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The Kitaev model is a beautiful example of frustrated interactions giving rise to deep and unexpected
phenomena. In particular, its classical version has remarkable properties stemming from exponentially large
ground-state degeneracy. Here, we present a study of magnetic clusters with spin-S moments coupled by Kitaev
interactions. We focus on two cluster geometries, the Kitaev square and the Kitaev tetrahedron, that allow us to
explicitly enumerate all classical ground states. In both cases, the classical ground-state space (CGSS) is large
and self-intersecting, with nonmanifold character. The Kitaev square has a CGSS of four intersecting circles
that can be embedded in four dimensions. The tetrahedron CGSS consists of eight spheres embedded in six
dimensions. In the semiclassical large-S limit, we argue for effective low-energy descriptions in terms of a
single particle moving on these nonmanifold spaces. Remarkably, at low energies, the particle is tied down in
bound states formed around singularities at self-intersection points. In the language of spins, the low-energy
physics is determined by a distinct set of states that lies well below other eigenstates. These correspond to
“Cartesian” states, a special class of classical ground states that are constructed from dimer covers of the
underlying lattice. They completely determine the low-energy physics despite being a small subset of the
classical ground-state space. This provides an example of order by singularity, where state selection becomes

stronger upon approaching the classical limit.
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I. INTRODUCTION

Frustrated magnetism is fertile ground for several inter-
esting phenomena. This is typically best understood in the
S — oo limit where frustration gives rise to a large classi-
cal ground-state degeneracy. The effects of this degeneracy
persist even as we move away from the classical limit. Its
most significant consequence is to determine the nature of
ordering, if at all long-range magnetic order emerges in the
system. This selection of order by fluctuations is captured by
the “order by disorder” (ObD) paradigm [1-4]. In the case
of quantum fluctuations, this is typically captured by small
O(1/8) corrections. They break the classical degeneracy by
their zero-point energies to give rise to ordering. Likewise,
weak thermal fluctuations at low temperatures can break
degeneracy by allowing for varying entropies. Both lead to
long-range order in a fluctuation-selected ground state.
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A new selection paradigm, order by singularity (ObS),
has recently been proposed by two of the current authors.
We briefly recapitulate its gist here; details can be found in
Ref. [5]. We start with a general principle that holds in the
semiclassical large-S limit: the low-energy physics of a cluster
of quantum spins maps to that of a single particle moving
on the classical ground-state space (CGSS). In particular, the
low-lying energy states of a spin cluster have a one-to-one
relation with those of the corresponding single-particle prob-
lem. This mapping can be seen from the spin-path-integral
formulation combined with a large-S semiclassical approach.
However, this path-integral-based argument can be carried
out only in systems where the CGSS is a smooth manifold.
Nevertheless, the mapping is conjectured to hold for systems
with nonmanifold CGSS’ as well. As proof of principle, it
was shown to hold true for the XY quadrumer. Remarkably,
this example brings out a distinctive localization phenomenon
arising from self-intersection in the CGSS. In the single-
particle picture, these self-intersection points or singularities
mimic impurities to create bound states. The particle is then
tied down in bound states at low energies, preventing ergodic
sampling of the CGSS. For the magnetic cluster, this manifests
as a preference for certain classical ground states over others.

As a mechanism for state selection, ObS can be distin-
guished from ObD as follows. As we approach the classical
S — oo limit, state selection due to ObS becomes stronger.
This is because the mapping between the spin system and the
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FIG. 1. (a) The Kitaev model on the honeycomb lattice. Bonds have x-x (red), y-y (green), or z-z (blue) couplings depending on their
orientation. (b) A dimer cover on the honeycomb lattice. (c) A Cartesian state constructed from the dimer cover. On a dimer of type u (u =
X, Y, z), the two spins are chosen to lie along +u and —u directions. There are two choices for each dimer corresponding to choosing one of

the spins to point along +u.

single-particle problem becomes exact in this limit. In con-
trast, selection due to ObD weakens with increasing S, even-
tually vanishing in the classical limit. As quantum fluctuations
are O(1/S) corrections, their effects diminish with increasing
S. In this paper, we provide two examples of ObS in clusters
with Kitaev-type couplings. The small size of the clusters
allows us to explicitly map out their CGSS’. In both cases,
we find interesting CGSS topology with self-intersections.
By mapping the spin problem to a particle moving on the
CGSS, we find localization within bound states, heralding
ObS. As this selection behavior determines the physics at
large S, it sheds light on the semiclassical behavior of Kitaev
models.

The Kitaev model was proposed in 2006 as an artificial sys-
tem that allows for an exact solution in terms of free fermions
and Z, gauge fields [6]. It describes spin-% moments on a
honeycomb lattice with nearest-neighbor Ising-type x-x, y-y,
and z-z bonds. The model has received tremendous interest
from the point of view of fundamental physics [7-12] as well
as from a materials angle [13,14]. Several extensions of the
model have been proposed to different lattices, couplings, etc.
A particularly interesting extension is realized by promoting
the spins to the semiclassical limit with § > % This leads to
several interesting phenomena: an exponentially large clas-
sical ground-state space [15], local plaquette-centered con-
served quantities [15], equivalence to a height model [16],
power-law correlations in certain variables [16], spin-liquid
behavior even in the semiclassical limit [17], etc. The seeds of
some of these features appear in a simple and tractable form
in the two clusters that we study in this paper.

The remainder of this paper is structured as follows. In
Sec. II, we review what is known about the Kitaev model
in the classical and semiclassical limits. In the process, we
recapitulate the definition of a Cartesian state, a key notion
in following sections. We next discuss a toy problem of
a particle moving on two intersecting circles in Sec. III.
This sets the stage for studying Kitaev clusters, highlight-
ing the key role of bound states. In Sec. IV, we introduce
the two clusters and their symmetries. We move on to the
Kitaev square in Sec. V where we construct the CGSS,
interpret its features, and discuss the quantum spectrum.
We also discuss two independent tests for the nature of
the low-energy states. We discuss the tetrahedron on sim-
ilar lines in Sec. VI. We conclude with a summary and
discussion.

