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General anesthesia reduces complexity and temporal asymmetry of the
informational structures derived from neural recordings in Drosophila
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We apply techniques from the field of computational mechanics to evaluate the statistical complexity of neural
recording data from fruit flies. First, we connect statistical complexity to the flies’ level of conscious arousal,
which is manipulated by general anesthesia (isoflurane). We show that the complexity of even single channel
time series data decreases under anesthesia. The observed difference in complexity between the two states of
conscious arousal increases as higher orders of temporal correlations are taken into account. We then go on to
show that, in addition to reducing complexity, anesthesia also modulates the informational structure between the
forward- and reverse-time neural signals. Specifically, using three distinct notions of temporal asymmetry we
show that anesthesia reduces temporal asymmetry on information-theoretic and information-geometric grounds.
In contrast to prior work, our results show that: (1) Complexity differences can emerge at very short timescales
and across broad regions of the fly brain, thus heralding the macroscopic state of anesthesia in a previously
unforeseen manner, and (2) that general anesthesia also modulates the temporal asymmetry of neural signals.
Together, our results demonstrate that anesthetized brains become both less structured and more reversible.
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I. INTRODUCTION

Complex phenomena are everywhere in the physical world.
Typically, these emerge from simple interactions among ele-
ments in a network, such as atoms making up molecules or
organisms in a society. Despite their diversity, it is possible
to approach these subjects with a common set of tools, using
numerical and statistical techniques to relate microscopic
details to emergent macroscopic properties [1]. There has long
been a trend of applying these tools to the brain, the archetypal
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complex system, and much of neuroscience is concerned
with relating electrical activity in networks of neurons to
psychological and cognitive phenomena [2]. In particular,
there is a growing body of experimental evidence [3] that
neural firing patterns can be strongly related to the level of
conscious arousal in animals.

In humans, level of consciousness varies from very low
in coma and under deep general anesthesia to very high in
fully wakeful states of conscious arousal [4]. With the current
technology, precise discrimination between unconscious veg-
etative states and minimally conscious states are particularly
challenging and remains a clinical challenge [5]. Therefore,
substantial improvement in accuracy of determining such con-
scious states using neural recording data will have significant
societal impacts. Toward such a goal, neural data has been
analyzed using various techniques and notions of complexity
to try to find the most reliable measure of consciousness [6,7].

One of the most successful techniques to date in distin-
guishing levels of conscious arousal is the perturbational
complexity index [8–10], which measures the neural activity
patterns that follows a perturbation of the brain through mag-
netic stimulation. The evoked patterns are processed through a
pipeline then finally summarized using Lempel-Ziv complex-
ity [9]. This method is inspired by a theory of consciousness,
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called integrated information theory (IIT) [11,12], which
proposes that a high level of conscious arousal should be cor-
related with the amount of so-called integrated information, or
the degree of differentiated integration in a neural system (see
Ref. [13] for details). While there are various ways to capture
this essential concept [14,15], one way to interpret integrated
information is as the amount of loss of information a system
has on its own future or past states based on its current state,
when the system is minimally disconnected [16–18].

These complexity measures, inspired by IIT, are motivated
by the fundamental properties of conscious phenomenology,
such as informativeness and integratedness of any experience
[11]. While there are ongoing efforts to accurately translate
these phenomenological properties into mathematical postu-
lates [13], such translation often contains assumptions about
the underlying process which are not necessarily borne out in
reality. For example, the derived mathematical postulates in
IIT assume Markovian dynamics, i.e., that the future evolution
of a neural system is determined statistically by its present
state [15]. Moreover, IIT requires computing the correlations
across all possible partitions between subsystems, which is
computationally heavy [16] in relation to methods which do
not require such partitioning to work. Assuming that the
hierarchical causal influences in the brain would manifest
as oscillations across a range of frequencies and spatial re-
gions [19], non-Markovian temporal correlations likely play a
significant role in explaining any experimentally measurable
behaviours, including the level of conscious arousal. There is
therefore, scope for applying more general notions of com-
plexity to meaningfully distinguish macroscopic brain states
that support consciousness.

A conceptually simple approach to quantifying the com-
plexity of time series data, such as the fluctuating potential in
a neuron, is to construct the minimal model which statistically
reproduces it. Remarkably, this minimal model, known as
an epsilon machine (ε machine), can be found via a system-
atic procedure which has been developed within the field
of computational mechanics [20–22]. Crucially, ε machines
account for multiple temporal correlations contained in the
data and can be used to quantify the statistical complexity
of a process—the minimal amount of information required to
specify its state. As such they have been applied over various
fields, ranging from neuroscience [23,24] and psychology
[25] to crystallography [26] and ecology [27], to the stock
market [28]. Last, unlike IIT the ε machine analysis can be
performed for data coming from a single channel.

In this paper, we use the statistical complexity derived from
an ε machine analysis of neural activity to distinguish states of
conscious arousal in fruit flies (Drosophila melanogaster). We
analyze neural data collected from flies under different con-
centrations of isoflurane [29,30]. By analyzing signals from
individual electrodes and disregarding spatial correlations,
we find that statistical complexity distinguishes between the
two states of conscious arousal through temporal correlations
alone. In particular, as the degree of temporal correlations
increases, the difference in complexity between the wakeful
and anesthetized states becomes larger. In addition to mea-
suring complexity, the ε machine framework also allows us to
assess the temporal irreversibility of a process- the difference
in the statistical structure of the process when read forward

versus backward in time. This may be particularly important
for wakeful brains which are thought to be sensitive to the
statistical structure of the environment which runs forward in
time [30–32]. Using the nuanced characterisation of temporal
information flow offered by the ε machine framework [33], we
then analyze the time irreversibility and crypticity of the neu-
ral signals to further distinguish the conscious states. We find
that the asymmetry in information structure between forward
and reverse-time neural signals is reduced under anesthesia.

The present approach singularly differentiates between
highly random and highly complex information structure;
accounts for temporal correlations beyond the Markov as-
sumption; and quantifies temporal asymmetry of the process.
None of the standard methods possesses all of these features
within a single unified framework. Before presenting these
results in detail in Sec. III and discussing their implications
in Sec. IV, we begin with a brief overview of the ε machine
framework we will use for our analysis.

II. THEORY: ε MACHINES AND
STATISTICAL COMPLEXITY

To uncover the underlying statistical structure of neural
activity that characterises a given conscious state, we treat the
measured neural data, given by voltage fluctuations in time,
as discrete time series. To analyze these time series, we use
the mathematical tools of computational mechanics, which
we outline in this section. We start with a general discussion
on the ways to use time series data to infer a model of a
system while placing ε machines in this context. Next, we
explain how we construct ε machines in practice. Finally, we
show how this can be used to extract a meaningful notion of
statistical complexity of a process.

