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An Alice string is a topological defect with a very peculiar feature. When a defect with a monopole charge
encircles an Alice string, the monopole charge changes sign. In this paper, we generalize this notion to the
momentum space of periodic media with loss and gain. In particular, we find that the generic band-structure
node for a three-dimensional non-Hermitian crystalline system acts as an Alice string, which can flip the Chern
number charge carried by Weyl points and by exceptional-line rings. We discuss signatures of this topological
structure for a lattice model with one tuning parameter, including nontrivial braiding of bulk band nodes, and the
spectroscopic features of both the bulk and the surface states. We also explore how an Alice string affects the
validity of the Nielsen-Ninomiya theorem, and present a mathematical description of the braiding phenomenon.
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I. INTRODUCTION

An Alice string [1,2] is a topological defect with a very
peculiar feature. When a defect with a monopole charge
encircles an Alice string, the monopole charge changes sign.
In the high-energy physics context, including the Alice string
leads to a highly nontrivial Alice electrodynamics [3], where
the charge cannot be globally defined. The mathematical
structure underlying this phenomenon is the topological in-
teraction between the homotopy invariants characterizing the
Alice string and the monopole charge [4]. Alice strings can
also emerge as topological defects in various ordered phases,
notably as disclination lines in nematic liquids and as vortex
lines of nonchiral Bose-Einstein condensates [5–7], which are
also described by homotopy groups [8]. However, although
homotopic methods have been exploited to also describe
nodes of energy bands in the momentum space of crystalline
media [9–11], nodal lines facilitating the Alice string effect
have never been reported within the extensive literature on
topological band theory in Hermitian systems.

Recently, non-Hermitian systems have attracted growing
interest [12–49] due to their rich topological structures. These
systems, usually with loss and gain, are frequently mod-
eled by non-Hermitian Hamiltonians. Most of the existing
studies on the topology of non-Hermitian Hamiltonians con-
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stitute perturbative corrections to Hermitian Hamiltonians.
Such a treatment provides natural generalizations of concepts
known from Hermitian band theory, including topological
insulators and Chern numbers. In contrast, here we report
an intrinsically nonperturbative property of non-Hermitian
periodic media. Namely, while the Alice string phenomenon
is nonexistent in the stable band topology of Hermitian sys-
tems, it naturally arises in three-dimensional non-Hermitian
systems.

We find that the Alice string phenomenon in non-Hermitian
systems is manifested by nontrivial braiding of band nodes in
momentum space. Recall that in three-dimensional Hermitian
systems the generic band node is a Weyl point [50,51]. Upon
adding a non-Hermitian perturbation, a Weyl point generically
inflates into an exceptional ring [40–42], with the Z-valued
Chern number of the original Weyl point (defined on spheres)
still meaningful [52–55]. Importantly, the exceptional ring is
further stabilized by an additional Z-valued winding number
(defined on loops) [56]. These two invariants correspond to
the line-gap vs the point-gap topological classification of
Ref. [57], respectively. Here, we rederive these topological
charges from homotopy theory, and we show that they interact
nontrivially, with the exceptional line playing the role of an
Alice string: The Chern number of an exceptional ring flips
sign when the ring is braided around another exceptional line.
As a consequence, a pair of nodes carrying the same Chern
number can annihilate if they are brought together along a
trajectory enclosing an exceptional line. This property makes
it impossible to define the Chern number globally. These
results open a viewpoint on the nonperturbative aspect of band
topology in non-Hermitian systems.

The paper is organized as follows. First, in Sec. II we
discuss the ambiguity of the Chern number in non-Hermitian
models with exceptional lines. This is first motivated on
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theoretical grounds by considering the Riemann-sheet struc-
ture of energy bands near exceptional lines in Sec. II A, while
the subsequent Secs. II B and II C present explicit continuum
models which reveal manifestations of the Alice string effect
in reciprocal braiding of band nodes. In Sec. III we consider
spectroscopic signatures of the Alice string effect in lattice
models, which might potentially be emulated in experiments.
On the one hand, we consider in Sec. III A the bulk band
dispersion, and show that the Alice-string effect leads to
bouncing of Weyl points that have been formed through a
pair creation process. On the other hand, we complement this
discussion in Sec. III B by studying the properties of surface
Fermi arcs of the same model. We also briefly comment
here on the manifest violation of the Nielsen-Ninomiya (NN)
theorem by non-Hermitian lattice Hamiltonians. Finally, in
Sec. IV we present the rigorous mathematical description
of the Alice string phenomenon. We achieve this by first
summarizing the construction of Abe homotopy in Sec. IV A.
We then explicitly apply the presented homotopic methods to
non-Hermitian Bloch Hamiltonians in Sec. IV B, where we
rederive the Chern number and the winding number while
explicitly extracting their topological interaction. In Sec. V
we include some concluding remarks, contrasting our results
to Hermitian systems and outlining the generalization of
our arguments to non-Hermitian band insulators. Note that
throughout the paper by closing the energy gap we mean the
formation of a band degeneracy, i.e., a situation where two
complex band energies agree both in their real and in their
imaginary parts.

II. AMBIGUITY OF THE CHERN NUMBER

A. Alice string effect of exceptional lines

Before we present an explicit model that manifests the
Alice string effect, we provide an intuitive understanding of
this phenomenon from general considerations. For simplicity,
we first consider here a special case where the non-Hermitian
effects do not inflate Weyl points into exceptional rings. The
presented arguments readily generalize to exceptional rings
with a Chern number.

We draw in Figs. 1(a) and 1(b) two Weyl points (green
dots) near an exceptional line (vertical green line). To compute
the total charge of the two Weyl points, we have two topologi-
cally distinct ways of enclosing them with a two-dimensional
surface, represented by the red vs the blue “sausage” in
Figs. 1(a) and 1(b). Note that an identical figure could also
illustrate a Hermitian system with a crystalline symmetry that
simultaneously enables both Weyl points and nodal lines—in
which case the green line represents a nodal line. In Hermitian
systems, the two ways of computing the total Chern num-
ber of the two Weyl points give identical results. However,
from topological principles, there is no guarantee for this
to hold true in general, because the blue surface cannot be
continuously deformed into the red surface without crossing a
band node. Indeed, we find that non-Hermitian Hamiltonians
provide an example where the two surfaces exhibit different
total charges.

From the physics point of view, the ordering of energy
eigenvalues is crucial to define Chern numbers [58]. However,

FIG. 1. (a) Two Weyl points A and B (green dots) near an
exceptional line (vertical green). The short blue vs the long red
“sausages” represent two topologically distinct surfaces on which
one can compute the total charge of the Weyl points. The total charge
indicates whether the Weyl points annihilate if brought together
along the blue vs the red trajectory contained inside the two surfaces.
(b) Circumnavigating the exceptional line leads to reordering of
the energy bands, which effectively flips the Chern number of the
transported nodes. Therefore, if the topological charges of the Weyl
points add up on the blue surface, they cancel out on the red surface.

in non-Hermitian systems the energy eigenvalues are complex
valued, hence there is no canonical choice of ordering. In
fact, around an exceptional line, the band dispersion has a
Riemann-sheet structure [59–61], which flips the ordering of
the two bands as one circumnavigates the exceptional line.
Therefore, if we define an ordering of the two bands near Weyl
point A and we apply the same ordering to other momenta
by continuation, we can choose one of two inequivalent paths
[red vs blue in Figs. 1(a) and 1(b)] to reach Weyl point B.
Since the union of these two paths encloses the exceptional
line (covering one half of the Riemann sheet), the two ways
of continuation give opposite ordering of the two bands near
Weyl point B, which results in opposite values of its Chern
number. Especially, if the total Chern number of the Weyl
points on the blue surface (enclosing the blue path) is 1+1=
2, then the Chern number on the red surface is 1−1=0.
This suggests that the Weyl points annihilate when brought
together along the red trajectory, while avoiding annihilation
if collided along the blue trajectory.

Note that the Riemann-sheet structure is also relevant for
non-Hermitian band insulators. If we interpret the torus (the
combination of the red and blue sausage) as the Brillouin
zone (BZ) of a two-dimensional non-Hermitian lattice system,
then the non-Hermitian Hamiltonian is periodic on the torus.
Nevertheless, the Chern number on the torus is ill defined.
This is because the electron wave function is not a continuous
function of momentum unless we consider a double cover
of the BZ torus. We discuss the consequences for the clas-
sification of non-Hermitian topological band insulators in a
separate work [62].

B. Continuum model for braided Weyl nodes

To illustrate the situation from Fig. 1 on an explicit model,
we consider

H(k; α) = [2(k+ + e−iα )(k− + e−iα ) + 1]σ+
+ [2(k+ + eiα )(k− + eiα ) + 1]k+σ− + kzσz, (1)
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FIG. 2. Band nodes of the model in Eq. (1) for the displayed values of α. The orange (pink) sheet indicates the plane kz =0 (ky =0). The
band structure exhibits an exceptional line (green line) inside the pink plane. Furthermore, a pair of Weyl points (green dots) is ejected from
the exceptional line at α=π/4. We show in Fig. 3 that the ejected Weyl points locally carry the same chirality. Nevertheless, they annihilate at
α=3π/4 after encircling the exceptional line.

where we defined

σ± = 1
2 (σx ± iσy) and k± = kx ± iky (2)

for Pauli matrices and momentum coordinates, respectively,
and where α is a tunable parameter. We use the k · p model
in Eq. (1) to gain an elementary intuition abound the band
node braiding, and postpone the discussion of a more realistic
lattice model until Sec. III A. The evolution of band nodes of
the model in Eq. (1) as parameter α is tuned is summarized
by Figs. 2(a)–2(f). First, at α=0 there is one exceptional
line passing through the kz =0 plane at kx =ky =0. As we
increase α to π/4, the exceptional line ejects two Weyl points
of the same chirality. As one further increases α, the Weyl
points orbit around the exceptional line in opposite directions
inside the kz =0 plane, until they meet on the other side of the
exceptional line at α=3π/4. Upon further increment of α, the
two Weyl points annihilate.