II. KITAEV MODEL IN THE CLASSICAL LIMIT

The Kitaev model is described by the Hamiltonian

_ dx & &y &Y §z §
H=K|Y &&+3 88+ 88, )
(i)

(i) (if)y

with (i j),/y/, representing nearest-neighbor bonds on the hon-
eycomb lattice. There are three types of bonds with Ising-type
couplings in the x, y, and z components, respectively, as
shown in Fig. 1(a). We will assume K > 0 for concreteness;
the results and statements that follow can be easily modified
to suit the K < 0 case. While the original Kitaev model is
formulated for S = % moments, there is a growing body of
work on this model with spins elevated to arbitrary S. In this
section, we summarize the salient results that are known about
the model in the classical § — oo limit.

The seminal work of Baskaran, Sen, and Shankar [15]
(BSS hereafter) brought out, among other things, rich struc-
ture in the CGSS of the Kitaev model. A convenient starting
point to understand this structure is the notion of “Cartesian”
states. To define a Cartesian state, we begin with a nearest-
neighbor dimer cover of the honeycomb lattice, as shown in
Fig. 1(b). On each dimer, we take the two spins at their end
points and align them as follows. One spin is aligned along
the “bond direction” while the other is placed in the opposite
direction. For example, on a dimer on an x bond, one spin is
taken to point along the X direction with the other pointing
along —Xx. This gives the lowest-energy contribution from this
bond. There are two such spin configurations on each dimer,
leading to an exponentially large number of possibilities for a
given dimer cover. An example spin configuration is shown in
Fig. 1(c) corresponding to the dimer cover shown in Fig. 1(b).
In addition to the degeneracy of spin alignments, we have an
exponentially large number of choices for a dimer cover on the
underlying honeycomb lattice. Clearly, the set of all Cartesian
states is very large, scaling exponentially with the system
size. Remarkably, every Cartesian state is a ground state of
the classical Kitaev Hamiltonian. Even more remarkably, a
given Cartesian state can be smoothly transformed into other
Cartesian states via a continuous one-parameter transforma-
tion. All intermediate states are also classical ground states of
the problem. With this picture, BSS envisages the CGSS as
“an exponentially large number of isolated points connected
by flat valleys.”
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FIG. 2. (a) Space of two circles in orthogonal planes. The intersection points are shown in yellow. The space is discretized, with the particle
allowed to hop between nearest neighbors. Note that a generic point has two neighbors, while the intersection points have four. (b) Numerically
obtained ground-state wave function with the discretization mesh chosen to have 16 sites on each circle. The base represents the XY and the
YZ circles, as the wave function is the same on both circles. As the wave function is purely real, we represent it by the heights of red dots from
the base. Note that the wave function is peaked at the intersection points along the Y axis. (c) The numerically obtained first excited state. As
with the ground state, this wave function is purely real and takes the same form on both circles. The wave function has opposite sign at the two

intersection points (£3).

A more rigorous discussion of the CGSS was given by
Chandra et al. through a mapping to electrostatics [16]. This
potentially reveals new classical ground states beyond those
enumerated by BSS. However, it is difficult to explicitly
construct these states and to determine their connectivity.
Chandra et al. draw several conclusions: (a) the CGSS is
an (N + 1)-dimensional manifold, where 2N is the number
of sites, (b) the Cartesian states are “extrema” in the CGSS,
(c) in the zero-temperature partition function, the Cartesian
states contribute a larger weight compared to other states,
and (d) there is no selection of states by fluctuations in the
T — 0 limit. In this paper, we present a detailed study of
two clusters wherein these types of issues can be more readily
examined.

More recently, Rousochatzakis et al. provide an illumi-
nating discussion of the Kitaev problem in the large-S limit
[17]. They introduce a new parametrization for the classical
ground-state space. In the limit of large S, weak quantum
fluctuations play a dramatic role by “selecting” a subset of
this space, constructed from starlike dimer covers on the
honeycomb lattice. The low-energy physics is restricted to
fluctuations within this sector. It takes a remarkable form,
mapping to the toric code problem on the kagome lattice. The
Z, gauge theory structure is inherited from local conserved
quantities that were first pointed out by BSS. The current
paper, albeit restricted to small clusters, points out selection
effects beyond the quantum fluctuation paradigm, arising from
the topology of the ground-state space itself.

Our study of Kitaev clusters can be seen as a progression
of earlier work extending the Kitaev structure to systems
beyond the honeycomb lattice. Kitaev physics has been stud-
ied in one-dimensional and even three-dimensional systems
[18-20]. The essential requirement is threefold coordination
of nearest-neighbor bonds. Lattices with sixfold coordination,
such as the triangular lattice, can also host Kitaev-type cou-
plings [21,22]. Significant insights have been gleaned from
analyzing these problems in the classical and semiclassical
limits. This has also revealed physics beyond the original
Kitaev formulation. A particularly elegant example is the
crystallization of Z, vortices on the triangular lattice [23,24].

III. PARTICLE ON TWO INTERSECTING CIRCLES:
A TOY PROBLEM

Before discussing the Kitaev problem at hand, we first
discuss a simple example of dynamics on a nonmanifold
space. This sets the stage for discussions of Kitaev clusters
in the following sections. We consider a space of two circles
with unit radius that are centered at the origin, as shown in
Fig. 2(a). While the first circle lies in the XY plane, the second
lies in the YZ plane. The circles intersect at two points, £3.
We refer to these as self-intersections as the space intersects
itself at these points. This space is a “nonmanifold”: while it
is one-dimensional at generic points, it does not have well-
defined dimensionality in the vicinity of the self-intersection
points. We now consider a single particle moving on this
space. At generic points, the particle moves along one of the
circles. At a self-intersection point, it is allowed to move from
one circle to another. For reasons that are explained below, we
are interested in the low-energy behavior of this particle, i.e.,
in stationary states with the lowest energy.