A. From time series to ε machines

In abstract terms, a discrete-time series is a sequence of
symbols r = (r0, . . . , rk, . . .) that appear over time, one after
the other [34]. Each element of r corresponds to a symbol
from a finite alphabet A observed at the discrete time step
labeled by the subscript k. The occurrence of a symbol, at a
given time step, is random in general and thus the process,
which produces the time series, is stochastic [35]. However,
the symbols may not appear in a completely independent
manner, i.e., the probability of seeing a particular symbol
may strongly depend on symbols observed in the past. These
temporal correlations are often referred to as memory, and
they play an important role in constructing models that are
able to predict the future behavior of a given stochastic
process [36].

Relative to an arbitrary time k, let us denote the future
and the past partitions of the complete sequence as r = ( �r, �r),
where the past and the future are �r = (. . . , rk−2, rk−1) and
�r = (rk, rk+1, . . .), respectively. In general, for the prediction
of the immediate future symbol rk , knowledge of the past �

symbols �r� := (rk−�, . . . , rk−2, rk−1) may be necessary. The
number of past symbols we need to account for to optimally
predict the future sequence is called the Markov order [37].

In general, the difficulty of modeling a time series increases
exponentially with its Markov order. However, not all distinct
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pasts lead to unique future probability distributions, leaving
room for compression in the model. In a seminal work,
Crutchfield and Young showed the existence of a class of
models, which they called ε machines, that are provably the
optimal predictive models for a non-Markovian process under
the assumption of statistical stationarity [20,21]. Constructing
the ε machine is achieved by partitioning sets of partial
past observations �r� into causal states. That is, two distinct
sequences of partial past observations �r� and �r′� belong to the
same causal state Si ∈ S , if the probability of observing a
specific �r given �r� or �r′� is the same; that is

�r� ∼ε �r′� if P(�r | �r�) = P(�r | �r′�), (1)

where ∼ε indicates that two histories correspond to the
same causal state. The conditional probability distributions
in Eq. (1) may always be estimated from a finite set of
statistically stationary data via the naive maximum likelihood
estimate, given by P(rk| �r�) = ν(rk, �r�)/ν( �r�), where ν(X ) is
the frequency of occurrence of subsequence X in the data.
For the case of nonstationary data, the probabilities obtained
by this method will produce a nonminimal model that corre-
sponds to a time-averaged representation of the time series.
We now discuss how to practically construct an ε machine for
a given time series.

B. Constructing εmachines with the CSSR algorithm

Several algorithms have been developed to construct
ε machines from time series data [20,38,39]. Here, we briefly
explain the causal state splitting reconstruction (CSSR) al-
gorithm [25], which we use in this work to infer ε machines
predicting the statistics of neural data we provide as input.

The CSSR algorithm proceeds to iteratively construct sets
of causal states accounting for longer and longer subse-
quences of symbols. In each iteration, the algorithm first
estimates the probabilities P(rk| �r�) of observing a symbol
conditional on each length � prior sequence and compares
them with the distribution P(rk|S = Si ) it would expect from
the causal states it has so far reconstructed. If P(rk| �r�) =
P(rk|S = Si ) for some causal state, then �r� is identified with
it. If the probability is found to be different for all existing
Si, then a new causal state is created to accommodate the
subsequence. By constructing new causal states only as neces-
sary, the algorithm guarantees a minimal model that describes
the non-Markovian behavior of the data (up to a given mem-
ory length), and hence the corresponding ε machine of the
process.

The CSSR algorithm compares probability distributions
via the Kolmogorov-Smirnov (KS) test [40,41]. The hypothe-
sis that P(rk| �r�) and P(rk|S = Si ) are identical up to statistical
fluctuations is rejected by the KS test at the significance
level σ when a distance DKS [42] is greater than tabulated
critical values of σ [43]. In other words, σ sets a limit on
the accuracy of the history grouping by parametrizing the
probability that an observed history �r� belonging to a causal
state Si, is mistakenly split off and placed in a new causal
state S j . Our analysis, in agreement with Ref. [25], found that
the choice of this value does not affect the outcome of CSSR
within the tested range of 0.001 < σ < 0.01. As a result, we
set σ = 0.005.

As it progresses, the CSSR algorithm compares future
probabilities for longer subsequences, up to a maximum past
history length of λ, which is the only important parameter
that must be selected prior to running CSSR in addition to
σ . If the considered time series is generated by a stochastic
process of Markov order �, choosing λ < � results in poor
prediction because the inferred ε machine cannot capture the
long-memory structures present in the data. Despite this,
the CSSR algorithm will still produce an ε machine that is
consistent with the approximate future statistics of the process
up to order-λ correlations [25]. Given sufficient data, choosing
λ � � guarantees convergence on the true ε machine. One
important caveat to note is that the time complexity of the
algorithm scales asymptotically as O(|A|2λ+1), putting an up-
per limit to the longest history length that is computationally
feasible to use. Furthermore, the finite length of the time
series data implies an upper limit on an “acceptable” value
of λ. Estimating P(rk| �rλ) requires sampling strings of length
λ from the finite data sequence. Since the number of such
strings grows exponentially with λ, a value of λ that is too
long relative to the size N of the data, will result in a severely
under-sampled estimation of the distribution. A distribution
P(rk| �rλ) that has been estimated from an under-sampled space
is almost always never equal to P(rk|S = Si ), resulting in the
algorithm creating a new causal state for every string of length
λ it encounters. A bound for the largest permissible history
length is L(N ) � log2 N/ log2 |A|, where L(N ) denotes max-
imum length for a given data size of N [44,45]. Once these
considerations have been taken into account, the ε machine
produced by the algorithm provides us with a meaningful
quantifier of the complexity of the process generating the time
series, as we now discuss.

C. Measuring the complexity and asymmetry of a process

The output of the CSSR algorithm is the set of causal states
and rules for transitioning from one state to another. That is,
CSSR gives a Markov chain represented by a digraph [20,37]
G(V, E ) consisting of a set of vertices vi ∈ V and directed
edges {i, j} ∈ E , e.g., Figs. 1(c) and 1(d). Using these rules,
one can find P(Si ), which represents the probability that the
ε machine is in the causal state Si at a any time. The Shannon
entropy of this distribution quantifies the minimal number of
bits of information required to optimally predict the future
process; this measure, first introduced in Ref. [20], is called
the statistical complexity:

Cμ := H[S] = −
∑

i

P(Si ) log P(Si ). (2)

Formally, the causal states of a time series depend upon the
direction in which the data is read [33]. The main consequence
of this result is that the set of causal states obtained by
reading the time series in the forward direction S+, are not
necessarily the same as those obtained by reading the time
series in the reverse direction S−. Naturally, this corresponds
to potential differences in forward and reverse-time processes
and the associated complexities, which is known as causal
irreversibility,

