system can
be described using four dual representations, as indicated in
Fig. 2. In addition, the partial duality transformations inter-
change the E and M operations

E = DρMDρ = DσMDσ . (66)

III. LUTTINGER LIQUID–TOPOLOGICAL
SUPERCONDUCTOR JUNCTION

A. Model

Affleck and Giuliano introduced the model, depicted in
Fig. 3, of two semi-infinite single-channel spinless Luttinger
liquids coupled at their ends x = 0 by single electron tunnel-
ing to the Majorana mode γ of a 1D topological superconduc-
tor (whose phase we assume is pinned at 0). This leads to a
tunneling Hamiltonian,

Ht = it1γ [�1(0) + �
†
1 (0)] + it2γ [�2(0) + �

†
2 (0)]. (67)

It is worth stressing that Ht in (67) is symmetric under
particle-hole exchange in only one channel. This forbids any
current flow between channels. However, such a symmetry
is rather artificial; it could be broken by additional boundary
interaction terms as, for example, a tunneling term between
channels.

vρ, vσ
ve

tρ,tσ
te tσ

vρ

tρ

vσ

Dρ

Dρσ Dρσ

Dρ

Dσ Dσ

σ
ρ

σ
ρ

σ
ρ

σ
ρ

σ
ρ

σ
ρ

σ
ρ

σ
ρ

FIG. 2. Dualities relate four different representations of the heli-
cal point contact.

Adopting the same notation as (6), we describe each Lut-
tinger liquid by bosonizing, and writing

H =
∫ ∞

0
dx

(
H0

1 + H0
2

)
(68)

with

H0
A = v

2π

[
K−1

A (∂xθA)2 + KA(∂xϕA)2
]
, (69)

where KA is the Luttinger parameter characterizing the spin-
less Luttinger liquid in wires A = 1, 2. We will assume that
they are the same,

K1 = K2 = K. (70)

The electron operator takes the form

�A,p = �A
ei(ϕA+pθA )

√
2πxc

, (71)

where p = out, in = +1,−1. Here we have introduced Klein
factors, represented by Majorana operators �1 and �2, which
satisfy {�A, �B} = 2δAB and {�A, γ } = 0.

Defining the currents flowing into each contact as

IA = ∂tθA/π = vK∂xϕA/π, (72)

we can define the Kubo conductances GAB = limω→0 �AB(ω)
with

�AB(t ) = θ (t )〈[IA(t ), IB(0)]〉. (73)

Topo

SC

γ

1 2

FIG. 3. Affleck-Giuliano model of two Luttinger liquids coupled
to the Majorana mode at the end of a 1D topological superconductor.
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To facilitate comparison with the TK model, we also define a
dual conductance G̃AB in terms of

ĨA = ∂tϕA/π = vK−1∂xθA/π. (74)

G̃AA describes the voltage response as an applied current in
lead A related to GAA. Using the analysis in Appendix A, it
follows that

KG̃AA + K−1GAA = 2e2/h. (75)

B. Phases

In the absence of coupling to the superconductor, both
wires have a boundary condition at the end x = 0 that cor-
responds to perfect normal reflection for both wires (NN),

θ1(0) = 0; θ2(0) = 0. (76)

Integrating out the degrees of freedom for x > 0, we can then
consider the 0 + 1D action for ϕA(τ ) ≡ ϕA(x = 0, τ ), given
by

SNN
0 =

∫
dω

(2π )2
K|ω|(|ϕ1(ω)|2 + |ϕ2(ω)|2). (77)

The single-electron tunneling term (67) then has the form

VNN = it1γ�1 cos ϕ1 + it2γ�2 cos ϕ2. (78)

The scaling dimensions are

�(t1) = �(t2) = 1/(2K ). (79)

In general, higher order, but less relevant, terms will also be
present. For example, tunneling between the wires, cos(ϕ1 −
ϕ2) (� = 1/K) and Josephson tunneling to the superconduc-
tor, cos 2φa (� = 2/K) are allowed. The NN phase is stable
when K < 1/2, while for K > 1/2 t1 and t2 flow to strong
coupling.

When t1 is large but t2 is small, then ϕ1 will lock into
the minima of the cosine at ϕ1 = nπ and iγ�1 = (−1)n. In
this limit, the Majorana mode is effectively absorbed by lead
1, changing the boundary condition at the end from perfect
normal reflection to perfect Andreev reflection. This is then
described by the (AN) boundary conditions,

ϕ1(0) = 0; θ2(0) = 0. (80)

This limit is described by a dual action of the form

SAN
0 =

∫
dω

(2π )2
|ω|(K−1|θ1(ω)|2 + K|ϕ2(ω)|2). (81)

The electron operator into lead 1 now has the form e±iθ1(0).
Perturbations about this limit include

VAN = t2J cos(2ϕ2) + ve cos θ1 cos ϕ2 + v1N cos 2θ1. (82)

t2J can be interpreted as tunneling a Cooper pair into the
superconductor from lead 2. ve describes two processes, in
which an electron is tunneled from one lead to the other, or
where a Cooper pair is removed from the superconductor,
adding one electron to each lead. v1N describes the normal
reflection of an electron in lead 1. These operators have
dimensions

�(t2J ) = 2/K ; �(ve) = (K + K−1)/2; �(v1N ) = 2K.

(83)

An identical analysis can be applied to the NA fixed point by
interchanging leads 1 and 2.

It is clear that both the NA and the AN fixed points are
stable for 1/2 < K < 2. Affleck and Giuliano observed that
when t1 = t2, the system must flow to the critical point that
separates them, which is described by an unstable intermedi-
ate fixed point. When t1 = t2, the AG model has a reflection
symmetry M, which interchanges leads 1 and 2:

M : (ϕ1, θ1) ↔ (ϕ2, θ2); (84)

(t1, t2) ↔ (t2, t1); (85)

(K1, K2) ↔ (K2, K1); (K ↔ K ). (86)

Note the similarity and difference with (41). In contrast to the
TK model, M symmetry in the AG model is implemented by
a physical reflection symmetry of the junction.

For K < 1/2, v1N is relevant at the AN fixed point and
flows to strong coupling. Likewise, v2N is relevant at the NA
fixed point. This suggests that in either case the system flows
to the stable NN fixed point. For K > 2, t2J (t1J ) is relevant at
the AN (NA) fixed point. This suggests that lead 2 becomes
strongly coupled to the superconductor, and the system flows
to a AA phase where both leads are Andreev reflected from
the superconductor.

We therefore see that the stable phases of the AG model
have structures very similar to that of the TK model. In the
following section, we will describe the precise translation
between these two models.