To see that the two Weyl points ejected at α=π/4 locally
have the same chirality, we compute the Chern number on
the blue surface displayed in Fig. 3(a). This is achieved by
plotting in Fig. 3(b) the Wilson loop eigenvalues [63] for
paths that sweep along the surface [64]. The observed winding
indicates that the total Chern number on the blue surface
containing the two Weyl points just after their conception
is +2. Meanwhile, since the two Weyl points annihilate for
α=3π/4 on the other side of the exceptional line, the total
Chern number on the red surface in Fig. 3(a) must be zero.
This is confirmed by plotting the corresponding Wilson loop

eigenvalues in Fig. 3(c). We conclude that the Chern number
of Weyl points in non-Hermitian systems exhibits an ambigu-
ity: We are able to flip the Chern number of a Weyl point by
moving it around an exceptional line, exactly as anticipated in
the Alice string phenomenon.

FIG. 3. (a) The band structure of the model in Eq. (1) for α=
π/4+0.3 exhibits an exceptional line (green line) and a pair of
Weyl points (green dots). The total charge of the two Weyl points
on the blue and red surface, respectively, is determined by plotting
the Wilson loop eigenvalues for paths (vertical circles) with a fixed
angle φ=arg (kx +iky ), as φ sweeps along the surface. We find that
the Chern number is (b) +2 on the blue surface and (c) zero on the
red surface.
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FIG. 4. (a)–(c) Band nodes (green) of the Hamiltonian in Eq. (3) for the indicated values of parameters λ and m. For m=0, the model is
Hermitian, and one can assign a unique chirality to all the Weyl points (the + vs − signs displayed with blue font). For m �=0, the Chern number
of a node becomes ambiguous and depends on the choice of the enclosing surface. The non-Hermitian perturbation is set up such that it inflates
into an exceptional ring only the Weyl point at kz =0. (d) The band nodes of panel (c) inside the pink sheet ky =0. To study the monopole
charge of the exceptional ring, we consider surfaces of revolution obtained by rotating around the kz axis the blue loop [kx = 1.3 cos φ and
kz = 1

3 sin φ for φ ∈ [0, 2π )] and the red loop [kz further lowered by 3
2 (cos4 φ − 1)8], respectively. We describe the obtained surfaces as

an “ellipsoid” and a “bowl,” respectively. The Weyl point at kz <0 makes it impossible to deform the ellipsoid into the the bowl without
closing the energy gap, therefore the two surfaces may exhibit different Chern number. (e), (f) Wilson loop flow for the ellipsoid and the
bowl surface, respectively. In both cases, the Wilson operators are computed along paths of constant kx , and the parameter θ grows from
zero at point N to π at point S, indicated for both surfaces in panel (d). The branch of the Riemann sheet is chosen such that both surfaces
consider the same Bloch state at points N and S, where both eigenvalues of the Hamiltonian remain real for all considered values of the model
parameters.

In general, the stability of a line defect (here exceptional
lines) is captured by a topological charge derived from the
first homotopy group of a classifying space of Hamiltonians,
while the stability of a monopole charge (Weyl points in the
above argument) follows a topological charge derived from
the second homotopy group [9]. The observed interaction
between the two invariants, corresponding to the Alice string
effect [1], can be described by Abe homotopy [65]. Abe’s
approach encompasses both the first and the second homotopy
group within a single construction on a cylinder, and therefore
it allows for a natural description of their interaction. We pro-
vide a brief summary of this mathematical theory in Sec. IV A,
and we discuss the explicit application of these methods to
non-Hermitian Bloch Hamiltonians in Sec. IV B near the end
of the paper.

C. Braiding through an inflated Weyl node

Before we discuss in the next sections the spectroscopic
signatures and the underlying mathematical description of the
Alice string phenomenon, we consider here one more instance
of nontrivially braided band nodes. In this example, the Chern

number of a nodal-line ring becomes ambiguous due to the
presence of Weyl points elsewhere in k space. This is a natural
counterpart to the ambiguous chirality of Weyl points that
are moving around an exceptional line, demonstrated by the
model in Eq. (1).

To make our point, we consider the model

H(k; λ, m) = kxσx + kyσy + (kz + im)
(
k2

z + λ
)
σz (3)

where λ and m are tunable parameters [66]. The Hamiltonian
in Eq. (3) is invariant under antiunitary symmetry C2zT :
kz �→ −kz (the composition of time reversal with π rotation
around the z axis), represented by σxK. We study how the
nodal structure of the Hamiltonian evolves as parameters λ

and m are tuned along the following path.
(1) First, we set λ=+1 and m=0. This corresponds to a

Hermitian Hamiltonian with a single Weyl point with chirality
χ =+1 at k=0, as shown in Fig. 4(a).

(2) Keeping m=0, we lower the other parameter to λ=
−1. This preserves the Hermiticity of the model, but a phase
transition occurs at λ=0, in which the Weyl point at k=0
flips chirality to χ =−1 while ejecting two Weyl points with
chirality χ =+1 [11]. These additional Weyl points are related
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to each other by C2zT , and at λ=−1 they are located at k=
(0, 0,±1) [see Fig. 4(b)].

(3) Then, while preserving λ=−1, we turn on a non-
Hermitian perturbation by setting m=+1. This keeps the two
outer Weyl points fixed, but inflates the Weyl point at k=0
into an exceptional ring at kz =0 and k2

x + k2
y =1, as plotted in

Fig. 4(c).
We already learned in Sec. II B that the chirality of Weyl

points becomes ambiguous in non-Hermitian models with
exceptional lines. In the present case, the two outer Weyl
points in Fig. 4(c) can be brought together and annihilate at
k=0 inside the exceptional ring if moved along the magenta
arrows in Fig. 4(d), even though in the original Hermitian
model they have carried the same (positive) chirality [see
Fig. 4(b)]. The exceptional ring can finally be contracted to
a Weyl point again while making the resulting Hamiltonian
Hermitian (not illustrated in Fig. 4). These last two steps
require breaking of the C2zT symmetry and go beyond the
simple Hamiltonian provided by Eq. (3), but such a process
is in principle possible. We will discuss the details of this
process in Appendix B.

The evolution of band nodes outlined in the previous
paragraph seems contradictory. Note that we have departed
from a Hermitian model with a single Weyl point with positive
chirality in Fig. 4(a), and we end up with a Hermitian model
that contains a single Weyl point, namely, one obtained from
the negative chirality Weyl point in Fig. 4(b). The resolution
to this paradox lies in the words “obtained from.” While the
(negative) chirality of the central Weyl point in Fig. 4(b)
is carried by the blue “ellipsoid” surface in Fig. 4(d), the
(actually positive) chirality of the Weyl point in the final
Hermitian model is carried by the red “bowl” surface in
Fig. 4(d). This is because annihilation of the two outer Weyl
points inside the exceptional ring implies closing of the energy
gap on the ellipsoid but not on the bowl surface. Although
both surfaces enclose the same exceptional ring, the presence
of the intermediate Weyl point makes it impossible to deform
one surface onto the other without closing the energy gap.
As a consequence, the two surfaces may carry a different
Chern number, akin to the situation in Fig. 3. Our suspicion
is indeed confirmed by the Wilson loop data for the ellipsoid
and for the bowl surface, plotted, respectively, in Figs. 4(e)
and 4(f). We thus observe that moving the Weyl point through
the exceptional ring reverses the monopole charge of the ring.
More generally, one can show that moving a monopole charge
n through an exceptional ring changes the monopole charge of
the ring by −2n.

The observed evolution of band nodes and of their com-
puted topological charges for the models given by Eqs. (1)
and (3) convincingly demonstrate that the Chern num-
ber becomes ambiguous in non-Hermitian models, con-
firming that the exceptional line acts as an Alice string.
While in Hermitian models the Chern number on a sur-
face ∂D can be obtained by integrating inside region D
a local density, namely, the divergence of Berry curvature

1
2π

∇ · F = ∑
i χiδ(k − ki ), no such local-density formula-

tion exists for the Chern number in non-Hermitian sys-
tems. Following the terminology of Ref. [4], the Chern
number in non-Hermitian systems becomes a “Cheshire
charge.”

III. SPECTROSCOPIC SIGNATURES

A. Bulk signatures

Due to high controllability and tunability, there have been
experimental studies of both Weyl points and exceptional lines
in photonic systems [13–16]. In fact, the existing experimental
techniques readily allow for inferring the topological charges
of both exceptional nodes [12] and Weyl points [17] in such
systems. However, these techniques are rather indirect. Here
we present one way of demonstrating the Alice string effect
with a simple signature, namely, by observing the spec-
tral evolution upon continuously changing the Hamiltonian
parameters.