� := C+
μ − C−

μ , (3)

capturing the time-asymmetry of the process.
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FIG. 1. Evolution of experimental data from neural signals to ε machines. (a) Representative schematic of D. melanogaster brain (modified
from Ref. [50]) depicted with probe and approximate channel locations. Each channel c ∈ [1, 15] samples around a localised region in the brain,
with numerical labels ordered from the central (c = 1) to peripheral (c = 15) regions. (b) Example reading of a processed local field potential
(LFP) for a single channel. Points along the x axis represent LFP measurements at each sampling time step. The median LFP measurement
of the sample is shown as the gray line bisecting data. LFP binarization is determined via splitting over the median with the encoding scheme
0: LFP � Median, and 1: otherwise. The ε machines are inferred by using the binary string as the input to the CSSR algorithm. (c) Digraph
representation of the CSSR-inferred ε machine for channel 1 readings of fly 1 under anesthesia (0.6 vol.% isoflurane) with σ = 0.005 and
λ = 3. Graph vertices correspond to causal states. Vertex labels distinguishing causal states are assigned arbitrarily and do not imply state
equivalence across multiple graphs. Directed edges correspond to transitions between causal states. Edge labels denote the probability (two
significant figures) of a transition occurring, and edge color encodes the emitted symbol upon making the transition (1: Red, 0: Blue). The
histories stored in the causal states for this ε machine are visualised in Fig. 6. (d) Digraph representation of ε machine for the wakeful (0 vol.%
isoflurane) level of conscious arousal for the same channel, fly, σ , and λ as in (c). We report the forward-time statistical complexities Ca

μ = 1.88
and Cw

μ = 2.96 for (c) and (d), respectively.

Another (stronger) measure of time-asymmetry is
crypticity:

d := 2C±
μ − C+

μ − C−
μ . (4)

This quantity measures the amount of information hidden
in the forward and reverse ε machines that is not revealed
in the future or past time series, respectively. Specifically,
it combines the information that must be supplemented to
determine the forward ε machine given the reverse ε machines
and the information to determine reverse ε machines given the
forward ε machine. In each case, this is equivalent to the dif-
ference between the complexity of a bidirectional ε machine,
denoted C±

μ [33], and that of the corresponding unidirectional
machine. Throughout this manuscript, we implicitly refer to
the usual forward-time statistical complexity C+

μ when writing
Cμ, unless otherwise stated.

Finally, an operational measure for time-asymmetry is
defined by the microscopic irreversibility, which quanti-
fies how statistically distinguishable the forward and re-
verse ε machines are, in terms of the sequences of symbols
they produce. If the forward-time ε machine produces the
same sequences with similar probabilities to the reverse-
time ε machine, then the process is reversible. Should a se-
quence available to M+ be impossible for M− to produce,
then the process is strictly irreversible. Here, we assess the
distinguishability between two ε machines by estimating the
asymptotic rate of (symmetric) Kullback-Leibler (KL) diver-

gence DKLS between long output sequences; this measure is
commonly applied to stochastic models [46]. Specifically,

DKLS = DKL(M+‖M−) + DKL(M−‖M+), (5)

where DKL is the regular, nonsymmetric estimated KL di-
vergence rate [47]. The KL divergence can be proved to be
a unique measure that satisfies all of the theoretical require-
ments of information-geometry [17,48,49].

A few remarks are in order: in general, any one of the
above measures vanishing does not imply that the other mea-
sures must also vanish. For instance, consider the case where
the structures of the forward (M+) and reverse-time (M−)
ε machines are different but they happen to have the same
complexities, i.e., C+

μ = C−
μ . Then, clearly we have � = 0

but d �= 0 and DKLS �= 0. However, consider the case when
M+ and M− are the same; here, we have � = DKLS = 0, yet
may not have d = 0. This means that vanishing DKLS implies
that � = 0 (but not the converse, and not d = 0). This turns
out be an interesting extremal case because, while the forward
and reverse processes are identical, the nonvanishing cryptic-
ity accounts for the information required to synchronise the
corresponding ε machines, i.e., producing the joint statistics
of the paired ε machines. Moreover, we can conclude that
microscopic irreversibility is a stronger measure than causal
irreversibility; this comes at the expense of computational
cost, i.e., the former is harder to compute than the latter. In
essence, each measure above represents a different notion of
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temporal asymmetry, with its own operational significance.
Causal irrversibility and crypticity are information-theoretic
constructs, while microscopic irrversibility is a information-
geometric construct.

In the next section, we describe the experimental and
analytical methods, as well as the results: that the statistical
complexity and temporal asymmetry of the neural time series,
taken from fruit flies, significantly differ between states of
conscious arousal.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Methods

We analyzed local field potential (LFP) data from the
brains of awake and isoflurane-anesthetized D. melanogaster
(Canton S wild type) flies. Here, we briefly provide the
essential experimental outline that is necessary to understand
this paper. The full details of the experiment are presented
in Refs. [29,30]. LFPs were recorded by inserting a linear
silicon probe (Neuronexus 3mm-25-177) with 16 electrodes
separated by 25 μm. The probe covered approximately half
of the fly brain and recorded neural activity as illustrated
in Fig. 1(a). A tungsten wire inserted into the thorax acted
as the reference. The LFPs at each electrode were recorded
for 18 s, while the fly was awake and 18 s more after the
fly was anesthetized (isoflurane, 0.6% by volume, through
an evaporator). Flies’ unresponsiveness during anesthesia was
confirmed by the absence of behavioural responses to a series
of air puffs, and recovery was also confirmed after isoflurane
gas was turned off [29].

We used data sampled at 1 kHz for the analysis [29], and
to obtain an estimate of local neural activity, the 16 electrodes
were re-referenced by subtracting adjacent signals giving 15
channels which we parametrize as c ∈ [1, 15]. Line noise was
removed from the recordings, followed by linear de-trending
and removing the mean. The resulting data is a fluctuating
voltage signal, which is time-binned (1 ms bins) and binarized
by splitting over the median, leading to a time series see
Fig. 1(b).

For each of the 13 flies in our data set, we considered
30 time series of length N = 18 000. These correspond to
the 15 channels, labeled numerically from the central to
peripheral region as depicted in Fig. 1(a), and the two states
of conscious arousal. Using the CSSR algorithm [25], we
constructed ε machines for each of these time series as a
function of maximum memory length within the range λ ∈
[2, 11], measured in milliseconds. This is below the mem-
ory length L(N ) ∼ 14 beyond which we would be unable
to reliably determine transition probabilities for a sequence
of length N (see Sec. II B) [51]. For a given time direc-
tion ξ ∈ {+ : forward,− : reverse}, we recorded the resulting
3 900 ε machine structures and their corresponding statistical
complexities C(ξ,ψ )

μ , and grouped them according to their
respective level of conscious arousal, ψ ∈ {w, a} for awake
and anesthesia, channel location, c, and maximum memory
length, λ. Thus, the statistical complexity we computed in a
given time direction is a function of the set of parameters
{ψ, c, λ} for each fly, f . We also determined the irreversibility
�, crypticity d , and symmetric KL divergence rate DKLS for

each fly and again grouped them over the same set of param-
eters {ψ, c, λ}. While we found that not all the data is strictly
stationary, in that the moving means of the LFP signals were
not normally distributed, the conclusions we draw from them
are still broadly valid. As mentioned in Sec. II A, ε machines
reconstructed from approximately stationary data are time-
averaged models, and are likely to underestimate the true
statistical complexity of the corresponding neural processes.