IV. EQUIVALENT MODELS

We now establish the equivalence between the TK model
and the AG model. If we compare Eqs. (54) and (55) for the
TK model expanded about the IC limit with Eqs. (77) and
(78) of the AG model expanded about the NN limit it can be
seen that they are identical, provided the products of Majorana
operators in (78) are represented by Pauli matrices:

iγ�1 ↔ τz, iγ�2 ↔ τx, (87)

and the boson variables are related by

(θ1, ϕ1) ↔ (θρ−, ϕρ−), (88)

(θ2, ϕ2) ↔ (ϕρ−, θρ−). (89)

Expanding the actions in powers of the cosine perturbations
and integrating out the boson fields generates identical 0 + 1D
Coulomb gas expansions in for the two problems, provided the
Luttinger parameters are related by

K1 ↔ Kρ, K2 ↔ 1/Kσ . (90)

With this correspondence, we can relate the Kubo conduc-
tances

G11 ↔ Gρ
XX , G22 ↔ Gρ

YY , (91)

G̃22 ↔ Gσ
XX , G̃11 ↔ Gσ

YY . (92)

This precise equivalence relating the NN limit of the AG
model to the IC limit of the TK model suggests that there is a
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correspondence between all of the phases and fixed points of
both models,

NN ↔ IC, AN ↔ CC, (93)

NA ↔ II, AA ↔ CI. (94)

In the following, we explore in detail different aspects of the
correspondence, including the correspondence of dualities,
and the correspondence between the free fermion limits of
both models, which provides insight into the mathematical
structure underlying the equivalence between these rather
different models.

A. Dualities

The defining action for the TK model, given by SCC (or
SII ), is expressed in terms of natural variables (θρ−, θσ−) [or
(ϕρ−, ϕσ−)], while the defining action for the AG model,
SNN , is expressed in terms of (ϕ1, ϕ2). This indicates that the
defining representations of the two models are related by the
Dσ (or Dρ) partial duality.

Given this identification, both models exhibit the same web
of dualities discussed in Sec. II D. Indeed, it is easy to see
that the AN and NA limits of the AG model are related by
the Dρσ -type duality by, for instance, considering the limit of
large (tJ , ve, v1N ) in which pins θ1 and ϕ2 (82), and expanding
in powers of instantons. In addition, an instanton analysis
similar to the Dρ and Dσ duality relates the NA limit to the
NN and AA limits.

A case that is somewhat less obvious is the duality between
the NN and the AA limits of the AG model (or equivalently
between IC and CI of the TK model). Because of the Majorana
operators, the two terms in (78) do not commute with each
other. Therefore, one cannot straightforwardly perform the
instanton analysis in limit of large t1 and t2. Here we present
two simple modifications of this argument that allow the
analysis to proceed.

Consider first an extension of the AG model, in which
Josephson tunneling of Cooper pairs between the supercon-
ductor and the leads, described by

VJ = t1J cos 2ϕ1 + t2J cos 2ϕ2, (95)

is included in (78). Consider first the case in which the single-
particle tunneling vanishes, t1 = t2 = 0. When K > 2, both t1J

and t2J are relevant and flow to strong coupling, leading to a
phase in which ϕ1 and ϕ2 are pinned. This is described by a
dual action

SAA
0 =

∫
dω

(2π )2
K−1|ω|(|θ1(ω)|2 + |θ2(ω)|2). (96)

Now we can add single-electron coupling to the Majorana
mode of the superconductor, (67). In this case, since ϕa is
pinned, the tunneling term takes the form

VAA = iv1γ�1 cos θ1 + iv2γ�2 cos θ2. (97)

These perturbations have dimension

�(v1) = �(v2) = K/2 (98)

and are irrelevant for K > 2.

A slight modification of this argument is to consider single-
electron tunneling to a topological superconductor that has
three low-energy Majorana modes γ0, γ1, γ2, described by a
tunneling Hamiltonian,

VNN =
2∑

a=1

2∑
j=0

ita j�aγ j cos ϕa. (99)

While the existence of three low-energy Majorana modes is
not generic, it is always possible to have extra low-energy
Andreev bound states, and the two extra ones do not need to
be exactly at zero energy. Consider the limit of large t11 and
t22, which fix i�aγa = ±1, and ϕa = naπ for a = 1, 2. Now,
instantons in which ϕa jumps by π and i�aγa changes sign are
generated by precisely (96) and (97), with γ → γ0.

An alternative pathway toward the derivation of (97),
which we review in Appendix B, is based on a lattice fermion
description of the system, which eventually yields (96) and
(97) in the continuum limit [16].

B. Free fermion limit

Noninteracting electrons are described by the K = 1 limit
in both the TK model and the AG model. In both cases,
the low-energy behavior is described by a fixed line with a
continuously varying transmission matrix. While the K = 1
limits of both models coincide, the mapping between them is
nontrivial. In this section, we outline the precise connection
between the free fermion limits of both models.

We begin by considering the free fermion limit of the TK
model. In this case, there are four incoming and four outgoing
Dirac fermion modes, related by a unitary scattering matrix.
Single-electron scattering states are combinations of incoming
and outgoing waves related by

ψa,out =
∑

b

ST K
ab ψb,in. (100)

In the spin- and charge-conserving model that we consider
here (where incoming leads 1 and 3 and outgoing leads 2 and
4 have spin up), the S matrix has the form [14]

ST K =

⎛
⎜⎜⎝

0 t1 0 r1

t2 0 r∗
2 0

0 r∗
1 0 −t∗

1

r2 0 −t∗
2 0

⎞
⎟⎟⎠, (101)

with |r1|2 + |t1|2 = |r2|2 + |t2|2 = 1. This can be interpreted
as the transmission and reflection of up and down spins,
described by an SU(2) ⊕ SU(2) scattering matrix, with six
independent real degrees of freedom. In addition, one could
introduce two additional U(1) phases for the up and down
spins by multiplying ST K by diag(eiζ1 , eiζ2 , eiζ1 , eiζ2 ). We will
see that these phases only affect the total charge (ρ+) and total
spin (σ+) sectors and cancel in our analysis. Time-reversal
symmetry in the TK model imposes a further constraint S =
−QST Q where Q = diag(1,−1, 1,−1) [14], which in this
case requires t1 = t2 and r1 = r2. Here, we will consider the
somewhat more general case where time-reversal symmetry
can be violated, but Sz conservation is preserved. While this
is not a natural symmetry for the TK model, it is useful to
consider time-reversal breaking in the AG model.
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For K = 1, the AG model is likewise expressed in terms
of free fermions. In this case, there are two incoming and
two outgoing free fermion channels, which can be related
by either normal or Andreev scattering. This is described
by a unitary 4 × 4 scattering matrix for the Nambu spinor
(�1, �2, �

†
1 , �

†
2 )T ,

SAG =

⎛
⎜⎜⎝

n1,1 n1,2 a1,1 a1,2

n2,1 n2,2 a2,1 a2,2

a∗
1,1 a∗

1,2 n∗
1,1 n∗

1,2

a∗
2,1 a∗

2,2 n∗
2,1 n∗

2,2

⎞
⎟⎟⎠. (102)

This obeys the Bogoliubov–de Gennes constraint SAG∗ =
τxSAGτx. The amplitudes nA,B (aA,B) for normal (Andreev)
transmission from channel A to channel B are not all indepen-
dent because they are constrained by unitarity, SAG†SAG = 1.
The counting of degrees of freedom is simplest if one ex-
presses �A, �

†
A in terms of four Majorana modes as ξA ± iηA.