The eigenstates for this problem cannot be calculated using
standard quantum mechanical tools, unlike, say, a particle
on a single circle. For example, we cannot define a gradient
operator on this space. We take an alternative approach by
discretizing this space to build a tight-binding Hamiltonian.
As shown in Fig. 2(a), a generic point is connected to two
neighbours that lie on the same circle. In contrast, a self-
intersection point is connected to four neighboring sites, two
on each circle. For a given mesh size (discretization), the
spectrum can be easily obtained numerically. The resulting
wave functions in the ground state and the first excited state
are shown in Figs. 2(b) and 2(c).

The two lowest-energy states in the tight-binding problem
are qualitatively different from the other, higher-energy, states.
They are “bound states” that are localized around the self-
intersection points. To see this, we consider the limit of dense
discretization, where the self-intersection points are separated
by a large number of intermediate points. Focusing on the
vicinity of one self-intersection, we label sites as (n, A/B),
where A and B denote the two circles and the integer n
represents sites on each circle. We take n =0 to be the
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TABLE 1. Classical ground states of the Kitaev square. We have
four families denoted by C;, with i = 1, 2, 3, 4. States in each family
are parametrized by an angle ¢, with C, = cos¢ and Sy = sin¢. As
all classical ground states lie in the XY plane, we only show the (x, y)
components for each spin.

S S, S3 S4
C Xy (C¢, S¢) (—C¢, —S¢) (C¢, S¢) (—qu, —S¢)
C2 Xv (C¢, S¢) (—C¢, S¢) (C¢, —S¢) (—C,p, —S¢)
G uwv (G, Sy) (=G, S) (=Cy,—Sp)  (Cy, —Sy)
C, uy (Cy, Sy) (=Cy, —Sp) (—=Cy, Sp) (Cy, —Sp)

intersection point with (0, A) = (0, B). We propose an ansatz
for the bound state given by

wn,A/B = j%/-exp[_an]v (2)

where N is the normalization constant and « is a decay
constant that is to be determined. This wave function is purely
real. It is symmetrically distributed on the two circles, decay-
ing exponentially as we move away from the self-intersection
point. Assuming that it is an eigenstate of the Hamiltonian
with eigenvalue E, the Schrodinger equation at a generic
site takes the form E = —r(e* + ¢~ *). At the intersection
point,the Schrodinger equation takes the form E = —4te™ .
From these two relations, we find o = %

To examine its bound nature, we compare it with unbound
states in the problem. Away from the intersection point, the
space resembles a circle. Eigenstates in this region resemble
solutions on a circle with the dispersion relation Eypoynd =
—2t cos k, where k is the one-dimensional momentum quan-
tum number. These states have energies in the range [—2¢, 2¢].
Crucially, the state in Eq. (2) lies below this window, with
energy Evyouna = —4t/ V3 ~ —2.3094¢. This signifies that the
bound state does not hybridize with delocalized modes. More
importantly, it indicates that the bound state is the lowest-
energy state in the problem.

In the full space with two circles, we have two bound
states with one at each self-intersection point. When the
discretization is not too dense, the bound-state wave functions
overlap in the intermediate region. This results in mixing
which splits them into a symmetric and an antisymmetric
combination. The symmetric state, with lower energy, be-
comes the ground state, while the antisymmetric state be-
comes the first excited state. Their wave functions are shown
in Figs. 2(b) and 2(c). The splitting between the symmetric
and antisymmetric state decreases as we make the discretiza-
tion more dense. The individual bound-state wave function
in Eq. (2) has a localization length of é lattice spacings.
If the number of intervening lattice points is increased, the
overlap between the two bound states decreases. In the limit
of very dense discretization, we have independent bound
states that are sharply localized around the self-intersection
points.

The tight-binding results on the two-circle-space provide
a framework to understand the results on spin clusters below.
The spin clusters have CGSS’ that are nonmanifold spaces,
analogous to the two-circle-space described here. In each
cluster, the low-energy physics maps to a particle moving on

the corresponding CGSS. The spin quantum number S loosely
corresponds to the denseness of the tight-binding mesh. As
S increases, the mesh becomes denser with a larger number
of sites. Such an interpretation for S was given in Ref. [5]
in the context of the XY quadrumer (see Tables I and II
therein). As we will show in the sections below, the results
in Kitaev clusters are also consistent with this interpretation.
The two-circle problem brings out the following three aspects
that carry over to the spin clusters: (i) The spectrum con-
tains a set of low-energy states that is well separated from
other, higher-energy, states. The number of such states is the
same as the number of self-intersection points in the CGSS.
(i1) These low-energy states are admixtures of bound states
that form around self-intersection points, e.g., the ground
state is a symmetric combination of all bound states. Their
wave functions are peaked at the intersection points. (iii)
In the dense discretization limit, each low-energy eigenstate
is associated with one self-intersection point, being sharply
localized in its vicinity.

IV. KITAEV CLUSTERS

We consider the Hamiltonian of Eq. (1) on the square
and tetrahedral clusters shown in Fig. 3. The tetrahedron
can be obtained from the square by introducing diagonal
bonds with z-z couplings. We take the Kitaev coupling to
be antiferromagnetic with K > 0, without loss of generality.
This can be seen by a combination of spin rotations: Keeping
the spin at site 1 fixed, we rotate (i) the spin at site 2 by
7 about the Z axis (i.e., {85, §), S5} — (=85, =8, §5D.
(ii) the spin at site 3 by v about the Y axis (i.e., {S’f{, S‘; 5'3} —
{—8%, 8, —585}), and (iii) the spin at site 4 by 7 about the
X axis (i.e., {85, 83, §5} — {83, =8}, —S53}). Rewriting the
spin operators in the new rotated bases, we obtain the same
Hamiltonian but with K — —K. A similar transformation
applies in the Kitaev model on the honeycomb lattice [25].
The Cartesian states shown in Fig. 1 are for the honeycomb
lattice with K > 0. They take a modified form for the K < 0
case: starting from a dimer cover, the two spins in each dimer
are aligned in parallel fashion along or opposite to the bond
direction. There are two possible spin orientations for a given
dimer.