We are principally interested in the differences the infor-
mational quantities Qψ ∈ {C(ξ,ψ )

μ , �ψ, dψ, Dψ

KLS} have over
states of conscious arousal and thus consider


Q := Qw − Qa, (6)

for fixed values of { f , c, λ}. Positive values of 
Q indicate
higher complexities observed in the wakeful state relative to
the anesthetized one. Finally, we use the notation 〈Qψ 〉x to de-
note taking an average of any information quantity Qψ , over a
specific parameter x ∈ { f , c, λ}. For example, 〈
C+

μ 〉 f means
taking the fly-averaged difference in forward-time statistical
complexity.

To assess the significance of each of the parameters ψ , c, λ,
and ξ , or some combination of them, have on the response of
the elements in the set Q across flies, we conducted a statisti-
cal analysis using linear mixed effects modeling [52] (LME).
The LME analysis describes the response of a given quantity
Q by modeling it as a multidimensional linear regression of
the form

Q = Fβ + Rb + E . (7)

The resulting model in Eq. (7) consists of a family of equa-
tions where Q is the vector allowing for different responses
of a quantity Q for each specific fly, channel location, level
of conscious arousal, and time direction where applicable.
Memory length λ, channel location c, state of conscious
arousal ψ , and time direction ξ (again, where applicable) are
the parameters that Q responds to. To account for variations
in the response caused by interactions between parameters
(e.g., between memory length and channel location), we in-
cluded them in the model. Letting X = {λ, c, ψ, ξ} be the
set of the parameters which may induce responses, we can
write all the nonempty k-combinations between them as F =
{λ, c, ψ, ξ, λc, λψ, ..., λcψξ} = (X

k

)\∅. The elements in F
are known as the fixed effects of Eq. (7), and are contained
as elements within the matrix F. The vector β, contains the
regression coefficients describing the strength of each of the
fixed effects F .

In addition to fixed effects affecting the response of an
element of Q in our experiment, we also took into account
any variation in response caused by known random effects.
In particular, we expected stronger response variations to
be caused by correlations occurring between the channels
within a single fly, compared to between channels across
flies. These random effects are contained as elements of the
matrix R, and the vector b encodes the regression coefficients
describing their strengths. Finally, the vector E describes the
normally distributed unknown random effects in the model.
The regression coefficients contained in the vectors β and b,
were obtained via maximum likelihood estimation such that
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E are minimized. The explicit form of Eq. (7) used in this
analysis is detailed in the Appendix.

With the full linear mixed effects model given by Eq. (7),
we tested the statistical significance of a fixed effect in F . This
was accomplished by comparing the log-likelihood of the full
model with all fixed effects, to the log-likelihood of a reduced
model with the effect of interest removed [53] (regression
coefficients associated with the effect are removed). This
comparison between the likelihood models is given by � =
2(hfull − hreduced), where � is the likelihood ratio, hfull is the
log-likelihood of full model, and hreduced is the log-likelihood
of the model with the effect of interest removed.

Under the null hypothesis, when a fixed effect does not
have any influence on an informational quantity Q, i.e., the
regression coefficients for the effect are vanishing, the like-
lihood ratio � is χ2 distributed with degrees of freedom
equal to the difference in the number of coefficients between
the models. Therefore, we considered any fixed effect in the
set F to have a statistically significant effect on a quantity
if the probability of obtaining the likelihood ratio given the
relevant χ2 distribution was less than 5% (p < 0.05). Thus,
for each significant effect we report the fixed effect being
tested, i.e., an element of F , the obtained likelihood ratio
χ2(n − 1) with n associated degrees of freedom, and the as-
sociated probability p of obtaining the statistic under the null
hypothesis.

In addition to all the quantities in the set Qψ , the LME
and likelihood ratio test was also performed for 
Q, to find
the significant interaction effects of the parameters. Here, we
also modeled 
Q as dependent on a fixed effect in F as
in Eq. (7), but excluding the parameter ψ as it was already
implicitly considered. Once the significant effects of memory
length, level of conscious arousal, and channel location were
characterised with our statistical analysis, we followed with
post hoc, paired t-tests for elements in Qψ given by

t = 〈
Q〉 f

s f /
√| f | , (8)

where s f is the standard deviation of 〈
Q〉 f , and | f | = 13
is the sample size. The paired t tests examine the nature
of interactions between the parameters on a given quantity
over the two states of conscious arousal. Positive t-scores
indicate a quantity is larger for the wakeful state. We present
the results of these analyses in the following sections, sorted
categorically by whether time-direction is considered.

B. Results

1. Forward-time complexity results

To observe the effects of isoflurane on neural complexity,
we began by visually inspecting the structure of the recon-
structed ε machines for the two levels of conscious arousal
for the forward-time direction. We took special interest in
observing the differences in the characteristics of the two
groups of ε machines heralding the two levels of conscious
arousal. Here, memory length λ plays an important role.
At a given λ, the maximum number of causal states that
may be generated scales according to |A|λ [25]. In our case,
the alphabet is binary, A = {0, 1}. This greatly restricts the
space of ε machine configurations available for short history

FIG. 2. Colour map of statistical complexity response aver-
aged over (n = 13) flies 〈C (+,ψ )

μ 〉 f , (left) during wakefulness (0
vol.% isoflurane), and (right) anesthesia (0.6 vol.% isoflurane), over
channel location and memory length λ, measured in milliseconds.
Hatched cells on the right subfigure, show regions where Cμ did not
decrease under anesthesia.

lengths [54]. For λ = 2 we can observe up to four distinct
configurations, which is unlikely to reveal the difference based
on conscious states. Given the previous findings [30], we
generally expected that the data from the wakeful state would
present more complexity than those from the anesthetized
state.