In that basis, the scattering matrix is a real orthogonal 4 × 4
matrix. A further constraint follows from the fact that there
are two distinct topological classes of orthogonal scattering
matrices distinguished by the sign of their determinant. It is
well known that these two classes correspond to whether or
not there is a Majorana zero mode at the scattering center
[22,23]. Thus, for the AG model, we expect

det[SAG] = −1. (103)

Therefore, SAG is an improper rotation times a SO(4) ma-
trix. Since SO(4) ∼ SU(2) ⊕ SU(2), with six real degrees of
freedom, it is plausible that SAG and ST K are related. In the
following, we will deduce the explicit relation.

Consider the bosonized representations of both models.
The TK model is built out of “TK fermions,” represented by

ψa,p ∼ γaeiφa,p . (104)

Here, as in (3), we express the incoming-outgoing (p =
+1/ − 1) electron operator in channel a in terms of a chiral
boson φa,p. Here we also keep the Klein factor, which satisfies
{γa, γb} = 2δab. Note that the product (−1)F = γ1γ2γ3γ4 =
±1 describes the fermion parity and commutes with the
Hamiltonian.

The AG model is built from “AG fermions,”

�1,p =�ρ−,p ∼ �1ei(φ1,p−φ2,p−φ3,p+φ4,p)/2, (105)

�2,p =�
p
σ−,p ∼ �2ei(φ1,p+φ2,p−φ3,p−φ4,p)/2. (106)

In addition, we can define two additional fermions that are not
present in the AG model,

�3,p =�ρ+,p ∼ �3ei(φ1,p+φ2,p+φ3,p+φ4,p)/2, (107)

�4,p =�
p
σ+,p ∼ �4ei(φ1,p−φ2,p+φ3,p−φ4,p)/2. (108)

A special property of this transformation is that it preserves
the commutation relations obeyed by the chiral fields, which
guarantees that both ψa and �A are fermion operators. How-
ever, due to the 1/2 in (105)–(108) the AG fermions, ψa are
related to the TK fermions, �A, by a nonlocal transformation.

The fact that this is possible is related to the triality of
SO(8). The four free fermion channels of the TK model can be
expressed in terms of eight Majorana fermions ψa = ξa + iηa.

In this basis, the transmission problem is expressed in terms
of a SO(8) scattering matrix that is subject to the constraints
of charge and spin conservation. In this representation, the
Majorana operators ξa, ηa transform under the fundamental
eight-dimensional vector representation of SO(8), and the
scattering matrix ST K is a representation of a SO(8) rotation
in that fundamental representation.

In addition to the eight-dimensional vector representation,
SO(8) has two eight-dimensional spinor representations. This
follows from the fact that the Clifford algebra Cl0,8 can be rep-
resented in terms of eight 16 × 16 real Dirac matrices. There
is also a ninth Dirac matrix, “γ 5′′ = ∏8

i=1 γi, whose eigen-
value ±1 distinguishes the two eight-dimensional Majorana-
Weyl spinor representations. The vector representation and
the two spinor representations of SO(8) are related by triality
symmetry. SO(8) triality has also appeared in other contexts,
including the Gross-Neveau model [24], the Ashkin-Teller
model [25], the two-channel Kondo problem [26], and the
theory of the two-legged Hubbard ladder [27].

While the TK fermions ψa (expressed in terms of Majorana
operators) transform in the fundamental vector representation,
the AG fermions, �1,2 and �

†
1,2, together with the extra fields

�3,4 and �
†
3,4, transform in one of the spinor representations.

The scattering matrix SAG is a representation of the same
SO(8) rotation as ST K in the spinor representation, similar to
representing SO(3) rotations in terms of SU(2) spinors.

Due to charge and spin conservation, the components of
the scattering matrix describing �3 and �4 are trivial and
describe perfect transmission (with phase shifts determined by
ζ1 ± ζ2). To extract the explicit form of SAG in terms of ST K , it
is simplest to consider the transmission of pairs of electrons.
Because of the 1/2 in (105)–(108), a single AG fermion is
related by a nonlocal transformation to the TK fermions.
However, an AG fermion combined with a �3 = �ρ+ fermion
is related locally to a pair of TK fermions. Explicitly, we have

�3�1 = ψ4ψ1, �3�
†
1 = ψ2ψ3, (109)

�3�2 = ψ1ψ2, �3�
†
2 = ψ4ψ3. (110)

Note that since ψa anticommute, there is some freedom in
choosing the signs in (109) and (110). However, they are not
all independent, and depend on the product of Klein factors
γ1γ2γ3γ4 = ±1. Equation (109) implies γ4γ1 = γ2γ3, which
is consistent with (110), which implies γ1γ2 = γ4γ3.

Using (109) and (110), we can express two-particle scat-
tering states in terms of either TK fermions or AG fermions.
When expressed in terms of TK fermions, the incoming
states ψa,in, ψb,in and outgoing states ψc,out, ψb,out will be
expressed in terms of the product of single-particle scattering
matrices: ST K

ac ST K
bd − ST K

ad ST K
bc . On the other hand, since �3 is

transmitted perfectly, the same process is described by SAG
αβ ,

where α, β are related to ab, cd as in (109) and (110). This
leads to

SAG =

⎛
⎜⎜⎜⎝

−r1r2 t1r2 t1t∗
2 r1t∗

2

r1t2 −t1t2 t1r∗
2 r1r∗

2

t∗
1 t2 r∗

1 t2 −r∗
1 r∗

2 t∗
1 r∗

2

t∗
1 r2 r∗

1 r2 r∗
1 t∗

2 −t∗
1 t∗

2

⎞
⎟⎟⎟⎠. (111)

023243-9



C. L. KANE, D. GIULIANO, AND I. AFFLECK PHYSICAL REVIEW RESEARCH 2, 023243 (2020)

This result is independent of the U(1) phases ei(ζ1+ζ2 ), which
are canceled by the phase shift for transmission of �3.
This parametrization satisfies unitarity SAG†SAG = 1, SAG∗ =
τxSAGτx as well as det[SAG] = −1, and is the most general
form satisfying those constraints.