The clusters shown in Fig. 3 have a Hilbert space of
dimension (25 + 1)* with states labeled as |m;, m,, msz, ma),
where m;’s represent S, quantum numbers. This Hilbert space
grows rapidly with S, placing constraints on numerical exact

(a) 4 x 3
Yy Yy
1™ €T 2

FIG. 3. The Kitaev square (a) and tetrahedron (b) clusters.
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FIG. 4. The figure (a) shows the Kitaev tetrahedron. The Kitaev
square can be obtained by simply removing the diagonal (z) bonds.
The figure (b) shows the cluster after a circular permutation of the
four sites. The figure (c) is obtained after a subsequent global 7 /2
rotation in spin space about the spin-z axis.

diagonalization. We use the following two symmetries to find
the spectra: (i) The square and tetrahedron Hamiltonians are
symmetric under 7 rotation about the Z axis. This allows us to
identify even and odd sectors, characterized by even and odd
values of my = D, m;. (ii) The Hamiltonians are invariant
under a combination of operations: a cyclic permutation of
sites followed by a global spin rotation about Z by /2.
This is depicted in Fig. 4. Applying this symmetry four
times is equivalent to an identity operation. This allows us
to identify a pseudomomentum quantum number g = 27 j /4,
with j =0, 1,2,3. These two symmetries can be applied
independently. We construct reduced Hamiltonian blocks by
grouping together states for each ¢ value, with my restricted
to either even or odd values.

V. KITAEV SQUARE

The Kitaev square is shown in Fig. 3(a). It can be viewed as
a simple realization of a compass model on a four-site chain
[8]. It can also be thought of as a one-dimensional Kitaev
chain as studied by BSS in Ref. [15], with four sites and
periodic conditions. This provides a simple starting point to
understand the connectivity of classical ground states. BSS
introduced the notion of Cartesian states and showed that they
are connected by smooth, energy-preserving transformations.
This is illustrated in Fig. 5 on the Kitaev square, depicting
a one-parameter transformation that interpolates between two
Cartesian states. At the Cartesian end points, the ground-state
energy receives contributions solely from bonds that hold
dimers (in the parent dimer cover). At intermediate states,

¢ = 60° é = 90°

1

-1) ( ?j ‘i‘ © ( §>

FIG. 5. A smooth one-parameter transformation that connects
two Cartesian states. At ¢ = 0, we have a Cartesian state, corre-
sponding to dimers on horizontal (x) bonds. At ¢ = 90°, we have
a Cartesian state corresponding to dimers on vertical (y) bonds.
Intermediate values of ¢ interpolate between these states, with each
spin rotating as indicated. In each state, we show the bond energies
(in units of K/S?) in parentheses.

Cy :zv

Ci:xy

Cy:uy

Cs:uv

FIG. 6. CGSS of the Kitaev square with four circles embedded
in four dimensions. Each circle lies in the plane indicated, e.g., the
C, circle lies in the (xy) plane.

this energy is distributed among intervening bonds as well.
Similar connecting pathways can exist between other pairs of
Cartesian states.

The complete ground-state space can be derived by apply-
ing the method of Lagrange multipliers, as shown by BSS
in Ref. [15]. Below, we describe the geometry and connec-
tivity of the ground-state space, with the explicit derivation
presented in Appendix A.

A. Space of classical ground states

The CGSS consists of four sectors C;, with i =1, 2, 3, 4,
as shown in Table I. The states in each sector are described
by a free angle variable, ¢. In geometric terms, each sector
can be viewed as a circle. We will see below that the circles
intersect at points, as in the two-circle problem discussed in
Sec. III above. To better understand the connectivity of this
space, we take these circles to be embedded in an abstract
four-dimensional space with coordinates (xyuv). Note that x,
v, u, and v are directions in the embedding space, distinct from
directions in spin space. The distinction will be clear from
context in the arguments below.

To examine if the circles C; intersect, we first consider C;
and C,. As can be seen from the spin configurations in Table I,
a generic point in C; does not appear in C, as all the four
spins S; cannot be the same. However, there are two points in
common, corresponding to ¢ = 0 and 7 in both. We visualize
the connectivity of C; and C; as shown in Fig. 6. We take C)
to be a circle in the (xy) plane, centered at the origin with
unit radius. Each point on this circle corresponds to a certain
value for the angle ¢, with ¢ = 0 and 7 representing points
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FIG. 7. Cartesian states on the Kitaev square.

that lie on the positive-x and negative-x axes. We represent
these points as X and X, respectively. Similarly, we take C,
to be a circle in the (xv) plane with unit radius and center at
the origin. We once again take ¢ = 0,  to represent points
where the circle intersects the positive- and negative-x axis,
coinciding with X and X. As the two circles lie in orthogonal
planes, they share a common diameter on the x axis whose
ends at X and X constitute two points of intersection. We see
that C; and C, resemble the space of two intersecting circles
described in Sec. III.

Proceeding in the same manner, we take C; and Cy to lie
in the (uv) and (uy) planes, respectively. The connectivity
of pairs of circles can be seen in Fig. 6. For example, C,
and Cy intersect at two points (Y and ¥), while C; and C;
do not intersect. An interesting geometry emerges with four
circles embedded in four dimensions. Each circle intersects
two other circles, sharing one common diameter with each of
them. At the same time, it remains completely distinct from
the fourth circle.