As a proof-of-principle thought experiment, we consider
the non-Hermitian Hamiltonian on a lattice

H(k; m) = eikz/2H0(k; m) (4a)

with Hermitian matrix

H0(k; m) = e+i kx−kz
2 [a(k; m) + ib(k)]σ+

+ e−i kx−kz
2 [a(k; m) − ib(k)]σ− + hz(k)σz (4b)

and with real functions

a(k; m) =
[

m

2
+ cos ky

(
1 + cos kz

2

)]
cos

kx

2
,

b(k) = sin
kx

2
, and hz(k) = sin ky cos

kz

2
. (4c)

The Hamiltonian H(k; m) defined by Eqs. (4) has period
2π in all momentum components (kx, ky, kz ), and it can be
realized on a cubic lattice. In contrast, the matrix H0 does
not respect the 2π periodicity in the kz direction, but instead
it exhibits a doubled 4π period. The eigenvalues of the non-
Hermitian Hamiltonian in Eq. (4) are

E±(k; m) = ±ei kz
2

√
a(k; m)2 + b(k)2 + hz(k)2. (5)

As a function of kz, the two energy eigenvalues exchange
from kz = 0 to 2π , reminiscent of the Riemann-sheet structure
near an exceptional line. In fact, the Hamiltonian carries a
nontrivial value of the winding number defined from the
first homotopy group. Conceptually, the exceptional line is
enclosed by the kz circle of the three-dimensional BZ torus.

Importantly, the model in Eq. (4) supports a pair of Weyl
points for |m|<3, which move nontrivially inside the kx =0
plane as illustrated in Figs. 5(a)–5(e). On this plane, upon
increasing the value of m, we first create a pair of Weyl points
with opposite chirality at (ky, kz ) = (0, 0), which then depart
in opposite directions along the kz axis. The Weyl points meet
at (ky, kz ) = (0, π ) for m = −1, after circumnavigating the
kz circle of the BZ torus. Since the trajectory of the two
Weyl points has enclosed one branch of the Riemann sheet
(the “exceptional line” wrapped by the BZ torus), the relative
chirality of the Weyl points has been flipped and they cannot
annihilate. Instead, they bounce in the opposite directions
along the ky axis, as illustrated in Figs. 5(a) and 5(b). As an
experimental signature, we can identify the path-dependent
capability of Weyl points to annihilate, i.e., to open a spectral
gap, solely from spectrum measurements upon changing the
parameter m, i.e., without accessing the topological invariant
carried by the band nodes.
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FIG. 5. (a)–(e) Position of Weyl points (green dots) of the model in Eq. (4b) inside the kx =0 plane for the indicated values of parameter
m. At m=−3, a pair of Weyl points of opposite chirality is created at (ky, kz ) = (0, 0), and departs along the kz axis. The Weyl points collide
and bounce for m=−1 at (ky, kz ) = (0, π ) after circumnavigating the kz circle of the BZ torus, and then again for m=+1 at (ky, kz ) = (π, π ).
The Weyl points do not annihilate at these two collisions because of the Alice string enclosed by the kz circle of the BZ torus. The Weyl points
finally annihilate for m=+3 at (ky, kz ) = (π, π ) after the effect of the Alice string is undone by moving along the kz direction for the second
time. (f)–(j) Zero-energy surface Fermi arcs of the same model for the corresponding values of m assuming a system termination in the x
direction. The details of the computation and plotting are explained in the second paragraph of Sec. III B.

Further increasing the parameter to m=+1 leads to an-
other collision of the Weyl points at (ky, kz ) = (π, π ), after
moving around the ky circle of the BZ torus. Since this direc-
tion is not associated with a nontrivial winding number, the
relative chirality of the Weyl points is not modified since their
previous encounter, and they bounce in opposite directions
along the kz axis [see Figs. 5(c) and 5(d)]. Finally, at m=
+3, the Weyl points meet at (ky, kz ) = (π, 0) after moving
around the nontrivial kz direction of the BZ torus for the
second time. This flips their relative chirality, allowing them
to annihilate, leaving behind a band insulator for m>3. Since
the Weyl points exhibited a net motion along the ky direction,
the resulting model at m>3 is a weak Chern insulator.

We also point out the manifest violation of the NN no-go
theorem by the lattice model in Eq. (4). The NN theorem [67]
states that the total chirality of Weyl nodes exhibited by a
lattice model with local hoppings has to be zero. In contrast,
our model for m=−1 (for m=+1) exhibits one double Weyl
point at k = (0, 0, π ) [at k = (0, π, π )] with no counterpart
elsewhere in the BZ. The violation is possible, because the
proof of the NN theorem assumes that one can uniquely order
the energy bands from lowest to highest. Such an ordering
becomes ambiguous in non-Hermitian systems due to the
complex-valued nature of the energy bands, especially if
the winding number (the first homotopy invariant) becomes
nonzero on some closed path. The observed violation of the
NN theorem is analogous to the loophole reported for Floquet
systems (the periodic nature of quasienergy) [58,68], and is
fundamentally different from the strategy of Ref. [69] for
static Hermitian models (inflating one of the Weyl points into
a nodal surface covering the BZ boundary).

B. Surface signatures

For a photonic crystal, apart from the spectroscopic signa-
tures of the bulk, the surface signatures can also be probed
[70,71]. In principle, one can obtain the energy spectra of
the surface states by studying the photon scattering on a
surface termination of the crystal. Recent research shows that
for a general non-Hermitian Hamiltonian one must consider
a non-Bloch bulk-boundary correspondence [53,72,73]. Im-
portantly, in cases where a non-Hermitian skin effect occurs
[55,74,75], it is crucial to define a Brillouin zone and the
corresponding bulk states from an open boundary calculation
[53,72,73]. In our case, however, the model in Eq. (4) is set up
to respect the regular bulk-boundary correspondence familiar
from Hermitian models for open boundaries in the x and the y
direction, respectively. This is because our lattice Hamiltonian
is obtained as a Hermitian matrix H0(k; m) multiplied by a
phase factor eikz/2. As a consequence, the Hermitian and the
skew-Hermitian component of the lattice version of H(k; m)
commute for open boundaries in the x and in the y directions,
implying the absence of the non-Hermitian skin effect on
these boundaries [48].

We therefore simplify the computation of the surface states
for the model in Eq. (4) as follows. For a surface termination
in the x direction, the momenta along y and z directions are
conserved, allowing us to define a surface Brillouin zone
parametrized by ky,z ∈ [−π, π ]. However, instead of directly
modeling the non-Hermitian Hamiltonian, we implement the
Hermitian matrix H0(k; m). The surface spectra for the non-
Hermitian model in Eq. (4) can then be obtained by mul-
tiplying the computed Hermitian spectra by a phase factor
eikz/2, which produces a simple half twist in the complex
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plane as one traverses the surface Brillouin zone in the kz

direction.
Since the imprint of the phase factor on the surface density

of states may be rather nontrivial, we visualize here the
surface Fermi arcs by plotting the surface density of states
of the Hermitian model H0(k; m) at zero energy. The result
is shown for five values of parameter m in Figs. 5(f)–5(j).
We remark that modeling the surface spectra is associated
with some amount of freedom associated with boundary terms
in the Hamiltonian. In our modeling, we add an extra term
Hboundary = 1

10 sin kz

2 σz to the outermost layer of sites in the
Hermitian model, in order to break the symmetry C2yT : ky �→
−ky represented by σxK. While the symmetry is respected
by the bulk Hamiltonian in Eq. (4), it is explicitly broken
by the open boundary in the x direction. The inclusion of
this term simplifies the form of the computed Fermi arcs,
unpinning them from high-symmetry lines. Note that a surface
band dispersing in the kz direction remains in the spectrum
for m>3 [see Fig. 5(j)]. This band is topologically protected
by the weak Chern parity [62] in the (kx, ky) plane (see
Sec. III A).

IV. MATHEMATICAL DESCRIPTION

A. Abe homotopy

We describe topological charges of band nodes using ho-
motopy groups [9–11], and we use M to indicate the classi-
fying space of Hamiltonians [76]. The pth-based homotopy
group πp(M,m) represents equivalence classes of continuous
maps from a p-dimensional cube I p to M, such that the
boundary ∂I p is mapped to a fixed base point m∈M [77].
The equivalence f1 ∼ f2 means that f1 can be changed into
f2 by a continuous deformation that respects the boundary
condition. When the boundary condition is relaxed such that
∂I p is mapped to a freely moving point m in M, one speaks of
a free homotopy πp(M ). Requiring that the whole boundary
∂I p is mapped onto a single point effectively transforms I p

into a p sphere, Sp. Since band nodes of dimensions d in
a D-dimensional momentum space are naturally enclosed
by spheres of dimension D−d , their topological charge is
captured by homotopy group πD−d (M ) [9].