The transmission in the TK model can be characterized by
the transmission and reflection probabilities,

Ta = |ta|2, (112)

Ra = |ra|2 = 1 − Ta, (113)

for a = 1, 2. Likewise, the transmission in the AG model can
be characterized by the probabilities for normal and Andreev
reflection,

Ni, j = |ni, j |2, (114)

Ai, j = |ai, j |2. (115)

From (111), it can be seen that each of these is a product of
two R’s or T ’s:

N1,1 = A2,2 = R1R2, (116)

N1,2 = A2,1 = T1R2, (117)

N2,1 = A1,2 = R1T2, (118)

N2,2 = A1,1 = T1T2. (119)

It is instructive to compare the Landauer conductances. In
the time-reversal-invariant (T1 = T2 ≡ T ) case, we have

Gρ
XX = 2Te2/h. (120)

In the AG model, we have

G11 = (1 − N1,1 + A1,1)e2/h. (121)

Using the fact that A1,1 = T 2 and N1,1 = R2 = (1 − T )2, it
follows that G11 = Gρ

XX . A similar analysis can also be ap-
plied to the other components of the conductance.

C. Renormalization of SAG for weak interactions

As a nontrivial check of the equivalence between the
TK model and the AG model, we perform an analysis of
the renormalization group flow of the scattering matrix SAG

for weak interactions, K = 1 − ε. This type of analysis was
introduced by Matveev et al. [28,29], who studied the single
impurity problem in a spinless Luttinger liquid. They found
that due to the interference between the incident and reflected
waves, the scattering matrix is renormalized to linear order
in ε, leading to a renormalization group flow toward perfect
reflection for repulsive interactions (ε > 0).

TK performed a similar analysis for the helical point
contact. Since time-reversal symmetry forbids reflection, it
was found that the renormalization of the scattering matrix
to linear order in ε vanishes. However, there is a correction
at order ε2, which allowed TK to compute the universal
crossover from the critical point to the II and the CC fixed
points.

Here we do the corresponding calculation for the AG
model. The mapping outline in the previous section suggests

that there should be a correspondence between the renor-
malization group flows in the two models. However, the
structure of the problems is different, because in the AG model
there is no constraint on the normal and Andreev reflection.
Therefore, in general, one should expect a renormalization to
linear order in ε. We will show that for the class of scattering
matrices with det[SAG] = −1, the linear in ε renormalization
vanishes and the ε2 renormalization is in agreement with TK.
Our analysis also generalizes the result of TK to include
the case where time-reversal symmetry is violated, but spin
conservation is preserved.

In Appendix C, we derive the renormalization group flow
for SAG. Here we report the result, and drop the superscript
AG for brevity. To linear order in ε = 1 − K , we find

dSab

d�
= ε

2

⎛
⎝vabSab −

∑
c,d

vcdSadS∗
cdScb

⎞
⎠. (122)

Here

vab = δa,b − δa,b+2 (123)

describes the interaction ψ
†
a,inψa,inψ

†
a,outψa,out. In the second

term, which accounts for the Bogoliubov de Gennes form of
the Hamiltonian, a and b are understood to be defined modulo
4.

The TK calculation has a similar structure, except vab =
δa,b, and time-reversal symmetry requires Saa = 0. Thus, for
ST K the right-hand side of (122) vanishes.

For a general S matrix of the form (102), the right-hand
side of (122) does not vanish. However, as detailed in Ap-
pendix C for the class of BdG S matrices with det[S] = −1,
the right-hand side of (122) does vanish. This can be checked
by plugging the parametrization (111) into (122).

To second order in ε, the renormalization of S is given by

dSab

d�
= ε2

4

(∑
cd

vadvcbSabScdS∗
cd

−
∑
cde f

vc f vedSadSe f S∗
cdS∗

e f Scb

⎞
⎠. (124)

For vab = δab, this has a structure similar to the TK calcula-
tion. If we plug in the parametrization (111), then (124) can
be expressed in terms of T1 and T2, in (112),

dT1

d�
= −ε2T1(1 − T1)(1 − 2T2), (125)

dT2

d�
= −ε2T2(1 − T2)(1 − 2T1). (126)

If time-reversal symmetry is present, so that T1 = T2 = T ,
then this result agrees precisely with the TK result for the
case in which spin is conserved. In this case, there are two
stable points: T = 0 corresponds to the NA fixed point with
N1,1 = A2,2 = 1, while T = 1 corresponds to the AN fixed
point with N2,2 = A1,1 = 1. In addition, the unstable critical
fixed point at T = 1/2 corresponds to Ni, j = Ai, j = 1/4 for
all i, j = 1, 2.

When time-reversal symmetry is violated, the renormal-
ization group flows for T1 and T2 are shown in Fig. 4.
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0
0

1

1T1

T2

N1,1, A2,2

A1,2, N2,1

N1,2, A2,1

A1,1, N2,2

FIG. 4. Flow diagram for the order ε2 RG flow of SAG parame-
terized using (111).

Two additional unstable fixed points occur at T1 = 1, T2 = 0
(N1,2 = A2,1 = 1) and T1 = 0, T2 = 1 (N2,1 = A1,2 = 1). The
critical point separating the two stable phases is on the time-
reversal symmetric line, as is the universal crossover from the
critical fixed point to the stable fixed points.

V. PREDICTIONS FOR THE AG MODEL

Having established the correspondence between the AG
model and the TK model, we now collect some results for the
AG model, focusing on the behavior of the conductances G11

and G22 of the AG model. The results are a direct translation of
the predictions of TK, except that TK computed the “physical
conductance” that is modified to account for Fermi liquid
leads. Here, in order to facilitate comparison with numerics,
we focus on the Kubo conductance, which is computed using
the Kubo formula for infinite Luttinger liquid leads. The
translation between these is reviewed in Appendix D.

Consider first the conductance at the mirror symmetric
critical point G∗

11(K ) = G∗
22(K ). For K < 1/2 (K > 2) the NN

(AA) fixed point is stable, so that the Kubo conductance is 0
(2Ke2/h). For 1/2 < K < 2, the critical conductance varies
between 0 and 2Ke2/h. The results are simplest if we define

G∗
11(K ) = G∗

22(K ) = 2Kμ∗(K )e2/h. (127)

From Eq. (47), the normalized Kubo conductance μ∗(K )
satisfies

μ∗(K ) + μ∗(K−1) = 1. (128)

TK computed the critical physical conductance perturbatively
for K = 1 − ε, K = 2 − ε, K = 1/2 + ε as well as at K =√

3 and K = 1/
√

3. Here we translate those results to the
normalized Kubo conductance in the AG model.

For K = 1, the conductance at the critical fixed point is
G∗ = e2/h. For weak interactions, TK found that the correc-
tion to the physical conductance linear in ε is equal to zero.

0

1/2

1

11/2 2

μ*(K)

31/  3 K

FIG. 5. Schematic plot of the critical conductance G11 =
G22 = G∗(K ) in the AG model, expressed in terms of μ∗(K ) =
G∗(K )/(2Ke2/h).