Visual inspection of the directed graphs indeed suggested
higher ε machine complexity during the wakeful state com-
pared to the anesthetized state, at a given set of parameters
{ f , c, λ}. In particular, the data from the anesthetized state
tended to result in fewer causal states and overall reduced
graph connectivity. Figures 1(c) and 1(d) are examples of
ε machines (channel 1 data recorded from fly 1, at maximum
memory length λ = 3), where a simpler ε machine is derived
from the data under the anesthetized condition. Differentiating
between two conscious arousal states by visual inspection
quickly becomes impractical because of the large number of
ε machines. Moreover, for large values of λ the number of
causal states is exponentially large and it becomes difficult
to see the difference in two graphs. To overcome these chal-
lenges, we looked at a simpler index, the statistical complexity
Cμ, to differentiate between conscious arousal states. To sys-
tematically determine the relationships between Cμ and the set
of variables {c, f , ψ} we employed the LME analysis outlined
in Sec. III A. We first tested whether λ significantly affects
Cμ. We found λ to indeed have a significant effect on Cμ (λ,
χ2(1) = 443.64, p < 10−16). Figure 2 shows that independent
of the conscious arousal condition or channel location, Cμ

increases with larger λ. This indicates that the Markov order
of the neural data is much larger than the largest memory
length (λ = 11) we consider. Nevertheless, we have enough
information to work with.

We then sought to confirm if the complexity of ε machines
during anesthesia are reduced, as suggested from visual in-
spection. Our statistical analysis indicates that Cμ is not
invariably reduced during anesthesia (ψ , χ2(1) = 0.212, p =
0.645) at all levels of λ and all channel locations. This means
that Cμ cannot simply indicate the causal arousal state without
some additional information about time (λ) or space (c). In
addition, we found that neither c alone nor cψ strongly affects
Cμ. However, we found significant reductions in complexity
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FIG. 3. Statistical complexity differences 
Cμ = Cw
μ − Ca

μ of
ε machines between states of conscious arousal for: (Top) increasing
memory length λ. Gray lines indicate complexity averages over
channels per fly (n = 13), 〈
Cμ〉c, while the blue line denotes
the average over both channels and flies 〈
Cμ〉c, f . Error bars are
95% confidence intervals of the population. (Bottom) maximum
memory length λ = 11 (in milliseconds), mapped throughout the
fly brain (channels). Gray and red lines indicate the result per fly
and the average over (n = 13) flies, 〈
Cμ〉 f , respectively. Error bars
corresponding to the 95% confidence intervals over the sample of
files.

when either the level of conscious arousal or the channel
location, interacted with memory length (λψ , χ2(1) = 14.63,
p = 1.31 × 10−4) and (cλ, χ2(14) = 42.876, p = 8.97 ×
10−5), respectively. Moreover, the three-way interaction also
had a strong effect (λψc, χ2(14) = 24.00, p = 0.0458).

As the three-way interaction between λ, ψ , and c compli-
cates interpretation of their effects, we performed a second
LME analysis where we modelled 
Cμ instead of Cμ, thus
accounting for ψ implicitly. In doing so, we investigated
whether the change in statistical complexity due to anesthesia
is affected by memory length λ or channel location c. Using
this model, we found a nonsignificant effect of c on 
Cμ,
while a significant effect of λ on 
Cμ was seen (λ, χ2(1) =
20.97, p = 4.65 × 10−6), indicating that 
Cμ overall changes
with λ. Specifically, 
Cμ tended to increase with larger λ

when ignoring channel location, as is evident in Fig. 3 (top).
Further, explaining our previous interaction between λ and
ψ , 
Cμ was not clearly larger than 0 for small memory
length (λ = 2; the top panel of Fig. 3). This suggests that
the information to differentiate between states of conscious
arousal is contained in higher order correlations. We also
found that the interaction between λ and channel location
has a significant effect on 
Cμ (λc, χ2(14) = 37.19, p =
6.90 × 10−4), indicating that the effect of λ is not constant
across channels. Given that 
Cμ overall increases with λ,
we considered that that the largest 
Cμ should occur at the

largest λ. Figure 3 (bottom) examines 
Cμ across channels at
λ = 11.

To further break down the interaction between λ and c,
we performed a one sample t test at each value of memory
length and channel location to find regions in the parameter
space (λ, c) where Cμ reliably differentiates wakefulness from
anesthesia across flies. We plot the t statistic at each parameter
combination in Fig. 4(a), outlining regions in the parameter
space where 
Cμ is significantly greater than 0 (with p <

0.05, uncorrected, two-tailed), finding that the majority of the
significance map is directed toward positive values of the t
statistic. However, only a subset of (λ, c) cells contain values
which are significantly different from 0. Interestingly, we ob-
served that for λ = 2, 
Cμ is actually significantly negative,
corresponding to greater complexity during anesthesia, not
during wakefulness. This marks λ = 2 as anomalous relative
to other levels of λ, and this reversal of the direction of
the effect of anesthesia likely contributed to the interaction
between λ and ψ .

Disregarding λ = 2, we find 
Cμ to be significantly
greater than 0 for channels 1, 3, 5–7, 9, 10, and 13, at varying
levels of λ. As expected from our reported interaction between
λ and c, we observe 
Cμ to already be significantly greater
than 0 at small λ for channels 5–7, while 
Cμ only became
significantly greater at larger λ for channels 1, 3, 10, and 13.
Further, other channels such as the most peripheral channel
(c = 15) did not have 
Cμ significantly greater than 0 at any
λ. All significance results, due to LME tests, are reported in
Table I.

The above results suggest that the measured difference in
complexity is present across various brain regions [Fig. 4(a)],
and that it grows as longer temporal correlations are taken into
account (up to the largest value λ = 11 tested). While Fig. 3
shows a continued increase in the difference of statistical
complexity, 
Cμ, as a function of λ, we did not analyze
longer history lengths, due to limitations in the amount of
the data and stability of the estimation of Cμ. In addition
to this general observation of increasing 
Cμ with λ, we
observe that, remarkably, some brain regions discriminate
the conscious arousal states with a history length of only
3. One trivial explanation for this effect is that under anes-
thesia, the required memory length is indeed λ = 2, while
the optimal λ for awake is much larger. However, a quick
observation of Fig. 2 rules out this simple possibility; un-
der both wakeful and anesthetized states, Cμ continues to
increase.

It is likely, however, that the tested range for λ remains
below the Markov order of the neural data; this is clearly
indicated by the lack of a plateau in statistical complexity
in Fig. 3. This suggests that we are far from saturating the
Markov order of the process, and with more data we would be
able to further distinguish between the two states. Future anal-
yses with longer time series would also contribute to our un-
derstanding of the Markov order (maximum memory length)
differences between the two states of conscious arousal. Nev-
ertheless, our results, in Figs. 3 and 4(a), demonstrate that
saturation of Markov order is not required for discrimination
between conscious arousal states. This finding has a practical
implication about the empirical utility of ε machines; even
if the history length is too low, the inferred ε machine and
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FIG. 4. Colour map of two-tailed paired t scores over channel location and memory length λ for (a) statistical complexity differences
〈
C+

μ 〉 f = 〈C (+,w)
μ − C (+,a)

μ 〉 f ; (b) causal irreversibility differences 〈
�〉 f = 〈�w − �a〉 f ; (c) crypticity differences 〈
d〉 f = 〈dw − da〉 f ; and
(d) the differences in KL divergence rate 〈
DKLS〉 f = 〈Dw

KLS − Da
KLS〉 f . The dotted lines indicate the memory length and channel locations

that exceed p < 0.05 (uncorrected). The color scale is consistent across all subplots.

its statistical complexity can be useful. We now discuss the
temporal asymmetry of neural processes.