The mathematical object that governs the observed non-
commutative properties of monopole charges near exceptional
lines is known as the action of π1(M ) on π2(M ) [78]. Re-
turning back to the momentum-space picture in Fig. 1, one
can imagine continuously transforming the blue surface into
two balloons, each containing only one Weyl point. The red
surface is obtained by gluing the two balloons on the other
side of the line defect (green). Carrying one of the balloons
around the line induces an action of π1(M ) (characterizing
the closed path) on π2(M ) (characterizing the transported
balloon). The Alice string phenomenon corresponds to an
action where odd elements of π1 (corresponding, e.g., to a
single line defect) reverse the sign of the elements in π2. For
example, in the case of uniaxial nematics [79], the π rotation
of the order parameter on paths encircling a disclination line
inverts the hedgehog configuration on the balloon [80], thus
manifesting the Alice nature of the disclination line [6]. The
Alice string phenomenon can only arise if there is a differ-

FIG. 6. (a) Abe homotopy considers maps from a cylinder, S1×I ,
with the boundary (red) mapped to the base point m. (b) By further
requiring a line segment {x0}×I to be also mapped to the base point,
one recovers the second homotopy group, π2(M ). (c) By narrowing
attention to maps that only depend on the position along I , one
recovers the first homotopy group, π1(M ). (d) Abe homotopy allows
us to compose elements of the second homotopy group (map on S2)
with elements of the first homotopy group (map on S1). The green
line indicates a band node. (e) We attach to the sphere S2 based
at m a string from m to m′. This corresponds to conjugating the
cylinder representing the map on S2 with a cylinder representing
the map on the string. Attaching a closed string (loop) based at m
corresponds to conjugating the element from π2(M ) with an element
from π1(M ).

ence between the free homotopy and the based homotopy
[81].

The action of π1 on π2 can be geometrically visualized
and mathematically analyzed using the construction of Abe
[65], who considered equivalence classes of maps from a
cylinder S1×[0, 1] to the target space M, such that the
boundary S1×{0} ∪ S1×{1} is mapped to the base point
m∈M [Fig. 6(a)]. By further requiring a segment {x}×[0, 1]
with a fixed x∈S1 to be mapped to the base point too, one
reproduces the based homotopy group π2(M,m) [Fig. 6(b)].
On the other hand, by limiting attention to “stratified” maps
that only depend on the position [0,1] along the cylinder,
one reproduces the based π1(M,m) [Fig. 6(c)]. By stacking
cylinders, we are able to combine elements of π1(M,m)
with elements of π2(M,m) [Fig. 6(e)]. Especially, one can
consider the effect of moving the base point along a closed
path in M, which corresponds to conjugating an element of
π2(M,m) with an element of π1(M,m) [Fig. 6(d)]. The con-
jugation induces a map � :π1(M,m)→Aut[π2(M,m)]; i.e.,
each element g∈π1(M,m) is represented by an automorphism
�g :π2(M,m)→π2(M,m) [82], which is the sought action of
π1 on π2. In the next section, we compute the action � for
non-Hermitian two-band models with no global symmetries
(symmetry class A of Ref. [57]) to explain the Alice nature of
exceptional lines.

B. Topological charges revisited

To explain the noncommutative properties of topological
charges observed in Sec. II, we identify the space M of
non-Hermitian two-band Hamiltonians, and we compute its
based homotopy groups π1(M,m), π2(M,m) as well as the
action �. Away from band nodes, the Hamiltonian exhibits
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two different eigenvalues. We therefore perform spectral flat-
tening by making the Hamiltonian traceless (drop the term
proportional to the identity matrix), and by normalizing the
eigenvalues to absolute value 1. This amounts to continuous
deformations; i.e., the procedure does not affect the band
topology. To obtain homotopy groups, it is convenient [83] to
express M as a coset space G/H with G a simply connected
group [8]. Then a mathematical theorem guarantees [84] that
π2(M,m) = π1(H) and π1(M,m) = π0(H).

To obtain the coset expression, we begin with the spectral
decomposition of a generic two-band Hamiltonian H ∈ M.
Adopting the biorthogonal normalization of left and right
eigenvectors [72,85–87], we obtain

H = V −1(eiπtσz )V, (6)

where eiπtσz is a diagonal matrix containing the normalized
eigenvalues, and V is the matrix of the left eigenvectors of
H. Here, as a convention, we always rescale the eigenvectors
such that det V =1, implying V ∈SL(2,C). Therefore, the
Hamiltonian can be encoded using two pieces of data, (V, t )∈
SL(2,C)×R≡G, which constitute a simply connected group
[88] with composition rule (V1, t1)◦(V2, t2)= (V1V2, t1+t2).
However, the decomposition of a non-Hermitian Hamiltonian
into (V, t ) is not unique. On the one hand, the matrix H
in Eq. (6) is invariant under rescaling the two eigenvectors
separately by (z, z−1) with z ∈ C× (the complex plane without
zero), as well as under shifting t by an even integer. This
represents transformations

Tn(z) : (V, t ) �→ (R(z)V, t + n) (n even) (7a)

where R(z)=diag (z, z−1). On the other hand, we can flip
the ordering of the eigenvectors if we appropriately reorder
the eigenvalues eiπtσz by shifting t by an odd integer. This
corresponds to transformations

Tn(z) : (V, t ) �→ (iσyR(z)V, t + n) (n odd). (7b)

Equations (7) represent left action on G by elements Tn(z)
[defined as (R(z), n) for n even, and as (iσyR(z), n) for n odd],
which constitute a subgroup H<G. Therefore, the collection
of all unique non-Hermitian two-band Hamiltonians is the
coset space G/H.

As a topological space, H is a disjoint union of many copies
of C× (one copy for each n∈Z). It follows from Eqs. (7)
that Tn1 (z1)◦Tn2 (z2)=Tn1+n2 (z) for some z∈C×, implying that
connected components of H have a natural Z-group struc-
ture. Therefore, π1(M )=π0(H)=Z, which corresponds to
the winding number. Furthermore, each disjoint component
supports “looping” of z around the origin of C×. Therefore,
π2(M )=π1(H)=Z, which corresponds to the Chern number.
The details of the argument are discussed more carefully in
Appendix A.

We are finally ready to compute the action of π1(M ) on
π2(M ). According to Fig. 6(d), we should study the conjuga-
tion of elements in π2(M ) [looping of the argument of Tn(z)]
by elements in π1(M ) [subscript of Tn(z)]. By considering all
combinations of the parity of integers n1 and n2, we derive in
Appendix A that

Tn1 (z1) ◦ Tn2 (z2) ◦ Tn1 (z1)−1 = Tn2

(
c zP(n1 )

2

)
, (8)

where P(n1)=±1 is the parity of n1, and c ∈ C× is an
unimportant factor that depends on z1 and n1,2. Since z−1

2
loops around the origin of C× opposite to z2, we conclude
that the Chern number flips sign if it is carried along a path
with odd winding number. This is exactly what is anticipated
for an Alice string. We emphasize that a path with a nontrivial
winding number may exist even in the absence of exceptional
lines, namely, when the winding number along some direction
of the BZ torus is odd [see the model in Eq. (4)]. The result
in Eq. (8) thus provides a mathematical underpinning of the
Chern number transformations observed for all the models
discussed in Secs. II and III.

V. CONCLUSIONS AND OUTLOOKS

We have shown that band nodes with a Chern number
braid nontrivially around exceptional lines in non-Hermitian
systems, and that this interplay is naturally explained as an
Alice string effect. While we have explicitly considered only
two-band models, both the Z-valued Chern number and the
Z-valued winding number are stable topological invariants
[57], therefore the nontrivial braiding of band nodes discussed
here persists upon adding more bands. In fact, many-band
models provide even richer possibilities. By traversing the
Riemann-sheet band structure near exceptional lines (which
may now connect various pairs of bands), we can arbitrar-
ily permute the ordering of the bands, and thus also of
their Chern numbers. Especially, this allows us to move
a Weyl point in between a different pair of bands. This
observation leads to a more general topological structure
than the one considered in Ref. [57], which we develop in
Ref. [62]. That work also considers the implications of the
Alice string effect to the classification of topological band
insulators.

We emphasize that a nontrivial action of π1(M ) on π2(M )
cannot arise for nodes in the stable limit of Hermitian systems.
The observation from Ref. [9] is that if both of these homotopy
groups are nontrivial then π2(M )=Z2, which does not support
nontrivial automorphisms. There are only a handful of few-
band Hermitian classes of Hamiltonians, very recently studied
in Ref. [78], that enable a nontrivial braiding of monopole
charges around line nodes [10,89]. However, those exam-
ples are unstable against the inclusion of additional bands.
Similarly, the non-Abelian reciprocal braiding of band nodes
in Hermitian models discussed in the recent Refs. [90–92]
follows from a non-Abelian first homotopy group of the
classifying space, rather than from a nontrivial action of π1

and π2, and its appearance also requires a subtle gap condition
to arise. Therefore, the nontrivial braiding of band nodes
in the stable limit constitutes a nonperturbative phenomenon
enabled by non-Hermitian effects.