Using Eq. (D2), this implies

μ∗(1 − ε) = 1/2 + ε/4. (129)

The vanishing correction occurred for TK because time-
reversal symmetry required the reflection amplitude vanish
for K = 1. Including the interactions perturbatively, the only
possible nonzero diagrams that contributed to the conductance
were the “random phase approximation (RPA)” type of bubble
diagrams. While these contribute to the Kubo conductance,
their contribution to the physical conductance was zero.

The perturbative calculation of the conductance in the AG
model is somewhat more complicated. In addition to the RPA
diagram, there are additional nonzero diagrams that contribute
at first order in the interactions. Nonetheless, we have checked
that the non-RPA diagrams cancel, and the two calculations
agree.

For K close to 1/2, the critical fixed point is close to
the NA fixed point, allowing for a perturbative calculation of
the conductance. TK found that the physical conductance is
2π2εe2/h for K = 1/2 + ε, which translates to [30]

μ∗(1/2 + ε) = 2π2ε. (130)

Similarly, for K = 2 − ε, using (128) we have

μ∗(2 − ε) = 1 − π2ε/2. (131)

Finally, from (49), we have

μ∗(1/
√

3) = μ∗(
√

3) = 1/2. (132)

The global behavior of μ∗(K ) is indicated in Fig. 5. In
order to reflect the symmetry under K ↔ 1/K in (128), we
plot K on a logarithmic scale. The red dots and lines indicate
the known data in Eqs. (130)–(132), and the curve is an
interpolation. Of course, the detailed behavior is unknown.
For instance, there could be points where the slope of μ∗(K )
is discontinuous.

We next consider the behavior away from the critical point.
In the AG model, if the symmetry between the two channels
is broken by t1 − t2 = δt , then the system flows at low energy
to the AN (NA) fixed point for δt > 0 (δt < 0). At zero
temperature, we therefore expect a step function behavior
of the conductance: G11(δt ) = 2θ (δt )e2/h, G22(δt ) = 2(1 −
θ (δt ))e2/h. This behavior is very similar to the pinch-off
transition of the helical point contact.
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TK showed that at finite temperature the step is rounded
and exhibits a scaling behavior in the limit T, δt → 0:

G11(T, δt ) = (2Ke2/h)GK (cδt/T αK ), (133)

G22(T, δt ) = (2Ke2/h)GK (−cδt/T αK ). (134)

Here, αK is a critical exponent that is determined by the
dimension of the leading relevant operator at the critical fixed
point and c is a nonuniversal constant. GK (X ) is a universal
crossover scaling function characterizing the flow from the
unstable critical point to the stable fixed points, satisfying

GK (X = 0) = μ∗(K ), (135)

GK (X → ∞) = 1, (136)

GK (X → −∞) = 0. (137)

TK computed αK and GK (X ) in the perturbatively acces-
sible regimes. Here we collect those results. For K = 1 − ε,

α1−ε = ε2/2; (138)

The limiting form of the scaling function is

G1(X ) = 1

2

(
1 + X√

1 + X 2

)
. (139)

For K = 1/2 + ε,

α1/2+ε = 4ε (140)

The limiting form of the scaling function is

G1/2(X ) = θ (X )
X

1 + X
. (141)

The singularity near X = 0 is rounded for finite ε. For |X | �
1, it is given by

G1/2+ε (X � 1) = X

1 − e−X/(2π2ε)
. (142)

It can be observed that (141) and (142) match for ε � X � 1.
Moreover, (142) and (130) agree.

The results for K = 2 − ε follow from (128). Note that
for K = 1, the physical conductance is the same as the Kubo
conductance, so no translation is necessary for G1 in (139).
For K = 1/2, the TK result requires translation using (D2).
Equation (141) retains the same form provided we replace X
by X/2, which changes the nonuniversal constant c in (134).
The exponent in (142) then differs from TK by a factor of
2. We refer the reader to Ref. [14] for plots of these scaling
functions.

VI. DISCUSSION

In this paper, we have established the equivalence be-
tween the Affleck-Giuliano model of a two-channel Luttinger
liquid–topological superconductor junction and the Teo-Kane
model of a helical point contact. Both models exhibit a series
of phases that are stable, or unstable, depending on the values
of the Luttinger interaction parameters. These phases are
identified with the phases of a single impurity in a spinful
Luttinger liquid: the charge insulator–spin insulator (II), the

charge conductor–spin conductor (CC), as well as the mixed
IC and CI phases. In the TK model, the pinched-off limit
corresponds to II, while the open limit corresponds to CC.
In the AG model, the limit in which the leads are decoupled
from the topological superconductor (leading to normal re-
flection in both leads, NN) corresponds to the IC phase. In
addition, both models exhibit critical fixed points, which are
neither perfectly transmitting or perfectly reflecting, and can
be identified with the intermediate fixed points found in the
spinful Luttinger liquid.

The CC, II, IC, and CI phases are related by a web of
duality transformations. The TK and AG model are related by
the duality that takes II to IC. When the Luttinger parameter
K = 1, this duality relates two inequivalent free fermion rep-
resentations of the same problem. As explained in Sec. IV B,
these inequivalent representations are related by the triality of
SO(8).

Using the transformation that relates the two models, all
predictions for the TK model can be translated to the AG
model, and vice versa. In particular, this analysis allowed
us in Sec. V to predict the global behavior of the critical
conductance G∗(K ) in the AG model.

There remain a number of open problems for further study.
Foremost among these is to develop a more comprehensive
theory of the intermediate fixed points using boundary confor-
mal field theory. It is generally expected that the fixed points
in a quantum impurity problem should be characterized by
the set of allowed conformally invariant boundary conditions.
While this is certainly the case for the simple fixed points in
our theory, the intermediate fixed points seem to defy this
simple classification, and analysis of them has only been
possible in certain perturbative limits. A more general analysis
is complicated by the fact that for continuous values of the
Luttinger parameter K , the conformal field theory describing
the leads is not rational.

In the absence of a general classification, perhaps some
progress is possible for specific values of K for which the
theory is rational. For a different regime of the spinful Lut-
tinger liquid problem (with specific values of Kρ and Kσ ),
Yi and Kane [9] mapped the intermediate fixed point to
the non-Fermi-liquid fixed point of the three-channel Kondo
problem, described by a SU(2)3 Wess-Zumino-Witten theory
[1,2]. Perhaps analysis is possible for other values of K ,
corresponding to rational CFTs. It would also be worthwhile
to study the equivalent models numerically.