B. Physical interpretations of CGSS features

Remarkably, the points of intersection between circles are
all Cartesian states. For example, C; and C, intersect when
¢ =0,7 (X and X, respectively), corresponding to states
{S1,S,, 83,84} = £5{x, —x, X, —x}. Here, ¢ = 0 and 7 cor-
respond to the + and — signs, respectively. To recapitulate
the definition of Cartesian states, they are obtained from a
dimer cover by orienting spins to maximally satisfy the bonds
on each dimer. Here, these two states can be understood to
emerge from a dimer cover with dimers on bonds (1,2) and
(3.,4) (see Fig. 3). As these bonds have x-x couplings, the spins
are oriented along £% to maximally satisfy these bonds. The
intersection points U and U also maximally satisfy the x-x
bonds, i.e., they correspond to Cartesian states constructed
from the same dimer cover. In contrast, the points Y, Y, V, and
V maximally satisfy the y-y bonds. These states are shown in
Fig. 7.

As seen in Fig. 6, pairs of Cartesian states are connected
by quarter arcs, e.g., X and Y are connected by a quarter arc

in C;. Such an arc represents a smooth transformation that
takes us from one Cartesian to another, while preserving the
classical energy. This is precisely the transformation depicted
in Fig. 5 above.

C. Spectrum in the quantum spin-S problem

We have demonstrated that the CGSS for the Kitaev square
consists of four circles, with the circles intersecting at points.
This can be seen as a higher-dimensional generalization of
the two-circle space discussed in Sec. III above. We assert
that the low-energy spectrum of the Kitaev square cluster
maps to a particle moving on this space. We present results
from numerical exact diagonalization of the spin problem for
various S values below. We find striking features in the low-
energy spectrum that can be understood in analogy with the
two-circle problem. In particular, we find the aspects outlined
at the end of Sec. III to hold true here. In Fig. 8, we show
the low-energy spectrum for three different values of S. We
find a set of eight states at the bottom of the spectrum. As §
increases, these eight states progressively separate from the
other, higher-energy, states. We note that eight is precisely
the number of self-intersection points in the CGSS of this
problem. Equivalently, it is the number of Cartesian states in
the Kitaev square, as shown in Fig. 7. This is consistent with
the insight gained in Sec. III in the two-circle problem.

In Fig. 9, we plot two quantities that characterize the
low-energy spectrum. We have eight low-lying “bound” states
that are separated from higher “unbound” states. To quantify
the separation, we define the binding energy as E;, = Eg — E.
Here, Ey is the energy of the ninth state, i.e., the energy of the
lowest unbound state. The average of the eight lowest states
is denoted as E. In Fig. 9, we see that the binding energy
increases linearly with S. This shows that state selection
becomes stronger with increasing S. In the S — oo limit, all
classical ground states have the same energy to O(S?). How-
ever, the bound states are selected due to an O(S) binding en-
ergy. We define a second quantity, AE, as the standard devia-
tion of the lowest eight energy eigenvalues. This represents the
spread in the energies of the bound states, serving as a measure
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FIG. 8. Low-energy spectra in the Kitaev square for three different spin values S = 4, 6, 8 [(a)—(c), respectively]. The spectra have been
shifted by the classical ground-state energy (E.;s = —2KS?) and scaled by the coupling strength K. The lowest eight states are shown with
blue diamonds in order to distinguish them from higher-energy states (magenta squares).

of hybridization. This is comparable to the energy difference
between symmetric and antisymmetric combinations of bound
states in Sec. III. We find that AE decreases with increasing
S, in analogy with making the discretization finer in the two-
circle problem. It is well described by a fit function of the
form AE(S) = 0.920 16 532 exp(—2.0708+/S). AE vanishes
exponentially in the S — oo limit. In this limit, we expect to
have eight degenerate ground states, each corresponding to an
independent bound state at a Cartesian intersection point.

D. Character of low-lying states

We next examine the character of the eight low-lying states,
labeled as |¢fow_), with i = 1,...,8. We surmise that these
arise from bound states that are localized at self-intersection
points in the CGSS. In turn, the self-intersection points cor-
respond to Cartesian states. To test this notion, we plot the
“Cartesian weight” in the low-lying states in Fig. 10. We
calculate this as follows.

We first adapt the classical notion of the Cartesian state to
the quantum spin-S context. This is achieved using coherent
states [26]. For example, the Cartesian state X in Fig. 6,

0.15
0.13
0.11
AFE
0.09

0.07

0.05

FIG. 9. Binding energy and spread of the low-lying set of eight
eigenvalues. The binding energy is shown using blue squares.
The plotted curve is the fitting function, given by E,(S) =
0.317375 4 0.108 314S. The spread is shown using magenta cir-
cles. The corresponding fitting curve is given by AE(S) =
0.920 16 $3% exp(—2.0708+/S).

corresponding to {S;, Sy, S3, S4} = S{x, —x, X, —X}, is writ-
ten as

ICx) = exp [—i%{ﬁ{ — 88— Sﬁ}} 15,5, 5,5). (3)

Here, |S, S, S, S) is the state with all spins polarized along Z.
We write the seven other Cartesian states in the same fashion.
We seek to quantify the contribution of these eight Cartesian
states to the eight low-lying states in the spectrum.

However, a subtlety arises here as the Cartesian states are
not mutually orthogonal. For example, (Cx|Cy) # 0, where
|Cy) corresponds to {Sy, Sz, S3, S4} = S{9, —9., 9, —9}. In or-
der to disentangle these states, we use a Gram-Schmidt proce-
dure to find |®;), j =1, ..., 8, aset of eight mutually orthog-
onal states that are linear combinations of Cartesian states.
These span an eight-dimensional subspace of the full Hilbert
space. We define the “Cartesian weight” of a low-lying state as
its weight in this subspace, given by P, = 35_, [(®;]¢f,,, ).
If |¢1"OW.) has no contributions from Cartesian states, P; would
be zero. In contrast, if it is composed entirely of Cartesian
states, P; would be unity. Based on the results of the two-circle
problem in Sec. III, we expect the Cartesian weight of the
eight low-energy states to be finite and less than unity. As
seen in Fig. 2, the two lowest states in the two-circle problem
are indeed localized at the intersection points. However, they
are not singularly localized with delta-function-like nature.
Rather, they decay exponentially with the strongest amplitude
at the Cartesian points. We expect the eight lowest states in
the Kitaev square to be of the same nature. We expect them
to have a significant fraction of their weight contributed from
Cartesian states, but not their entire weight.