Finally, we develop a simple two-band lattice model to
demonstrate the consequences of the topological structure. In
particular, a pair of Weyl points in the band structure can be
created and loop around the Brillouin-zone torus by tuning
one parameter. The pair cannot annihilate after this process.
This will lead to a bulk spectroscopic signature once the model
is implemented in various possible platforms, such as acoustic
metamaterial or photonic crystals.
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APPENDIX A: DERIVATION OF EQ. (8)

In this Appendix, we complete the derivation of the action
� of π1 on π2, which we omitted in Sec. IV B. Recall that
M is the space of 2 × 2 Hamiltonians that are traceless and
that have spectra normalized to absolute value 1. Following
the decomposition Eq. (6), we identified any Hamiltonian in
M using (V, t ) ∈ SL(2,C) × R ≡ G. Furthermore, we argued
that the stabilizer group H consists of the following elements
in G: (R(z), n) for even n and (iσyR(z), n) for odd n, where
R(z) = diag(z, 1/z) with z being any complex number except
zero (which we indicate as C/{0} ≡ C×). We used a math-
ematical theorem from Ref. [8] to argue that π2(M,m) =
π1(H) = Z, i.e., the Chern number on a 2-sphere corresponds
to “looping” of the argument of R(z) around the origin of C×,
and that π1(M,m) = π0(H) = Z, i.e., the winding number on
a 1-sphere corresponds to the connected component n of the
stabilizer H.

The reduction of the information about the Hamiltonian
from the coset space G/H to the stabilizer (“gauge”) group
H can be understood as follows. Given a circle or a 2-sphere
in k space, we represent it using the Abe cylinder as shown
in Figs. 6(b) and 6(c), respectively, with the corresponding
points mapped to the base point m. The individual points of
the cylinder are mapped into the space G, with a nonunique-
ness (i.e., gauge) captured by the group H. Since the exact
image of the p sphere (we assume p ∈ {1, 2}) inside G is
arbitrary up to the gauge transformations with H, we need
to study equivalence classes of maps to G/H, which are
captured by the relative homotopy group πp(G, H,m) [77].
It follows from the simple connectedness of G and from a
long exact sequence of homotopy groups [8] that the relative
homotopy group is exactly equal to πp−1(H). This implies
that the homotopy class of the Hamiltonian on the p sphere
is fully reproduced using an information inside the gauge
group. More precisely, the topological information about the
Hamiltonian on a 2-sphere is encoded by a closed path in H,
and the topological information about the Hamiltonian on a
circle is preserved by specifying a connected component of
H. Note also that a general element of the Abe homotopy
[Fig. 6(a)] may produce paths in H with an arbitrary value
of n2, while elements that correspond to the based second
homotopy group [Fig. 6(b)] correspond to paths with n2 =0
due to the constraint imposed at {x}×[0, 1].

According to Fig. 6(d), the action of π1 on π2 is found
by studying the conjugation of elements in π2(M,m) by
elements in π1(M,m). Following the reduction from G/H
to H, the various equivalence classes of Hamiltonians in
π2(M ) are represented as topologically distinct loops inside
H, i.e., as a function that assigns to every point of S1 some
element Tn2 (z2) ∈ H, namely, some (R(z2), n2) for even n2

and some (iσyR(z2), n) for odd n2. On the other hand, the
elements in π1(M ) are represented as points in the space of
H, i.e., as some element Tn1 (z1). Without loss of generality,
we set z1 = 1 in our arguments below (we comment on
the case of general z1 at the very end). This identification
allows us to explicitly compute Tn1 (1) ◦ Tn2 (z2) ◦ Tn1 (1)−1,
which contains the information about the action � of π1

on π2.
Recall that the group G is a direct product of an Abelian

group R with addition as the group operation, and of a
non-Abelian part SL(2,C). The Abelian part of Tn2 (z2)
does not change upon conjugation by Tn1 (1). Therefore,
we only need to calculate the non-Abelian part of Tn1 (1) ◦
Tn2 (z2) ◦ Tn1 (1)−1. The calculation has to be split into sev-
eral cases, corresponding to different parities of n1 and n2.
First, for even n1, Tn1 (1) = (I2×2, n) commutes with Tn2 (z2),
therefore

Tn1 (1) ◦ Tn2 (z2) ◦ Tn1 (1)−1 = Tn2 (z2) (n1 even). (A1)

On the other hand, for odd n1, we can use the commutation
relations

iσyR(z2) = R(1/z2)iσy,

iσy[iσyR(z2)] = [iσyR(1/z2)]iσy
(A2)

to derive that for any n2 we have

Tn1 (1) ◦ Tn2 (z2) = Tn2 (1/z2) ◦ Tn1 (1) (n1 odd). (A3)

It follows that

Tn1 (1) ◦ Tn2 (z2) ◦ Tn1 (1)−1 = Tn2 (1/z2) (n1 odd). (A4)

The results in Eqs. (A1) and (A4) can be compactly unified
into a single equation

Tn1 (1) ◦ Tn2 (z2) ◦ Tn1 (1)−1 = Tn2

(
zP(n1 )

2

)
, (A5)

where P(n1) = ±1 is the parity of n1. Note that 1/z2 has
opposite “looping” around the origin of C× compared with
z2. It follows that for odd n1 [odd elements of π1(M,m)] the
conjugation flips the sign of the π2(M ) charge.

For a general choice of z1, one can explicitly compute for
the four different combinations of parities of n1 and n2 the
following results.

(1) If n1 is even and n2 is even, then

Tn1 (z1) ◦ Tn2 (z2) ◦ Tn1 (z1)−1 = Tn2 (z2). (A6)

(2) If n1 is even and n2 is odd, then

Tn1 (z1) ◦ Tn2 (z2) ◦ Tn1 (z1)−1 = Tn2

(
z2

/
z2

1

)
. (A7)

(3) If n1 is odd and n2 is even, then

Tn1 (z1) ◦ Tn2 (z2) ◦ Tn1 (z1)−1 = Tn2 (1/z2). (A8)

(4) If n1 is odd and n2 is odd, then

Tn1 (z1) ◦ Tn2 (z2) ◦ Tn1 (z1)−1 = Tn2

(
z2

1

/
z2

)
. (A9)
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The three equations are compactly summarized by Eq. (8)
of Sec. IV B. The derived action of π1 on π2 is compatible
with a nontrivial Alice string phenomenon.

APPENDIX B: ANNIHILATING THE WEYL
POINTS IN FIG. 4(c)

1. Overview

While the total Chern number of the two Weyl points in
Fig. 4(c) is trivial, annihilating them at k = 0 by appropri-
ately amending the model in Eq. (3) is rather difficult. The
underlying reason is the existence of an additional topological
obstruction protected by the C2T symmetry. This obstruc-
tion is subtle, because it corresponds to a relative homotopy
invariant on a hemisphere [11]. In this Appendix, we first
analyze the relative homotopy invariants relevant to the model
in Eq. (3). Afterwards, we formulate a relaxed symmetry
setting for which the Weyl points should be able to annihilate.
Finally, we present an explicit continuous deformation of the
Hamiltonian which annihilates the two Weyl points.

2. C2T relative topology

First, let us analyze the space of Hamiltonians inside
the C2T -invariant plane kz = 0. These are 2 × 2 matrices
that commute with the representation σxK of the symmetry.
Dropping the term proportional to the unit matrix, we find that
C2T -symmetric Hamiltonians are

H(h) = hxσx + hyσy − ihzσ (B1)

with hx,y,z ∈ R. We define the space X to be nondegenerate
Hamiltonians of this form, and find that

X = R3 \ {
h ∈ R3

∣∣ h2
x + h2

y = h2
z

}
. (B2)

The condition on no degeneracy partitions the space X into
three disjoint components, namely,

X ± = {
h ∈ R3 | ± hz >

√
h2

x + h2
y

}
,

X 0 = {
h ∈ R3 | |hz| <

√
h2

x + h2
y

}
. (B3)

The Hamiltonians inside the exceptional ring of Fig. 4(c) lie in
the component X +. Note that this component (the inside of a
cone) is contractible to a point, i.e., null homotopic, therefore
πn(X +) = 0 for all n � 1.

We study topological obstruction on a hemisphere, i.e., a
deformed disk, with a boundary lying inside the exceptional
ring in the kz =0 plane. This obstruction is captured by the
second relative homotopy group π2(M, X +) [11] where M
is the space of all traceless two-band Hamiltonians with
nondegenerate spectra, i.e., the space considered in Sec. IV B.
It follows from the long exact sequence of homotopy groups
[77] and from the null homotopy of X + that π2(M, X +) ∼=
π2(M ) are isomorphic. Since π2(M ) = Z (the Chern number),
it follows that one can define an integer topological invariant
on the hemisphere. We argue below that the hemisphere
containing the Weyl point at kz = √−λ carries a nontrivial
value of this invariant, which prevents the annihilation of the
C2T -related Weyl points upon collision.

The relative homotopy invariant

π2(M, X +) = Z (B4)

on the hemisphere should be closely related to the Chern num-
ber. This may appear confusing at first, since the hemisphere
is not a closed surface. Nevertheless, the same finding was
previously made by Ref. [11] for two-band mirror-symmetric
Hermitian Hamiltonians. In that case, a pair of mirror-related
Weyl points (carrying opposite chirality) exhibit a nontrivial
value of an analogous relative homotopy invariant, which was
shown to induce a conversion of a pair of mirror-related Weyl
points into a nodal-line ring (rather than their annihilation).
However, in the case of Ref. [11] the Hamiltonian on the
boundary of the hemisphere is essentially constant, which
implies a quantized flow of Berry curvature, i.e., an integer
Chern number, through the hemisphere. In contrast, this is not
true for the non-Hermitian Hamiltonian in Eq. (B1), which has
three free parameters.