It may also be of interest to consider generalizations. TK
considered a model in which spin conservation could be
violated (while preserving time reversal). That could further
be coupled to a superconductor to allow charge conservation
to be violated. Likewise, the AG model can be generalized
to include any number of Luttinger liquid leads coupled
to the Majorana mode of a topological superconductor. In
their analysis for weak interactions, TK found an additional
intermediate fixed point when spin conservation is violated in
which an incident electron is transmitted to any of the other
three leads with equal probability 1/3. It seems likely that
this critical point is related to the symmetric critical point of a
three-lead AG model. Likewise, when charge conservation is
violated, in the TK model, there is likely a nontrivial mapping
to the four-lead AG model.
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APPENDIX A: CONDUCTANCE IDENTITY

In this Appendix, we prove Eq. (46), which relates the
conductances Gρ

XX (K ) and Gσ
YY (K ). Using the Kubo formula,

these conductances can be expressed as correlation functions,

Gα
IJ = lim

ω→0

1

iω
�α

IJ (ω), (A1)

where by using (14), (24), and (27) the retarded correlation
functions are given by

�
ρ
XX (t ) = (K/π )2θ (t )〈[∂xϕρ−(t ), ∂xϕρ−(0)]〉, (A2)

�σ
YY (t ) = (πK )−2θ (t )〈[∂xθρ−(t ), ∂xθρ−(0)]〉. (A3)

ϕρ− and θρ− obey the commutation relation (19) and have bare
Hamiltonian H0

ρ− given by (21). Here we set the velocity v =
1. The operators in (A2) and (A3) are evaluated at a position
x > 0, away from the junction at x = 0.

It is useful to transform to a set of chiral currents that
diagonalize H0

ρ−, given by

JR = (∂xϕρ− + ∂xθρ−/K )/(2π ), (A4)

JL = (∂xϕρ− − ∂xθρ−/K )/(2π ). (A5)

These satisfy

[JR(x), JR(x′)] = −[JL(x), JL(x′)] = i

2πK
δ′(x − x′) (A6)

and [JR(x), JL(x′)] = 0. In terms of these variables,

H0
ρ− = πvK

[
J2

R + J2
L

]
. (A7)

Thus, the in- and out-moving chiral modes are decoupled
away from the junction at x = 0.

Now consider

�0(t ) = K−1�
ρ
XX (t ) + K�σ

YY (t ). (A8)

Using (A4) and (A5), this may be written as

�0(t ) = 2Kθ (t )〈[JR(t ), JR(0)] + [JL(t ), JL(0)]〉. (A9)

Note that by design, the cross terms cancel in (A9). When
evaluated at a position x away from the junction, the correlator
of two right-moving (or two left-moving) currents will be
independent of the Hamiltonian at junction because the left
(right) currents at x will be out of causal contact with x = 0.

�0(t ) can be straightforwardly evaluated, but it is even
simpler to see that

G0 = K−1Gρ
XX + KGσ

YY (A10)

must independent of the tunneling at the barrier. Therefore, it
can be trivially evaluated at either the II or CC fixed point. At
CC, Gρ

XX = 2Ke2/h and Gσ
YY = 0. Therefore,

G0 = 2e2/h. (A11)

APPENDIX B: DUAL COUPLING TO THE MAJORANA
MODE IN THE AA LIMIT OF THE AG MODEL

A direct derivation of the dual AA action in the AG model,
(96) and (97) of the main text, can be performed within a
lattice fermion description of the system, which eventually
yields (96) and (97) in the continuum limit [16]. As lattice
fermion Hamiltonian for the AG model, we use HLat, given by

HLat =
2∑

a=1

∞∑
j=1

{−J[c†
j,ac j+1,a + c†

j+1,ac j,a] − μc†
j,ac j,a}

−
2∑

a=1

taγ {ca,1 − c†
a,1} + HInt, (B1)

with J being the lattice hopping strength and μ being the
chemical potential.

The first term at the second line of (B1) is the lattice version
of the coupling to the Majorana mode. HInt is the lattice bulk
interaction Hamiltonian. Its explicit expression is not relevant
for the following derivation, provided that, in the continuum
limit, one recovers the Luttinger liquid Hamiltonian in (68)
and (69) (details about HInt are provided in Ref. [15]). The
standard pathway from (B1) to the Luttinger liquid Hamilto-
nian goes through retaining only low-energy, long-wavelength
fermionic modes of the lattice fermion operators by expanding
them as c j,a ∼ {eikF j�+,a(x) + e−ikF j�−,a(x)}, with the Fermi
momentum ±kF = arccos(− μ

2J ), and by therefore employing
the bosonization formulas of the main text for the continuum
fermion operators.

As a next step, we now introduce lattice real fermion
operators {ξ j,a, η j,a}, such that c j,a = ξ j,a + iη j,a. Also, for
the sake of simplicity, we make the assumption of symmetric
couplings to the Majorana mode in the second line of (B1),
that is, t1 = t2 = t . As a result, the corresponding term in (B1)
is given by −8it

∑
a=1,2 γ η1,a = −8it

√
2γ η+, with η+ =

1√
2
(η1 + η2). In the large-t limit, we therefore see that η+ is

“locked together” with γ into a state annihilated by the Dirac
operator γ + iη+.

The real fermion operators ξ1,a appear in the free Hamil-
tonian at the first line of (B1). Putting the corresponding
contributions all together, we define H ′ given by

H ′ = −2i
∑

a=1,2

{ξ2,aη1,a + ξ1,aη2,a} − 2iμ
∑

a=1,2

ξ1,aη1,a.

(B2)
H ′ can be regarded as a special case of a general Hamilto-

nian H̃ ′, given by

H̃ ′ = −2iJα

∑
a=1,2

ξ2,aη1,a − 2iJβ

∑
a=1,2

ξ1,aη2,a

− 2iμα

∑
a=1,2

ξ1,aη1,a, (B3)

with Jα = Jβ = J , μα = μ.
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To stabilize the AA fixed point, one therefore fine-tunes
the parameters in H̃ ′ so that Jα = μα = 0, Jβ = J �= 0. As a
result, the first line of (B1) becomes

H̃ =
∑

a=1,2

∞∑
j=2

{−J[c†
j,aca+1,a + c†

j+1,ac j,a]

−μc†
j,ac j,a} − J

∑
a=1,2

ξ1,a {c2,a − c†
2,a}. (B4)

H̃ in (B4) is the sum of two Hamiltonians for a single chain
coupled to a Majorana mode at its endpoint. Therefore, the
fixed point corresponds to perfect Andreev reflection in both
channels, that is, to having (in terms of the continuum fields)
�+,a(0) = �

†
−,a(0) for a = 1, 2. This result is not affected

by turning on the bulk interaction, provided the Luttinger
parameter K > 1/2 [15,21].

Turning on the terms we set to zero before, we obtain the
corresponding boundary interaction, given by

�H̃ ′ = −i
√

2
∑

a=1,2

{Jaξ2,a + μaξ1,a}η+

+ i
√

2
∑

a=1,2

{(−1)a[Jaξ2,a + μaξ1,a]}η−. (B5)

Because of the locking between η+ and γ , any action of η+
alone would take the system to a higher energy state, which we
forbid, in the large-t limit. Therefore, in the following we drop
the term ∝ η+ from the right-hand side of (B5). Expanding
the lattice fermion operators in terms of the continuum fields,
taking into account the AA boundary conditions, and resorting
to bosonization framework, one eventually obtains

�H̃ ′ = i
∑

a=1,2

η−va�a cos θa, (B6)

that is, VAA in (97) of the main text, with η− being the
“emerging” Majorana mode at the AA fixed point.