2. Temporal asymmetry

Unlike other complexity measures, we obtain a distinct
ε machine from each given time series, and for each direction
we read the time series, i.e., forward or backward in time.
Based on the notion that wakeful brains should be better at
predicting the next sensory input [30], we expect that anes-
thesia should alter the information structures depending on
the time direction. Our expectation translates to the following
three hypotheses:

(1) Causal irreversibility (� := C+
μ − C−

μ ), which is
purely based on the summary measure of statistical complex-
ity, should be higher for awake but lower for anesthetized
brains;

(2) Crypticity (d := 2C±
μ − C+

μ − C−
μ ) should be higher

for wakeful than anesthetized brains;
(3) Symmetric KL divergence rate (DKLS) should behave

similarly.
On visual inspection of the variation in � for the wakeful

and anesthetized conditions, both appeared close to zero,
suggesting that � would not have significant dependence
on the condition. This impression was confirmed statisti-
cally with two-tailed t tests against zero with corrections for

TABLE I. Significant χ 2 and p values of effects of channel c, memory length λ, and condition ψ , for informational quantities Q obtained
via LME analysis. First-order effects correspond to significant channel, memory, or condition responses on an informational quantity, while
second- and third-order effects correspond to interactions between these effects. χ2 values are reported with n − 1 degrees of freedom in the
parentheses, corresponding to the number of effects removed under the null model, described in Sec. III A.

Q First order Second order Third order

C+
μ λ : χ 2(1) = 443.64 p < 10−16 λc : χ 2(14) = 42.876 p = 8.97 ×10−5 λcψ : χ 2(14) = 24.00 p = 0.0458

λψ : χ 2(1) = 14.63 p = 1.31 ×10−4


C+
μ λ : χ 2(1) = 20.97 p = 4.65 × 10−6 λc : χ 2(14) = 37.19 p = 6.90 ×10−4

� ψ : χ 2(1) = 4.870 p = 0.0273 λψ : χ 2(1) = 5.565 p = 0.0183 λcψ : χ 2(14) = 31.79 p = 4.29 × 10−3

λ : χ 2(1) = 6.725 p = 9.51 × 10−3

d ψ : χ 2(1) = 5.896 p = 0.0152 λψ : χ 2(1) = 6.119 p = 0.0134
λ : χ 2(1) = 460.5 p < 10−16 λc : χ 2(14) = 35.86 p = 1.09 ×10−3

DKLS λ : χ 2(1) = 127.4 p < 10−16 λc : χ 2(14) = 85.81 p < 10−16

λψ : χ 2(1) = 127.4 p < 10−16
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FIG. 5. Exemplary digraph representations of ε machines for wakeful (a–d) and anesthetized (e–g) conditions for forward-time (a, e),
reverse-time (c, f), and bidirectional (d, g) analyses, all constructed from channel 5 in fly 7, at memory length λ = 3. Panel (b) gives an example
emission sequence and causal state sequence for forward and reverse-time ε machine pair (a) and (c). The vertex labeling denoting causal
states in (a-d) is consistent to show composition of forward and reverse-time ε machines in the bidirectional ε machine. The ε machines for the
wakeful condition have statistical complexity of C (+,w)

μ = 1.76, C (−,w)
μ = 1.50, and C (±,w)

μ = 3.25. In this example the process is irreversible
for all three quantities. The ε machines for the anesthetized condition have statistical complexity of C (+,a)

μ = C (−,a)
μ = 1.0 and C (±,a)

μ = 1.9989.
The process is causally and microscopically reversible but has finite crypticity.

multiple comparisons, as shown in Fig. 4(b). Thus, Hypothe-
sis 1 above, that irreversibility should be higher for wakeful
over anesthetized brains, is not supported by the data. How-
ever, as mentioned earlier, vanishing � does not imply that
either d = 0 or DKLS = 0. To rule out the possibility that the
information structure of ε machines are different when read
forward, as opposed to backward, depending on the condition,
we also tested the latter two hypotheses.

With respect to crypticity, first, visual inspection of the
two-tailed t-score map, which compares crypticity for the
wakeful dw and anesthetized da conditions [Fig. 4(c)] strongly
implies that crypticity is larger in the former compared to the
latter. This difference is largest over channels 5–7 and 9. To
systematically evaluate this impression, we used LME statisti-
cal analysis (described in Sec. III A) to determine the relation-
ships between crypticity, d , and the set of variables {c, λ, ψ}
we employ. As expected, we found that both memory length
(λ) and level of conscious arousal (ψ) significantly affected
crypticity (λ, χ2(1) = 470.5, p < 10−16) and (ψ , χ2(1) =
5.896, p = 0.0152), respectively. Crypticity also depended on
a significant interaction between memory length and condi-
tion (λψ , χ2(1) = 6.119, p = 0.0134). Specific increases in
crypticity around the middle brain region [Fig. 4(c)] were also
evident, with a strong interaction between channel location
and memory length [λc, χ2(14) = 35.86, p = 1.09 × 10−3],
which is similar to the result obtained for 
Cμ. This LME
analysis, together with the direction of effects in Fig. 4(c)
strongly confirms our Hypothesis 2.

Furthermore, as a more direct measure of microscopic
structure, we also analyzed the symmetric KL divergence rate,
DKLS. Again, the two-tailed t-score map [Fig. 4(d)] showed
support for our hypothesis. Our formal statistical analysis with
LME confirmed a critical interaction between memory length
and condition (λψ , χ2(1) = 15.37, p < 10−16), meaning that

time-asymmetric information structure is lost due to anes-
thesia, especially when a long memory length is taken into
account. We also note other significant effects: mainly the
effect of memory length (λ, χ2(1) = 127.4, p < 10−16) and
interaction between memory length and channel location (λc,
χ2(14) = 85.81, p < 10−16). Again, all significant results,
due to LME tests, are reported in Table I.

Taken together, these results show that the relative com-
plexity of the forward versus reverse direction, as measured
by causal irreversibility, does not distinguish between the
wakeful and anesthetized states. However, our crypticity re-
sults demonstrate that, under anesthesia, the structures of the
forward and reverse processes are relatively similar, whereas
during wakefulness their structures differ. Figure 5 demon-
strates this effect with exemplar ε machines reconstructed
from a representative channel, from which we derived six
distinct ε machines: three for wakeful (a, c, d), and three for
anesthetized (e–g) flies. Figure 5(b) shows how the time series
and the transitions in the causal states of forward, reversed,
and bidirectional ε machines are related.