Nevertheless, the triviality π1(X +) = 0 implies that the
Hamiltonian on the boundary of the hemisphere for the non-
Hermitian C2T model can be continuously deformed into a
constant without forming a band degeneracy along the way.
Importantly, all such deformations to a constant are topolog-
ically equivalent. For the specific case of Fig. 4(c), we can
shrink the boundary of the hemisphere to a point in the middle
of the exceptional ring. This transforms the hemisphere into a
closed surface exhibiting a quantized Chern number, which is
the integer invariant corresponding to Eq. (B4). Importantly,
this invariant is manifestly nontrivial for the situation in
Fig. 4(c), because the resulting closed surface contains one
Weyl point. Therefore, annihilation of the two Weyl points in
the figure requires the breaking of the C2T symmetry.

3. Relaxing the symmetry setting

The model in Eq. (3) exhibits more symmetry than just
C2T . Especially, the model is symmetric under time reversal
T = σyK, and under π rotation around the z axis C2z = −iσz.
In fact, the model respects the much stronger SO(2) rotation
symmetry around the z axis, which significantly simplifies the
spectrum, and which we would therefore like to preserve. We
therefore opt to remove C2T symmetry by breaking T .

The SO(2) symmetry makes it particularly elegant to
define the Hamiltonian using operators in Eq. (2) which carry
a well-defined angular momentum. Since the Hamiltonian
should transform according to the trivial representation of
SO(2), we only admit terms that have the same number of
“+” and “−” constituents. For example, the first two terms in
Eq. (3) are

kxσx + kyσy = k+σ− + k−σ+. (B5)

More generally, we admit for complex linear combinations of
terms (k+k−)akb

z s where a and b are non-negative integers and
s ∈ {k+σ−, k−σ+, σz}. The terms that break T correspond to
combinations of an odd number of terms in the list

{i, kz, σz, (k+σ− − k−σ+), i(k+σ− + k−σ+)} (B6)

multiplied by real coefficients.
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4. Model for annihilating the Weyl points

We amend the model in Eq. (3) as

H(k) = [α + (1 − α)k+k−](k+σ− + k−σ+)

+(kz + im)
(
k2

z − βk+k− + λ
)
σz,

+γ (ikz − 1)(k+σ− − k−σ+) + iδσz (B7)

where α, β, γ , and δ are four additional real coefficients.
Note that only the term proportional to γ breaks C2T . The
situation in Fig. 4(c) corresponds to λ = −1, m = +1, α =
+1, and β = γ = δ = 0.

We now deform the Hamiltonian in five steps.
(1) Decrease α from +1 to 0. This preserves the nodal

structure plotted in Fig. 4(c).
(2) Increase β from 0 to +1. This expands the radius of the

exceptional ring at kz = 0 from 1 to ≈1.4656, but otherwise it
preserves the nodal structure.

(3) Increase λ from −1 to 0. This has two effects. First,
it brings the two Weyl points at k± = (0, 0,±1) together at
k = 0. Second, it shrinks the radius of the exceptional ring at
kz = 0 back to 1.

(4) We break C2T by increasing γ from 0 to +1. This keeps
the band touching at k = 0, and it increases the radius of the
exceptional ring from 1 to ≈1.2720.

(5) Finally, we increase δ from zero to a small positive
value. This opens a gap at k = 0, i.e., it annihilates the two
Weyl points, while the exceptional ring at kz = 0 slightly
shrinks. Setting δ specifically to +1 sets its radius to 1.

The only band degeneracy after the final step is the excep-
tional ring at kz = 0.

The exceptional ring can be shrunk to a single Weyl point
at k = 0 by tuning the parameters as follows.

(1) Increase λ from 0 to +1.
(2) Decrease m from +1 to 0.
(3) Decrease β from +1 to 0.
(4) Decrease γ from +1 to 0.
(5) Increase α from 0 to +1.
(6) Decrease δ from +1 to 0.
The final set of parameters matches Fig. 4(a). We have

thus gone a full cycle, converting the negative-chirality Weyl
point of Fig. 4(b) through continuous deformation (and an
intermediate non-Hermitian phase) into the positive-chirality
Weyl point of Fig. 4(a).
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(London) 525, 354 (2015).

[19] V. Kozii and L. Fu, arXiv:1708.05841 (2017).
[20] H. Shen and L. Fu, Phys. Rev. Lett. 121, 026403 (2018).

[21] H. Wang, J. Ruan, and H. Zhang, Phys. Rev. B 99, 075130
(2019).

[22] J. C. Budich, J. Carlström, F. K. Kunst, and E. J. Bergholtz,
Phys. Rev. B 99, 041406(R) (2019).

[23] Z. Yang and J. Hu, Phys. Rev. B 99, 081102(R) (2019).
[24] J. Carlström and E. J. Bergholtz, Phys. Rev. A 98, 042114

(2018).
[25] R. Okugawa and T. Yokoyama, Phys. Rev. B 99, 041202(R)

(2019).
[26] K. Moors, A. A. Zyuzin, A. Y. Zyuzin, R. P. Tiwari, and T. L.

Schmidt, Phys. Rev. B 99, 041116(R) (2019).
[27] A. A. Zyuzin and A. Y. Zyuzin, Phys. Rev. B 97, 041203(R)

(2018).
[28] T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai, Phys.

Rev. B 99, 121101(R) (2019).
[29] H. Zhou and J. Y. Lee, Phys. Rev. B 99, 235112 (2019).
[30] J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte,

M. S. Rudner, M. Segev, and A. Szameit, Phys. Rev. Lett. 115,
040402 (2015).

[31] L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P.
Wang, J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H.
Obuse, B. C. Sanders, and P. Xue, Nat. Phys. 13, 1117 (2017).

[32] W. Hu, H. Wang, P. P. Shum, and Y. D. Chong, Phys. Rev. B 95,
184306 (2017).

[33] C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, and H. Schomerus,
Nat. Comm. 6, 6710 (2015).

[34] S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G.
Makris, M. Segev, M. C. Rechtsman, and A. Szameit, Nat.
Mater. 16, 433 (2016).

[35] X. Zhan, L. Xiao, Z. Bian, K. Wang, X. Qiu, B. C. Sanders,
W. Yi, and P. Xue, Phys. Rev. Lett. 119, 130501 (2017).

[36] Y. Choi, S. Kang, S. Lim, W. Kim, J.-R. Kim, J.-H. Lee, and
K. An, Phys. Rev. Lett. 104, 153601 (2010).

[37] M. Papaj, H. Isobe, and L. Fu, Phys. Rev. B 99, 201107 (2019).
[38] Q. Zhong, M. Khajavikhan, D. N. Christodoulides, and R. El-

Ganainy, Nat. Commun. 9, 4808 (2018).