APPENDIX C: RENORMALIZATION GROUP ANALYSIS
FOR WEAK INTERACTIONS

In this Appendix, we explicitly derive the renormalization
group flow equations for SAG for small values of the bulk
interaction strength V (that is, for |V/(2πv)| = |ε|(= |1 −
K|) � 1), up to order ε2. While we derive the equations
for a generic S matrix, we show that, when S = SAG and
det[SAG] = −1, the term linear in ε vanishes and the first
nonzero contribution to the renormalization group equations
appears to order ε2. This is analogous to what happens to the
renormalization group equations for ST K at small values of ε,
as discussed in Ref. [14] (what is basically expected, due to
the correspondence between the two models).

To perform our derivation, we picture the AG model as a
quantum point contact between N = 4 interacting leads, so to
employ the general framework developed in Refs. [14,28,29].
Let ψa,p, with a = 1, 2, 3, 4 and p = ±1, the in- and out-
fermionic field operators in each lead. When deriving the
equations for the AG model, we identify ψ1,p, ψ2,p with
respectively �1,p and �2,p of the AG model, and ψ3,p, ψ4,p

with respectively �
†
1,p, �

†
2,p. To consistently realize the iden-

tification, we employ a generalization of TK bulk interaction

Hamiltonian [14], with an interaction strength that has off-
diagonal components in the lead index. Specifically, we use
HInt given by

HInt = (2πvε)
∑
a,b

vab

×
∫ ∞

0
dx ψ

†
a,+(x)ψa,+(x)ψ†

b,−(x)ψb,−(x), (C1)

with va,b = δa,b − δa,b+2, and a, b understood to be defined
modulo 4. The fields ψa,+ and ψa,− are related to each other
by the S matrix via

ψa,+ =
∑

b

Sabψb,−. (C2)

(C2) allows for relating the S-matrix elements to the
single-fermion Green’s functions involving a + and a − field.
In particular, resorting to the imaginary time formalism and
using ψa,p(x, τ ) to denote the field ψa,p(x) at imaginary time
τ , one obtains [14][

g(+,+)
a,b (x, τ ; x′, τ ′) g(+,−)

a,b (x, τ ; x′, τ ′)

g(−,+)
a,b (x, τ ; x′, τ ′) g(−,−)

a,b (x, τ ; x′, τ ′)

]

=
[

δab g(x, τ ; x′, τ ′) Sab g(x, τ ; −x′, τ ′)

S†
ab g(−x, τ ; x′, τ ′) δab g(−x, τ ; −x′, τ ′)

]
, (C3)

with g(p,p′ )
a,b (x, τ ; x′, τ ′) = −i〈Tτψa,p(x, τ )ψ†

b,p′ (x′, τ ′)〉,
g(x, τ ; x′, τ ′) = 1

2π i ( 1
vτ+ix−vτ ′−ix′ ), and with Tτ being the

imaginary time ordering operator. According to (C3), we
compute the correction to S at a given order in ε by just
looking at the corresponding correction to g(+,−)

a,b (x, τ ; x′, τ ′)
in (C3). In particular, using the interaction Hamiltonian in
(C1) and denoting with δ(1)g(+,−)

a,b (x, τ ; x′, τ ′) the correction

to order ε to g(+,−)
a,b (x, τ ; x′, τ ′), one finds

δ(1)g(+,−)
a,b (x, τ ; −x′, τ ′)

= (2πvε)
∑
d,d ′

vdd ′
∑

c,c′,c′′
SacS∗

dc′Sdc′′

×
∫ ∞

−∞
dτ1

∫ ∞

0
dy1〈Tτψc,+(x, τ )

×ψ
†
c′,+(y1, τ1)ψc′′,+(y1, τ1)

×ψ
†
d ′,−(y1, τ1)ψd ′,−(y1, τ1)ψ†

b,−(x′, τ ′)〉. (C4)

Applying Wick’s theorem to the last line of (C4) and taking
into account (C3) as well as the unitarity of S , one eventually
recasts (C4) in the form

δ(1)g(+,−)
a,b (x, τ ; −x′, τ ′)

= −(2πvε)vabSab

∫ ∞

−∞
dτ1

∫ ∞

0
dy1

× g(x, τ ; y1, τ1)g(y1, τ1; −y1, τ1)g(−y1, τ1; −x′, τ ′)

+(2πvε)
∑
c,d

vcdSadS∗
cdScb

∫ ∞

−∞
dτ1

∫ ∞

0
dy1

× g(x, τ ; −y1, τ1)g(y1, τ1; −y1, τ1)g(y1, τ1; −x′, τ ′).

(C5)

023243-14



EQUIVALENT CRITICAL BEHAVIOR OF A HELICAL … PHYSICAL REVIEW RESEARCH 2, 023243 (2020)

bab a

(b)(a)

FIG. 6. Diagrammatic representation of the physical processes
that, to order ε, correct S by logarithmically diverging contributions.
In the figure, a red full line represents an in particle, a blue full
line shows an out particle, the dashed black line corresponds to
the bulk interaction, and the black dots denote insertions of S-
matrix elements. In particular, in the diagram (a) the bulk interaction
converts a red line into a red line, as well as a blue line into a blue
line, thus providing a correction that is first order in the Sab’s. In
the diagram (b), instead, the bulk interaction converts a red line into
a blue line and vice versa, thus leading to a correction that is third
order in the Sab’s.

In Fig. 6, we diagrammatically draw the physical processes
contributing the right-hand side of (C4). To ease reading the
graphs, we employ a full red line to denote an in particle
(p = −) and a full blue line to denote an out particle (p = +).
We represent the interaction as a dashed line connecting the
densities in the in and out channels. A scattering event at the
junction, connecting in and out particles, corresponding to a
single insertion of an S-matrix element, is denoted with a full
black dot. Due to the off-diagonal form of our interaction, only
diagrams with one [(Fig. 6(a)] or three [Fig. 6(b)] S-matrix
insertions contribute to the renormalization of S .

To regularize the logarithmic divergences, one resorts to
the standard renormalization group approach [14,28,29], by
introducing the running parameter l = ln ( D0

D ), with D being
the running energy scale and D0 being a high-energy, refer-
ence cutoff. Taking into account the contributions represented
in the diagrams of Fig. 6, one eventually obtains the renor-
malization group equations for Sab to first order in ε, given by

dSab

dl
= ε

2

⎧⎨
⎩vabSab −

∑
c,d

vcdSadS∗
cdScb

⎫⎬
⎭ + · · · , (C6)

with the ellipses corresponding to higher order contributions,
which we are going to compute in the following.