Our finding, that causal irreversibilities were not above
zero for wakeful brains, corresponds to the fact that complex-
ities of forward and reverse ε machines were not significantly
different. However, the bidirectional ε machines for the wake-
ful condition were substantially more complex than those for
the anesthetized condition. The statistical complexity of bidi-
rectional ε machines should equal that of forward or reverse
ε machines if the process is completely time symmetric and
deterministic [33], resulting in zero crypticity. However, for
nondeterministic processes, additional information for syn-
chronizing the forward and reversed process may be needed,
which would mean d > 0. For instance, in Figs. 5(e) and 5(f),
if we are told that the forward machine is in causal state
A, then we need extra information to determine whether the
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reversed machine is in causal state X or Y . Yet, the detailed
structure of the forward and reverse machines are the same
in this example. Our analysis is supplemented with a study
of the symmetric KL divergence rate between forward and
backward processes, which measures the distance between
the reconstructed ε machines. In other words, crypticity and
symmetric KL divergence rate quantify two different notions
of temporal asymmetry; the former is information theoretic,
and the latter is information-geometric. Indeed, in general we
find that the processes in the two directions are different in
both ways and, further, their difference varies significantly
between conditions, as shown in Figs. 4(c) and 4(d).

IV. DISCUSSION

Discovering a reliable measure of conscious arousal in
animals and humans remains one of the major outstanding
challenges of neuroscience. The present study addresses this
challenge by connecting a complexity measure to the degree
of conscious arousal, taking a step forward to strengthening
the link between physics, complexity science, and neuro-
science. Here, we have taken tools from the former and have
applied them to a problem in the latter. Namely, we have stud-
ied the statistical complexity and time asymmetry of neural
recordings in the brains of flies over two states of conscious
arousal: awake and anesthetized. We have demonstrated that
differences between these macroscopic states can be revealed
by both the statistical complexity of local electrical fluctua-
tions in various brain regions, and various measures of tem-
poral asymmetry of hidden models that explain their behavior.
Specifically, we have analyzed the single-channel signals
from electrodes embedded in the brain using the ε machine
formalism and quantified the statistical complexity Cμ, causal
and microscopic reversibility � & DKLS, and crypticity d of
the recorded data for 15 channels in 13 flies over two states
of conscious arousal. We find the statistical complexity is
larger on average when a fly is awake than when the same
fly is anesthetized [
Cμ > 0; Figs. 3 and 4(a)], and that the
structural complexity of information and its time reversibility
captured by crypticity and KL rate are also reduced under
anesthesia [
d > 0 and 
DKLS > 0; Fig. 4(d)].

As we have demonstrated in this study, the local informa-
tion contained within a single channel can contain information
about global conscious states, which are believed to arise from
interactions among many neurons. Theoretically, single chan-
nels can reflect the complexity of the multiple channels due to
the concept of Sugihara causality [55]. This arises due to any
one region of the brain causally interacting with the rest of
the brain, making the temporal correlation in a single channel
time series contain information about the spatial correlations,
i.e., information that would be contained in multiple channels.
With this logic, Ref. [56] infers the complexity of the multi-
channel interactions from a single channel temporal structure
of the time series. This is often known as the backflow of
information in non-Markovian dynamics [57]. The periodic
structure of statistical complexity observed across channels
in Fig. 2, demonstrates an unexpected example of spatial
effects present in our study—one that was not observed with
conventional LFP analyses. This observation may provide a
motivation for multichannel analyses.
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FIG. 6. ε machine for same channel, fly, conscious state as
Fig. 1(c) but with histories stored in each causal state explicitly
stated. The sequences after the asterisk ∗ represent the sequence of
symbol observations with the most recent observed symbol on the far
right. Sequences collected within a causal state (gray circle) warrant
significantly different future statistics to observed sequences in other
causal states. The red lines emit a “1” upon transition, and blue lines
emit “0”s.

While we already find differences between conscious states
in the single channel based ε machine analysis, it would be
beneficial to extend the present analysis to the multichannel
scenario, in which ε machine can be contrasted with the meth-
ods of IIT [9–18]. Formal comparison of the distinguishing
power of conscious states among proposed methods (such as
those in Refs. [6,7]) will contribute to refining models and
theories of consciousness.

Our results can be informally compared with a previous
study, where the power spectra of the same data in the
frequency domain [30] was analyzed. There, a principal ob-
servation was the power in low-frequency signals in central
and peripheral regions, which was more pronounced in the
central region (corresponding to channels 1–6 in this study).
Our ε machine analysis here reveals that the region between
periphery and center (channels 5–7) shows most consistent
difference in Cμ across history length λ > 2. Ultimately, the
reason for this difference is due to our distinct approach,
insofar as ε machines are provably the optimal predictive
models of a large class of time series that take into account
higher order correlations memory structure [20,21]. Thus, our
application of ε machines contrasts with the power spectra
analysis, by considering these higher order correlations for
very high-frequency signals, instead of only two-point cor-
relations in both high- and low-frequency signals. Finally,
Fig. 4(a) shows that in regions corresponding to channels 1
and 13, the differences in the conditions are only seen at high
values of λ.

Our multitime analysis further reveals an interesting effect
when we look more closely at, e.g., the anesthetized ε machine
example shown in Fig. 1(c). When we examine the binary
strings belonging to each causal state, we find a clear split
between active (consecutive strings of ones) and inactive (con-
secutive strings of zeros) neural behavior corresponding to
the left- and right-hand sides of Fig. 6, respectively. Previous
studies have demonstrated an increase in low-frequency LFP
and EEG power for mammals and birds during sleep and
anesthesia, mediated by similar neural states of activity and
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inactivity known as “up” and “down” states [58,59]. A similar
phenomenon has recently been observed in sleep deprived
flies [60]. Consistent with other studies, our study, using
general anesthesia, does not observe this slow oscillations.
Future studies with more formal comparisons between up and
down states and ε machines, in both theory and computer
simulations, may be a fruitful avenue for further research in
this regard.