023226-11

https://doi.org/10.1016/0550-3213(82)90190-0
https://doi.org/10.1016/0550-3213(82)90190-0
https://doi.org/10.1016/0550-3213(82)90190-0
https://doi.org/10.1016/0550-3213(82)90190-0
https://doi.org/10.1016/0550-3213(92)90173-9
https://doi.org/10.1016/0550-3213(92)90173-9
https://doi.org/10.1016/0550-3213(92)90173-9
https://doi.org/10.1016/0550-3213(92)90173-9
https://doi.org/10.1103/PhysRevLett.64.1632
https://doi.org/10.1103/PhysRevLett.64.1632
https://doi.org/10.1103/PhysRevLett.64.1632
https://doi.org/10.1103/PhysRevLett.64.1632
https://doi.org/10.1134/1.1312008
https://doi.org/10.1134/1.1312008
https://doi.org/10.1134/1.1312008
https://doi.org/10.1134/1.1312008
https://doi.org/10.1103/PhysRevD.70.025005
https://doi.org/10.1103/PhysRevD.70.025005
https://doi.org/10.1103/PhysRevD.70.025005
https://doi.org/10.1103/PhysRevD.70.025005
https://doi.org/10.1103/RevModPhys.51.591
https://doi.org/10.1103/RevModPhys.51.591
https://doi.org/10.1103/RevModPhys.51.591
https://doi.org/10.1103/RevModPhys.51.591
https://doi.org/10.1103/PhysRevB.96.155105
https://doi.org/10.1103/PhysRevB.96.155105
https://doi.org/10.1103/PhysRevB.96.155105
https://doi.org/10.1103/PhysRevB.96.155105
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1103/PhysRevLett.121.106402
https://doi.org/10.1103/PhysRevLett.121.106402
https://doi.org/10.1103/PhysRevLett.121.106402
https://doi.org/10.1103/PhysRevLett.121.106402
https://doi.org/10.1126/science.aap9859
https://doi.org/10.1126/science.aap9859
https://doi.org/10.1126/science.aap9859
https://doi.org/10.1126/science.aap9859
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1038/ncomms13038
https://doi.org/10.1038/ncomms13038
https://doi.org/10.1038/ncomms13038
https://doi.org/10.1038/ncomms13038
https://doi.org/10.1038/nphys4072
https://doi.org/10.1038/nphys4072
https://doi.org/10.1038/nphys4072
https://doi.org/10.1038/nphys4072
https://doi.org/10.1038/s41566-019-0453-z
https://doi.org/10.1038/s41566-019-0453-z
https://doi.org/10.1038/s41566-019-0453-z
https://doi.org/10.1038/s41566-019-0453-z
https://doi.org/10.1103/PhysRevX.7.031032
https://doi.org/10.1103/PhysRevX.7.031032
https://doi.org/10.1103/PhysRevX.7.031032
https://doi.org/10.1103/PhysRevX.7.031032
https://doi.org/10.1038/nature14889
https://doi.org/10.1038/nature14889
https://doi.org/10.1038/nature14889
https://doi.org/10.1038/nature14889
http://arxiv.org/abs/arXiv:1708.05841
https://doi.org/10.1103/PhysRevLett.121.026403
https://doi.org/10.1103/PhysRevLett.121.026403
https://doi.org/10.1103/PhysRevLett.121.026403
https://doi.org/10.1103/PhysRevLett.121.026403
https://doi.org/10.1103/PhysRevB.99.075130
https://doi.org/10.1103/PhysRevB.99.075130
https://doi.org/10.1103/PhysRevB.99.075130
https://doi.org/10.1103/PhysRevB.99.075130
https://doi.org/10.1103/PhysRevB.99.041406
https://doi.org/10.1103/PhysRevB.99.041406
https://doi.org/10.1103/PhysRevB.99.041406
https://doi.org/10.1103/PhysRevB.99.041406
https://doi.org/10.1103/PhysRevB.99.081102
https://doi.org/10.1103/PhysRevB.99.081102
https://doi.org/10.1103/PhysRevB.99.081102
https://doi.org/10.1103/PhysRevB.99.081102
https://doi.org/10.1103/PhysRevA.98.042114
https://doi.org/10.1103/PhysRevA.98.042114
https://doi.org/10.1103/PhysRevA.98.042114
https://doi.org/10.1103/PhysRevA.98.042114
https://doi.org/10.1103/PhysRevB.99.041202
https://doi.org/10.1103/PhysRevB.99.041202
https://doi.org/10.1103/PhysRevB.99.041202
https://doi.org/10.1103/PhysRevB.99.041202
https://doi.org/10.1103/PhysRevB.99.041116
https://doi.org/10.1103/PhysRevB.99.041116
https://doi.org/10.1103/PhysRevB.99.041116
https://doi.org/10.1103/PhysRevB.99.041116
https://doi.org/10.1103/PhysRevB.97.041203
https://doi.org/10.1103/PhysRevB.97.041203
https://doi.org/10.1103/PhysRevB.97.041203
https://doi.org/10.1103/PhysRevB.97.041203
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1103/PhysRevB.99.121101
https://doi.org/10.1103/PhysRevB.99.235112
https://doi.org/10.1103/PhysRevB.99.235112
https://doi.org/10.1103/PhysRevB.99.235112
https://doi.org/10.1103/PhysRevB.99.235112
https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1103/PhysRevLett.115.040402
https://doi.org/10.1038/nphys4204
https://doi.org/10.1038/nphys4204
https://doi.org/10.1038/nphys4204
https://doi.org/10.1038/nphys4204
https://doi.org/10.1103/PhysRevB.95.184306
https://doi.org/10.1103/PhysRevB.95.184306
https://doi.org/10.1103/PhysRevB.95.184306
https://doi.org/10.1103/PhysRevB.95.184306
https://doi.org/10.1038/ncomms7710
https://doi.org/10.1038/ncomms7710
https://doi.org/10.1038/ncomms7710
https://doi.org/10.1038/ncomms7710
https://doi.org/10.1038/nmat4811
https://doi.org/10.1038/nmat4811
https://doi.org/10.1038/nmat4811
https://doi.org/10.1038/nmat4811
https://doi.org/10.1103/PhysRevLett.119.130501
https://doi.org/10.1103/PhysRevLett.119.130501
https://doi.org/10.1103/PhysRevLett.119.130501
https://doi.org/10.1103/PhysRevLett.119.130501
https://doi.org/10.1103/PhysRevLett.104.153601
https://doi.org/10.1103/PhysRevLett.104.153601
https://doi.org/10.1103/PhysRevLett.104.153601
https://doi.org/10.1103/PhysRevLett.104.153601
https://doi.org/10.1103/PhysRevB.99.201107
https://doi.org/10.1103/PhysRevB.99.201107
https://doi.org/10.1103/PhysRevB.99.201107
https://doi.org/10.1103/PhysRevB.99.201107
https://doi.org/10.1038/s41467-018-07105-0
https://doi.org/10.1038/s41467-018-07105-0
https://doi.org/10.1038/s41467-018-07105-0
https://doi.org/10.1038/s41467-018-07105-0


SUN, WOJCIK, FAN, AND BZDUŠEK PHYSICAL REVIEW RESEARCH 2, 023226 (2020)

[39] D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Phys. Rev. Lett.
124, 056802 (2010).

[40] Y. Xu, S.-T. Wang, and L.-M. Duan, Phys. Rev. Lett. 118,
045701 (2017).

[41] A. Cerjan, M. Xiao, L. Yuan, and S. Fan, Phys. Rev. B 97,
075128 (2018).

[42] J. Carlström, M. Stålhammar, J. C. Budich, and E. J. Bergholtz,
Phys. Rev. B 99, 161115(R) (2019).

[43] E. J. Bergholtz and J. C. Budich, Phys. Rev. Research 1, 012003
(2019).

[44] P. A. McClarty and J. G. Rau, Phys. Rev. B 100, 100405(R)
(2019).

[45] K. Kawabata, T. Bessho, and M. Sato, Phys. Rev. Lett. 123,
066405 (2019).

[46] C. H. Lee, G. Li, Y. Liu, T. Tai, R. Thomale, and X. Zhang,
arXiv:1812.02011 (2018).

[47] C. H. Lee and R. Thomale, Phys. Rev. B 99, 201103(R) (2019).
[48] E. J. Bergholtz, J. C. Budich, and F. K. Kunst,

arXiv:1912.10048 (2019).
[49] T. Yoshida, R. Peters, N. Kawakami, and Y. Hatsugai,

arXiv:2002.11265 (2020).
[50] S. Murakami, New J. Phys. 9, 356 (2007).
[51] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys.

Rev. B 83, 205101 (2011).
[52] H. Shen, B. Zhen, and L. Fu, Phys. Rev. Lett. 120, 146402

(2018).
[53] S. Yao, F. Song, and Z. Wang, Phys. Rev. Lett. 121, 136802

(2018).
[54] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa,

and M. Ueda, Phys. Rev. X 8, 031079 (2018).
[55] F. Song, S. Yao, and Z. Wang, Phys. Rev. Lett. 123, 246801

(2019).
[56] A. Ghatak and T. Das, J. Phys. Condens. Matter 31, 263001

(2019).
[57] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Phys. Rev. X

9, 041015 (2019).
[58] X.-Q. Sun, M. Xiao, T. Bzdušek, S.-C. Zhang, and S. Fan, Phys.

Rev. Lett. 121, 196401 (2018).
[59] H. Xu, D. Mason, L. Jiang, and J. G. E. H. Harris, Nature

(London) 537, 80 (2016).
[60] J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik,

F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter,
Nature (London) 537, 76 (2016).

[61] M. V. Berry, Czech. J. Phys. 54, 1039 (2004).
[62] C. C. Wojcik, X.-Q. Sun, T. Bzdušek, and S. Fan, Phys. Rev. B

101, 205417 (2020).
[63] The definition of the Wilson loop operator and the corre-

sponding Berry phase depends on the normalization of the
states in non-Hermitian systems. The convention of this paper
corresponds to the left-right Berry curvature in Ref. [52].

[64] D. Gresch, G. Autès, O. V. Yazyev, M. Troyer, D. Vanderbilt,
B. A. Bernevig, and A. A. Soluyanov, Phys. Rev. B 95, 075146
(2017).

[65] M. Abe, Jpn. J. Math. 16, 169 (1940).
[66] One can change this k · p model into a lattice model through the

usual substitution ki → sin ki and k2
i → 2(1 − cos ki ), which

may, however, result in many copies of the band nodes at
other high-symmetry momenta. However, the non-Hermiticity
of the system allows for an alternative substitution ki →

2 sin ki
2 exp (iki/2) and k2

i → 2(1 − cos ki ) that results in fewer
band nodes elsewhere in the Brillouin zone.

[67] H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20
(1981).

[68] S. Higashikawa, M. Nakagawa, and M. Ueda, Phys. Rev. Lett.
123, 066403 (2019).

[69] Z.-M. Yu, W. Wu, Y. X. Zhao, and S. A. Yang, Phys. Rev. B
100, 041118(R) (2019).

[70] B. Yang, Q. Guo, B. Tremain, R. Liu, L. E. Barr, Q. Yan, W.
Gao, H. Liu, Y. Xiang, J. Chen, C. Fang, A. Hibbins, L. Lu, and
S. Zhang, Science 359, 1013 (2018).

[71] Q. Guo, O. You, B. Yang, J. B. Sellman, E. Blythe, H. Liu, Y.
Xiang, J. Li, D. Fan, J. Chen, C. T. Chan, and S. Zhang, Phys.
Rev. Lett. 122, 203903 (2019).