In the quantum point contact between four helical states
and without interwire interaction discussed in Ref. [14], that
is, for S = ST K , one has vab = δab and ST K

aa = 0. Apparently,
this implies that the right-hand side of (C6) is =0 ∀a, b.
In the AG model, that is, for S = SAG, the key point is
whether det[SAG] = −1, as it happens when the Majorana
zero mode at the junction is “built in” the scattering boundary
conditions (as at the, e.g., AN and NA fixed points of the
AG model) or not (as happens at the NN and AA fixed
points). If det[SAG] = −1, then SAG can be expressed using
the completely general parametrization in (111). As a result,
plugging the corresponding matrix elements in the right-hand
side of (C6), one finds that, exactly as it happens in the
TK model, the renormalization group equations for SAG are
zero, to order ε [which corresponds to a perfect cancellation
between the amplitudes corresponding to the diagrams in

bab a

(a) (b)

FIG. 7. First pair of diagrams that, to order ε2, cancel with each
other, as a consequence of the cancellation between diagrams of
order ε in Fig. 6.

Figs. 6(a) and 6(b)]. So, to get a finite result, one has to derive
the renormalization group equations to order ε2.

At variance, when det[SAG] = 1, SAG is parametrized by
(111) by simply swapping with each other rows 2 and 4 in
(which reverses the sign of det[SAG]). Plugging again the
matrix elements of SAG into (C6), one finds that the right-hand
side of the equation is no longer equal to 0. Indeed, to order
ε one obtains the differential equations for the transmission
coefficients T1 = |t1|2 and T2 = |t2|2 which, as it appears from
(116)–(119), fully characterize the transport properties of the
junction. Specifically, the equations for T1, T2 are given by

dT1

dl
= −εT1(1 − T1),

dT2

dl
= −εT2(1 − T2), (C7)

which is the appropriate generalization of the main result of
Refs. [28,29].

Deriving the renormalization group equations for S to
order ε2 is straightforward, though tedious, due to the large
number of independent diagrams all of which, in principle,
can potentially contribute logarithmically diverging correc-
tions to the S-matrix elements. However, as it happens in the
analogous calculation performed within the TK model [14],
many of the diagrams either provide finite corrections not
contributing to the renormalization of S , or just come with
opposite sign and cancel with each other (in this respect, they
behave in analogy to the diagrams in Figs. 9(b) and 9(c) of
Ref. [14]), or cancel with each other, as a consequence of the
fact that the diagrams to order ε in Figs. 6(a) and 6(b) cancel
with each other. In Figs. 7 and 8, we draw pairs of diagrams to
order ε2 which, when summed to each other, contain a factor
proportional to the sum of the diagrams in Figs. 6(a) and 6(b).
In fact, the cancellation is apparent, once one compares the
diagrams in Fig. 6 with the “inner” part of the diagrams in
Figs. 7 and 8 (that is, the portion of each diagram consisting of
the inner dashed line together with all the full lines connected
to it).

bab a

(a) (b)

FIG. 8. Second pair of diagrams that, to order ε2, cancel with
each other, as a consequence of the cancellation between diagrams
of order ε in Fig. 6.
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b a b a

(a) (b)

FIG. 9. Diagrammatic representation of the physical processes
that, to order ε2, correct S by logarithmically diverging contribu-
tions. The drawing code is the same as we used for Fig. 6. In
particular, the diagram (a) provides the term at the right-hand side
of (C8) that is of third order in the Sab’s, and the diagram (b),
instead, provides the contribution that is of fifth order in the Sab’s.
Remarkably, the diagrams (a) and (b) respectively correspond to the
diagrams in Fig. 9(d) and Fig. 9(e) of Ref. [14], generalized to the
case of nonzero interchannel interaction.

Taking into account the cancellations encoded in the dia-
grams in Figs. 7 and 8, one finds that the only independent
diagrams that, to order ε2, provide nonzero contributions to
the renormalization group equations are the ones drawn in
Fig. 9. Putting all together the contributions of the diagrams
in Fig. 9, we eventually obtain the renormalization group
equations for the Sab’s to order ε2. Assuming that the terms
of order ε are = 0, these are given by

dSab

dl
= ε2

4

{∑
cd

vadvcbSab|Scd |2

−
∑

c,d,g,h

vchvgdSadS∗
cdScb|Sgh|2

⎫⎬
⎭. (C8)

Equation (C8) is the main result of this Appendix. To
check that it consistently generalizes (3.39) of Ref. [14], one
can assume a purely diagonal (in the channel index) “bulk”
interaction, that is, one can set vab = δab. As a result, (C8)
reduces to

dSab

dl
= ε2

4

{
Sab|Sab|2 −

∑
cd

SadS∗
cdScb|Scd |2

}
, (C9)

that is, (3.39) of Ref. [14].

When S = SAG, using the parametrization (111), one can
re-express the renormalization group equations in (C8) in
terms of T1 = t2

1 and T2 = t2
2 . As a result, one obtains

dT1

dl
= −ε2 T1(1 − T1)(1 − 2T2),

dT2

dl
= −ε2 T2(1 − T2)(1 − 2T1). (C10)

That is (125) and (126) of the main text. As a consistency
check, we note that, if T1 = T2 ≡ T , (C10) reduces to (3.41)
of Ref. [14], as expected.

APPENDIX D: KUBO CONDUCTANCE
VS PHYSICAL CONDUCTANCE

It is well known that the Kubo formula for the conductance
does not properly account for the DC conductance measured
with Fermi liquid leads [32,33]. The Kubo conductance de-
scribes the response of an infinite Luttinger liquid at finite
frequency, where the limit L → ∞ is taken before ω → 0.
This does not take into account the contact resistance between
the Luttinger liquid and the electron reservoir where the
voltage is defined. An appropriate model to account for this
is a 1D model for the leads in which the Luttinger parameter
K = 1 for x > L. The physical conductance can therefore be
computed using the Kubo formula in a model in which the
interactions are turned off for x > L.

The relation between the physical conductance Gphys com-
puted in this way and the Kubo conductance GKubo computed
with infinite Luttinger liquid leads has been discussed pre-
viously [14,34,35]. When the leads have Luttinger param-
eter K , there is effectively an additional contact resistance
Rc = (h/e2)(K − 1)/(2K ). Here we simply quote the relevant
results.

For the TK model, with I = X or Y , and α = ρ or σ ,

1

Gα,phys
II (K )

= 1

Gρ,Kubo
II (K )

+ h

e2

Kα − 1

2Kα

, (D1)

with Kρ = K , Kσ = 1/K . For the AG model, with A = 1 or 2,

1

Gphys
AA (K )

= 1

GKubo
AA (K )

+ h

e2

K − 1

2K
. (D2)
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