Our results for the Cartesian weight are shown in Fig. 10
for various S values. The figure plots two quantities. The first
is the Cartesian weight of the ground state, i.e., the lowest of
the eight low-lying states. The second is the average Cartesian
weight over all eight low-lying states. In both cases, the Carte-
sian weight is a significant fraction, e.g., the S =5 ground
state has a ~56% contribution from the Cartesian states. We
emphasize that this represents a very large contribution. The
Cartesian states are only eight elements in the Hilbert space
of size 11* = 146 41. Yet, these eight states carry more than
half the weight of the ground state. From Fig. 10, we note that
the Cartesian contribution in the ground state is always less
than the average Cartesian weight over all eight states. This
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FIG. 10. Cartesian weight in the low-lying states of the Kitaev
square for (a) integer and (b) half-integer values of S. The blue
squares show the Cartesian weight in the ground state vs S. The
red circles show the average Cartesian weight of the eight low-lying
states. For integer S (top), the fitting curves are given by f(S) =
0.474367 4+ 0.677225/S and g(S) = 0.426014 + 0.692372/S. For
half-integer S (bottom), the fitting curves are f(S) = 0.476134 +
0.663209/S and g(S) = 0.440098 + 0.667208/S.

can be understood by analogy with the two-circle problem.
The ground state there is a symmetric combination of bound
states at the two intersection points. It has significant weight
in the intermediate regions due to constructive interference.
As a consequence, the weight at the intersection points is
somewhat diminished. In contrast, the first excited state, being
an antisymmetric combination, has a larger weight at the
intersection points. In the same manner, we believe that the
ground state of the Kitaev square is a symmetric combination
of bound states. As a result, it has a smaller Cartesian weight
than the other seven states.

The S dependence of the Cartesian weight can be seen in
Fig. 10. We find a smooth evolution with S if we separate
integer and half-integer values of S as shown. In Appendix B,
we demonstrate that a nontrivial Berry phase emerges that
distinguishes these two cases. This is in line with arguments
presented in Ref. [5]. The spin problem maps to that of a
single particle moving on the CGSS. When the spin system
evolves along a closed path in the CGSS space, it can accrue a
Berry phase. This is a well-known ingredient in the spin-path-
integral formulation. In the mapping to the single-particle
picture, this translates to an Aharonov-Bohm phase that can
alter the spectrum. Here, there is a path within the CGSS

which accrues a Berry phase when S is a half-integer, but
not when § is an integer. The S dependence is captured by
polynomial fits to the data as shown in Fig. 10. From the fit
functions, we surmise that the Cartesian weight extrapolates
to a nonzero value as S — oo. As we approach this limit,
the number of Cartesian states remains fixed at eight while
the Hilbert space size grows exponentially. Despite this, the
Cartesian states retain a finite weight at S — oo.

In summary, the low-energy physics of the Kitaev square
is dominated by Cartesian states. We see this in the spectrum
as a set of eight low-lying states, energetically separated from
all other states. These states are, in fact, quantum analogs of
the classical Cartesian states. The energy gap to other states
increases with increasing S, indicating that Cartesian states
determine the low-energy behavior in the classical S — oo
limit. We provide an independent test of these results in the
following subsection.

E. Cartesian fidelity of the low-lying states

We have argued that the lowest-energy states of the Kitaev
square are essentially admixtures of the eight Cartesian states.
It follows that we can recover the Cartesian states by suitably
mixing the low-energy states. In order to achieve this, we
define a resolving operator

OAsq,res. = )\12(5‘)1( - S‘;) + )\‘34(5‘% — SZ)
+21a(8) = 8) + 223(85 = 8), (4)

where the A coefficients are chosen to be substantially dif-
ferent from one another. We have one coefficient for each
bond, linearly coupling to the Ising antiferromagnetic moment
along the bond direction. For example, the bond (1,2) has an
x-x coupling in the Kitaev square Hamiltonian. We have one
term associated with this bond in OAM,JCSA, given by )»12(3”1‘ —
S‘g). This term serves as a diagnostic for Cartesian states in
the following manner. We evaluate its expectation value in
a Cartesian state, i.e., in the quantum spin-S version of a
Cartesian state. If the Cartesian state has a dimer on this bond,
this term contributes 24,5, with the 4 or — sign depending
on the orientations of spins on this dimer. In a Cartesian state
which does not have a dimer on this bond, this term has
expectation value zero. Thus, this term resolves two specific
Cartesian states. In the same way, each term in OAsq,reS, serves
as an indicator for two Cartesian states.

Our premise is that the eight low-lying states in the spin-S
Kitaev square problem are essentially composed of Cartesian
states. We test this notion by examining the expectation values
of the resolving operator in the low-lying states. We find its
matrix elements Oy, = (B, [Osgres |9, ). We now diago-
nalize the 8 x 8 matrix that has O,,, as its entries. We find
that its eight eigenvalues are approximately given by (£A, +
A3a), (£A14 £ Ap3). These expressions correspond precisely
to the expectation values of OASq,m_ in the eight Cartesian
states. This shows that the eight low-lying states can be mixed
with one another to realize the Cartesian states. Note that the
low-lying states span an eight-dimensional subspace, as do the
Cartesian states. We proceed to define a single parameter that
quantifies the equivalence between them.
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FIG. 11. Cartesian fidelity in the Kitaev square as a function of
S. The data are fit using F(S) = 0.976 99 — 0.25367/S.