[72] S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
[73] K. Yokomizo and S. Murakami, Phys. Rev. Lett. 123, 066404

(2019).
[74] T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016).
[75] F. Song, S. Yao, and Z. Wang, Phys. Rev. Lett. 123, 170401

(2019).
[76] A. Kitaev, in Advances in Theoretical Physics: Landau Memo-

rial Conference, edited by V. Lebedev and M. Feigel’man, AIP
Conf. Proc. No. 1134 (AIP, New York, 2009), p. 22

[77] A. Hatcher, Algebraic Topology (Cambridge University, Cam-
bridge, England, 2002).

[78] A. Tiwari and T. Bzdušek, Phys. Rev. B 101, 195130 (2020).
[79] G. E. Volovik and V. P. Mineev, Zh. Eksp. Teor. Fiz 72, 2256

(1977).
[80] G. P. Alexander, B. G.-g. Chen, E. A. Matsumoto, and R. D.

Kamien, Rev. Mod. Phys. 84, 497 (2012).
[81] M. Arkowitz, Introduction to Homotopy Theory (Springer, New

York, 2011).
[82] The compatibility further requires �g ◦ �h = �g◦h. The collec-

tion [π1(M ), π2(M ),�], together with an additional piece of
data called the Postnikov class, form a mathematical structure
called the fundamental 2-group of M [93, 94].

[83] Our follow-up work in Ref. [62] adopts a different strategy,
and expresses the same space as M = S2 × S1/Z2, where
the quotient identifies antipodal points (x, y) ∼ (−x,−y) in
S2 × S1.

[84] This follows from the long exact sequence of relative homotopy
groups for pair (G, H) [11, 77].

[85] D. C. Brody, J. Phys. A 47, 035305 (2013).
[86] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz,

Phys. Rev. Lett. 121, 026808 (2018).
[87] V. M. Martinez Alvarez, J. E. Barrios Vargas, M. Berdakin, and

L. E. F. Foa Torres, Eur. Phys. J. Spec. Top. 227, 1295 (2018).
[88] C. Procesi, Lie Groups: An Approach through Invariants and

Representations (Springer, New York, 2003).
[89] J. Ahn, D. Kim, Y. Kim, and B. J. Yang, Phys. Rev. Lett. 121,

106403 (2018).
[90] Q. Wu, A. A. Soluyanov, and T. Bzdušek, Science 365, 1273

(2019).
[91] J. Ahn, S. Park, and B.-J. Yang, Phys. Rev. X 9, 021013 (2018).
[92] A. Bouhon, Q. Wu, R.-J. Slager, H. Weng, O. V. Yazyev, and

T. Bzdušek, arXiv:1907.10611 (2019).
[93] J. C. Baez and A. D. Lauda, Theory Appl. Categ. 12, 423

(2004).
[94] J. P. Ang and A. Prakash, arXiv:1810.12965 (2018).

023226-12

https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevLett.118.045701
https://doi.org/10.1103/PhysRevLett.118.045701
https://doi.org/10.1103/PhysRevLett.118.045701
https://doi.org/10.1103/PhysRevLett.118.045701
https://doi.org/10.1103/PhysRevB.97.075128
https://doi.org/10.1103/PhysRevB.97.075128
https://doi.org/10.1103/PhysRevB.97.075128
https://doi.org/10.1103/PhysRevB.97.075128
https://doi.org/10.1103/PhysRevB.99.161115
https://doi.org/10.1103/PhysRevB.99.161115
https://doi.org/10.1103/PhysRevB.99.161115
https://doi.org/10.1103/PhysRevB.99.161115
https://doi.org/10.1103/PhysRevResearch.1.012003
https://doi.org/10.1103/PhysRevResearch.1.012003
https://doi.org/10.1103/PhysRevResearch.1.012003
https://doi.org/10.1103/PhysRevResearch.1.012003
https://doi.org/10.1103/PhysRevB.100.100405
https://doi.org/10.1103/PhysRevB.100.100405
https://doi.org/10.1103/PhysRevB.100.100405
https://doi.org/10.1103/PhysRevB.100.100405
https://doi.org/10.1103/PhysRevLett.123.066405
https://doi.org/10.1103/PhysRevLett.123.066405
https://doi.org/10.1103/PhysRevLett.123.066405
https://doi.org/10.1103/PhysRevLett.123.066405
http://arxiv.org/abs/arXiv:1812.02011
https://doi.org/10.1103/PhysRevB.99.201103
https://doi.org/10.1103/PhysRevB.99.201103
https://doi.org/10.1103/PhysRevB.99.201103
https://doi.org/10.1103/PhysRevB.99.201103
http://arxiv.org/abs/arXiv:1912.10048
http://arxiv.org/abs/arXiv:2002.11265
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevLett.121.136802
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevLett.123.246801
https://doi.org/10.1103/PhysRevLett.123.246801
https://doi.org/10.1103/PhysRevLett.123.246801
https://doi.org/10.1103/PhysRevLett.123.246801
https://doi.org/10.1088/1361-648X/ab11b3
https://doi.org/10.1088/1361-648X/ab11b3
https://doi.org/10.1088/1361-648X/ab11b3
https://doi.org/10.1088/1361-648X/ab11b3
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevLett.121.196401
https://doi.org/10.1103/PhysRevLett.121.196401
https://doi.org/10.1103/PhysRevLett.121.196401
https://doi.org/10.1103/PhysRevLett.121.196401
https://doi.org/10.1038/nature18604
https://doi.org/10.1038/nature18604
https://doi.org/10.1038/nature18604
https://doi.org/10.1038/nature18604
https://doi.org/10.1038/nature18605
https://doi.org/10.1038/nature18605
https://doi.org/10.1038/nature18605
https://doi.org/10.1038/nature18605
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1023/B:CJOP.0000044002.05657.04
https://doi.org/10.1103/PhysRevB.101.205417
https://doi.org/10.1103/PhysRevB.101.205417
https://doi.org/10.1103/PhysRevB.101.205417
https://doi.org/10.1103/PhysRevB.101.205417
https://doi.org/10.1103/PhysRevB.95.075146
https://doi.org/10.1103/PhysRevB.95.075146
https://doi.org/10.1103/PhysRevB.95.075146
https://doi.org/10.1103/PhysRevB.95.075146
https://doi.org/10.4099/jjm1924.16.0_169
https://doi.org/10.4099/jjm1924.16.0_169
https://doi.org/10.4099/jjm1924.16.0_169
https://doi.org/10.4099/jjm1924.16.0_169
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1103/PhysRevLett.123.066403
https://doi.org/10.1103/PhysRevLett.123.066403
https://doi.org/10.1103/PhysRevLett.123.066403
https://doi.org/10.1103/PhysRevLett.123.066403
https://doi.org/10.1103/PhysRevB.100.041118
https://doi.org/10.1103/PhysRevB.100.041118
https://doi.org/10.1103/PhysRevB.100.041118
https://doi.org/10.1103/PhysRevB.100.041118
https://doi.org/10.1126/science.aaq1221
https://doi.org/10.1126/science.aaq1221
https://doi.org/10.1126/science.aaq1221
https://doi.org/10.1126/science.aaq1221
https://doi.org/10.1103/PhysRevLett.122.203903
https://doi.org/10.1103/PhysRevLett.122.203903
https://doi.org/10.1103/PhysRevLett.122.203903
https://doi.org/10.1103/PhysRevLett.122.203903
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1103/PhysRevLett.123.170401
https://doi.org/10.1103/PhysRevLett.123.170401
https://doi.org/10.1103/PhysRevLett.123.170401
https://doi.org/10.1103/PhysRevLett.123.170401
https://doi.org/10.1103/PhysRevB.101.195130
https://doi.org/10.1103/PhysRevB.101.195130
https://doi.org/10.1103/PhysRevB.101.195130
https://doi.org/10.1103/PhysRevB.101.195130
https://doi.org/10.1103/RevModPhys.84.497
https://doi.org/10.1103/RevModPhys.84.497
https://doi.org/10.1103/RevModPhys.84.497
https://doi.org/10.1103/RevModPhys.84.497
https://doi.org/10.1088/1751-8113/47/3/035305
https://doi.org/10.1088/1751-8113/47/3/035305
https://doi.org/10.1088/1751-8113/47/3/035305
https://doi.org/10.1088/1751-8113/47/3/035305
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1140/epjst/e2018-800091-5
https://doi.org/10.1140/epjst/e2018-800091-5
https://doi.org/10.1140/epjst/e2018-800091-5
https://doi.org/10.1140/epjst/e2018-800091-5
https://doi.org/10.1103/PhysRevLett.121.106403
https://doi.org/10.1103/PhysRevLett.121.106403
https://doi.org/10.1103/PhysRevLett.121.106403
https://doi.org/10.1103/PhysRevLett.121.106403
https://doi.org/10.1126/science.aau8740
https://doi.org/10.1126/science.aau8740
https://doi.org/10.1126/science.aau8740
https://doi.org/10.1126/science.aau8740
https://doi.org/10.1103/PhysRevX.9.021013
https://doi.org/10.1103/PhysRevX.9.021013
https://doi.org/10.1103/PhysRevX.9.021013
https://doi.org/10.1103/PhysRevX.9.021013
http://arxiv.org/abs/arXiv:1907.10611
http://arxiv.org/abs/arXiv:1810.12965