An analysis in terms of ε machines has also allowed us
to discriminate between levels of conscious arousal by ex-
amining causal structures found in both forward and reverse
time directions. Based on our previous finding [30] as well
as related concepts in temporal predictive [31,61–63] and
causal matching [32], we hypothesized that the wakeful brain
may be tuned to causal structures of the world, which run
forward in time, and thus ε machines would be more complex
for forward than reverse readings. Further, we hypothesized
that such temporally tuned structural matching will be lost
under anesthesia. Our results (Sec. III B 2) are highly in-
triguing in three ways. First, near-zero causal irreversibility
indicates that reducing the structural complexity to a simple
index is not enough to capture effects on the information
structure that are sensitive to the direction of time. This is the
case regardless of the level of consciousness (at least at the
timescales of this study). Second, nonzero crypticity indicates
that the underlying information structure is not symmetric in
time. More precisely, the signals themselves encode different
amounts of information when run forward as opposed to
backward. Third, the KL divergence rate analysis definitively
demonstrated the existence of greater temporal irreversibility
in the wakeful as opposed to the anesthetized state. Having
said this, we are limited in drawing strong conclusions due,
in part, to the relatively small observed effect size of �,
likely a consequence of our relatively small data set. Despite
this, even at millisecond timescales, our study successfully
identifies significant differences in the time direction of the
neural recordings.

Identifying the decrease in temporal-reversibility due to
anesthesia in tandem with complexity is of broad interest in
neuroscience. While some physicists and neuroscientists have
conjectured links among physics, the brain, and even con-
sciousness through the lens of the direction of the time, their
accounts have remained rather speculative and not built on
any solid theoretical foundations (for related and alternative
theoretical foundations, see the work by Cofré and colleagues
[64,65]). For example, using reversely played movies, the
sensitivity to the direction of time is shown to differ across
brain regions in humans [66]. In animal studies, some popu-
lations of neurons (in the hippocampus) are known to become
activated in a particular sequential order while the animal
experiences a particular event. For example, in anticipation
of the event, the neurons activate in a forward direction, but
in retrospection, the neurons activate in reverse order [67].
While direct links between these empirical findings and the
ε machine framework remains elusive, we foresee that our
unified theoretical and analytical framework can potentially
bridge this gap in the future.

Our study is not the first to apply complexity measure
in consciousness research. Indeed, many definitions and
measures of complexity have been proposed in the literature

(see Ref. [68] for a list). Moreover, there is a flow of ideas
going the other way as well [69–71]. However, many, if not
most, of these measures cannot account for temporal correla-
tions (memory), temporal asymmetry, or differentiate between
random and structured processes. Our interdisciplinary study,
based on ε machines, opens up new possibilities; physics can
improve its theoretical constructs through the application of
tools to empirical data, while neuroscience can benefit from
rigorous quantitative tools that have proven their physical
basis across different spatio-temporal scales. Among those
complexity measures, Cμ can be easily interpreted in terms
of temporal structure [72], as it has a direct relation to process
predictability and memory requirements. We emphasise that
statistical complexity Cμ derived from ε machines, drastically
differentiates itself from other scalar complexity indices such
as Lempel-Ziv complexity [73]. For one Lempel-Ziv com-
plexity is maximal for a random noise process whereas sta-
tistical complexity for the same process is zero [see Eq. (2)].
In addition, the notion of temporal reversibility available in
the ε machine framework has no counterpart in Lempel-Ziv
complexity. This is a critical difference since it is known that
a low-complexity forward-time ε machine consisting of only
two causal states can have a very high-complexity reverse-
time ε machine with countably infinite states [74]. Thus,
explicitly considering the influence of time is critical for
addressing questions about complexity. When coupled with
our results, we can conclude that anesthetized brains become
less structured, more random, more reversible, and approach a
stochastic process with a smaller memory capacity compared
to the wakeful brains.

Overall, our results suggest that measures of complexity
extracted from ε machines might be able to identify further
structures that are affected by anesthesia at different spatial
and temporal scales. It is also likely that applying a similar
analysis to other data sets, in particular, human EEG data will
lead to new discoveries regarding the relationship between
consciousness and complexity that can be retrieved simply at
the single channel level.
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APPENDIX: LINEAR MIXED-EFFECTS MODEL

In this Appendix, we demonstrate an example of an LME
analysis for the case of statistical complexity Cμ in the
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forward time direction. For the case when time direction ξ

is included as an effect, the only change this makes to the
process is increasing the dimensions of the effects matrix F.
Performing an LME analysis on other quantities used in this
study like crypticity or KL rate follow the same procedure
outlined here.

The main goal of the LME analysis we perform in this
study is to determine the degree of contributions each and
combinations of memory length (λ), channel location (c), and
level of conscious arousal (ψ) have on statistical complexity
Cμ. LME accomplishes this by modeling statistical complex-
ity as a general linear regression equation [Eq. (7)], whose
response is predicted by the aforementioned parameters λ, c,
and ψ . In this Appendix, we show the exact form of the linear
regression equation used in this analysis, while referring to the
terminology introduced in the methods (Sec. III A).

We begin by restating Eq. (7) for the case of statistical
complexity, C = Fβ + Rb + E , which has the form of a gen-
eral multidimensional linear equation. We will set aside the
right hand side of the equality for now. On the left hand side,
statistical complexity takes the form of a column vector C.
Each row corresponds to the unique response of Cμ, at a
specific selection of parameters. There is a general freedom of
choice associated with the number of parameters one would
like to assign to the elements C. We index the rows with fly
number f , channel location c, and the conscious arousal state
ψ . That is, the (i, j, k)th element is

[C](i, j,k) = C(i, j,k)
μ . (A1)

In other words, it is the ith fly’s jth channel in kth condition.
Thus, C has length of | f | × |c| × |ψ | = 390. Each Cμ in this
vector is a function of λ.

The matrix F introducing the set of fixed effects F =
{λ, c, ψ, λc, λψ, cψ, λcψ} into the model (known in the

context of general linear models as the design matrix) can
then be represented as F = (F1, . . . , F13)T , with each ele-
ment corresponding to the design matrix of a specific fly.
These individual fly response matrices can be explicitly
expressed as

F f =
(�λ D ��W λD λ ��W DW λDW

�λ D ��A λD λ ��A DA λDA

)
, (A2)

where �λ = (λ, . . . , λ)T and ��X = (X , . . . , X )T are col-
umn vectors of length 15 containing the predictor variables of
memory length and level of conscious arousal, respectively, D
is the 15 × 15 identity matrix which “selects out” the channel
of interest, DX = diag(X , . . . , X ) is the 15 × 15 matrix
which “selects out” the condition of interest correlated with
the level of conscious arousal, where

W (A) =
{

1 if ψ = wakeful (anesthetized),

0 otherwise.
(A3)

In a similar fashion, the expression for the matrix contain-
ing the random effects R can be determined. For the case
of our study, we only consider random effects arising due to
correlations between channels within a specific fly. The result
of this is an adjustment to the intercept of the linear model
for each fly and channel combination. Therefore, the random
effects matrix R is simply an identity matrix of dimension
390. The accompanying elements of the random effects vector
b consist of regression coefficients b f c describing the strength
of each intercept adjustment.

The execution of the LME analysis which included coeffi-
cient fitting, and log-likelihood estimations was facilitated by
running fitlme.m in MATLAB R2108b.
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