As noted above, the eigenvalues of O,,, are close to expec-
tation values of OASq.res, in the Cartesian states. As the A’s in
Eq. (4) are chosen to significantly differ from one another, we
can clearly distinguish the eigenvalues and identify them with
corresponding Cartesian states. This establishes a one-to-one
relationship between the eigenstates of Owﬁres, (mixtures of
the eight low-lying states) and Cartesian states. We label
the eigenstates as |{,), with « = 1,...,8. We express the
associated Cartesian states as {Sq,;, j =1, ..., 4}, denoting
the (classical) orientation of the jth spin in the oth Cartesian
state. To quantify the fidelity of this relationship, we define
vectors v, ; as follows. Here, o =1, ..., 8 identifies one of
the eigenvectors of O,, while j =1,...,4 represents one
of the four sites in the Kitaev square. We define v, ; =
(EO,|S_j|Ea). As each |{,) maps to one particular Cartesian
state, we find that each vector v, ; closely resembles the spin
configuration of a Cartesian state. The fidelity of this mapping
is seen by defining a quantity

4
1
F, = m Zva,j ' Sot,j~ (5)
=1

If the eight low-lying states were composed purely of Carte-
sian states, the states |{,) would be precisely the Cartesian
states. This would be reflected in the spin expectation val-
ues, with v, ; =S, ;. The quantity F, would then take its
maximum value of unity. In practice, we expect the low-
lying states to not just be composed of Cartesian states, but
to have some additional contributions from nearby states.
For example, in the particle picture, the bound-state wave
functions also have nonzero contributions from points that
are close to the self-intersection points. As a consequence,
we expect F, to be generically less than unity. In Fig. 11, we
plot F, i.e., F, averaged over all «, as a function of S. We
see that F increases with § and, more importantly, approaches
unity as § — oo. This indicates that the eight low-lying states
are indeed essentially composed of Cartesian states. Their
Cartesian character increases with increasing S.

F. Scaling relations in the spectrum

We have demonstrated that the eight low-lying states cor-
respond to Cartesian states. In turn, these correspond to self-

intersection points in the CGSS. In Fig. 9, we have described
two quantities, the binding energy and the spread. The former
increases linearly with S, while the latter decreases with S.
We now rationalize these empirical observations with suitable
scaling arguments.

The low-energy physics of the Kitaev square maps to a
single particle moving on the CGSS. We model the dynamics
of the particle using a tight-binding description. This involves
two parameters: the hopping amplitude ¢ as well as the arc
length L. The latter represents the density of the tight-binding
mesh. The CGSS consists of line segments that connect
Cartesian points, e.g., we have an arc that connects the points
X and Y within Cj, as seen in Fig. 6. In the tight-binding
scheme, we take this arc to consist of L sites. The evolution
of the spectrum with S is encoded in the tight-binding param-
eters. We now argue that these parameters scale with S in a
characteristic manner with t ~ S and L ~ +/S.

The CGSS is a generalization of the two-circle problem
presented above. While the CGSS for the Kitaev square is
bigger, the nature of the self-intersections is precisely the
same. Within the tight-binding scheme, both cases lead to
bound states with a decay constant «. This quantity is inde-
pendent of ¢ and L. It depends solely on the connectivity of
the CGSS at the self-intersection point. As a consequence,
we expect « to be independent of S. As argued in Sec. III,
when the self-intersection points are well separated, we have
bound states with binding energy (4/+/3 — 2)r. This is the
difference in energy between the bound state and the lowest
delocalized state. This quantity is directly proportional to ¢
and is independent of L. As we empirically find that the
binding energy scales as S (to leading order, see Fig. 9), we
conclude that ¢ scales linearly with S.

To determine the scaling of L with S, we appeal to the
example of the XY dimer discussed in Ref. [5]. The corre-
sponding CGSS is a circle, resembling the CGSS of the Kitaev
square at generic points. The low-energy physics of the dimer
maps to a particle on a circle, which can be encoded as a
tight-binding model. The resulting parameters ¢ and L must
scale in the same way with S as in the case of the Kitaev
square. The spectrum of the XY dimer was explicitly worked
out in Ref. [5] (see Fig. 3 therein). It was shown that it maps
to a particle on a ring. In particular, the low-energy states have
energies given by € ~ agm?, where m is an integer. The scale
factor ag represents the inverse of the moment of inertia of
the particle. Crucially, we find that ay is an O(S°) quantity
(to leading order in §). In the tight-binding description, ag
corresponds to the ratio #/L?. As we have argued that t ~ §
and ay ~ S°, we arrive at L ~ /8.

In the Kitaev square, we have bound states that form at the
eight self-intersection points. These states hybridize among
themselves. The spread in their energies is proportional to the
overlap between bound states centered at the ends of an arc:

L

Eovertap ~ (ol Hi Y1) ~ Enouna )_ e "¢ . (6)
n=0

Here, the “~” sign indicates proportionality up to constants
that are independent of S. We have bound states [y) and |y )
localized at the ends of the arc. The operator H; represents the
hopping Hamiltonian on the arc. To a good approximation,
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TABLEII. Classical ground states of the Kitaev tetrahedron. We have eight families denoted by ¥;, withi = 1, ..., 8. States in each family
are parametrized by two angles 6 and ¢, with Cy,4 = cos(6/¢) and Sy,y = sin(0/¢).

S; Sy

S1 S2

21 XyzZ (SOC¢, S9S¢,, Cg) (—S9C¢, _SQSd;, Cg)
22 XvZ (S@C¢, S9S¢, Cg) (—Sng), S@S¢, Ce)
PR uvz (S6Cy, SoS¢, Co) (—=S89Cy, S6S4, Co)
PN uyz (SOC¢, SQS¢,, Cg) (—S9C¢, _SQSd;, Cg)
25 xXyw (S@C¢, S9S¢, Cg) (—S9C¢, _SOS¢, —Cg)
E(, xow (S9C¢,SHS¢,C9) (—S9C¢,S9S¢, —Cg)
27 uovw (SOC¢, SQS¢, Cg) (—S9C¢, S@S¢, —Cg)
28 uyw (S@C¢, S9S¢, Cg) (—S9C¢, —S9S¢, —Cg)

(S6Cy, oS¢, —Cs)
(SeCy, —S6S4, —Cy)
(—=S89Cp, =S54, —Cp)
(=S86Cyp, 8684, —Cy)
(86Cy, S9S¢, —Co)
(SoCp, —SoS4, —Co)
(=84Cp, =S54, —Cy)
(=S86Cyp, S6S4, —Cy)

(—=SoCp> =SSy, —Cs)
(—=SoCp> —S6Sp, —Co)
(S9Cop» =SSy, —Co)
(SoCop, =SSy, —Co)
(=S6Cs, =565y, Co)
(=S9Cs, =805y, Co)
(S9Cyp, =654, Co)
(SoCy> —S6S4, Co)

[Y) is an eigenstate of H, with eigenvalue FEpoung. Here,
Evoung 1s the energy of a bound state at a well-separated
self-intersection point, as derived in Sec. III. It is proportional
to the hopping amplitude 7. In evaluating the overlap, we have
used the explicit form of the bound-state wave function given
in Eq. (2). For simplicity, we have assumed that the overlap
only receives contributions from sites on the intervening arc,
denoted by the index n. The contributions from sites on
other arcs will be negligible. We find Eqyertap ~ EvounaLe .
Using the scaling relations for ¢ and L, we have Egyerap ~

aS3/? exp(—bx/g). In Fig. 9, we have fit AE to this functional
form, obtaining a and b as fitting parameters.

We have argued that parameters in the effective tight-
binding model scale as f ~ S and L ~ +/S. These scaling re-
lations are consistent with the numerically obtained spectrum
in the Kitaev square problem. In particular, they provide a
rationalization for the binding energy increasing linearly with
S. These scaling relations may be more general applicable.
We find that they are broadly consistent with the spectrum of
the XY quadrumer, where ¢ and L for a suitable tight-binding
model were found as fitting parameters [5].

VI. KITAEV TETRAHEDRON

We now move to the Kitaev tetrahedron that has z-z cou-
plings in addition to those present in the Kitaev square. We
first describe the classical ground-state space of this problem,
before discussing its spectrum.

A. Classical ground-state space

As with the Kitaev square, the method of Lagrange mul-
tipliers can be used to find the conditions necessary for
achieving a classical ground state. We present details about
energy minimization in Appendix C and the resulting classical
ground-state framework in Appendix D. We now proceed to
describe the CGSS and its connectivity here. Unlike the Ki-
taev square, the tetrahedron also possesses noncoplanar clas-
sical ground states. By systematically analyzing the ground-
state conditions, we account for all ground states using two
continuous variables and eight discrete choices. We thus have
a CGSS composed of eight sectors ¥;, withi =1,...,8, as
shown in Table II. Each sector is parametrized by two angles 6
and ¢. These angles describe the orientation of the first spin S;
in standard spherical coordinates. As this suggests, these an-
gles satisfy the periodicity of a sphere, e.g., ¢ = ¢ + 2. The

orientations of the remaining three spins vary from sector to
sector as shown in Table II. From these arguments, we deduce
that each sector represents a two-sphere (S2), parametrized by
the two angles 6 and ¢. We thus have eight spheres as the
CGSS. As we will see below, these spheres are not distinct
as they intersect with one another. We will describe the space
by suitably adapting arguments from the Kitaev square case
discussed above.

To describe the connectivity of the space, we take the
spheres to be embedded in an abstract six-dimensional space
with coordinates (xyzuvw). The labels x, y, etc., represent di-
rections in the embedding space and not in spin space. We first
consider the sector X; as described in Table II. Each element
in this sector corresponds to a choice of (9, ¢). We visualize
this as a unit sphere in the subspace spanned by the x, y, and
z coordinates, i.e., as the set of points satisfying (x> 4 y*> +
7> = 1; u = v = w = 0). The angles 6 and ¢ parametrize this
spherical surface. We take 6 to be the polar angle, measured
from the z axis. The azimuthal angle ¢ is taken to be measured
from the x axis. For example, (6 = 7 /2, ¢ = m/2) corre-
sponds to the point (x,y, z,u, v, w) = (0, 1,0,0,0,0). The
%, sphere is shown at top left in Fig. 12. The figure shows
three great circles where the sphere intersects the xy, yz, and
zx planes. We will see below that these great circles have an
interesting physical interpretation.

In the same manner, we represent the X, g sectors with
spheres. Each sphere lies in the subspace formed by three
coordinates, as indicated in Table II and shown in Fig. 12.
4, we take the polar angle to be measured from the z
,,,,, g do not extend into the z direction, we measure
the polar angle from the w direction. In the same manner, in
31, ¥, Xs, and X, we measure the azimuthal angle from the
x direction. In the remaining four, we measure it from the u
direction.

Crucially, the spheres intersect one another. The geometry
is much more complex than in the Kitaev square CGSS with
two types of intersections: one dimensional and zero dimen-
sional. To give an example of a one-dimensional intersection,
we consider ¥, which lies in (xyz) subspace, and X5 which
resides in (xyw) subspace. These two spheres overlap along a
great circle that lies in the xy plane. There are many other
such one-dimensional intersections, e.g., X; (xyz) and X,
(xvz) overlap along a great circle in the zx plane. We call
these “one dimensional” as the locus of intersection is a
circle. In contrast, we have a separate class of intersections
that are zero dimensional. For example, we take X; (xyz)

.....
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FIG. 12. CGSS of the Kitaev tetrahedron with eight spheres embedded in six dimensions. Each sphere lies in a three-dimensional subspace
as indicated. For example, the ¥, sphere lies in the space spanned by x, y, and z coordinates.

and X3 (uvz). These two spheres share a common diameter
along the z direction. They intersect at precisely two points
given by (x,y,z,u,v,w)=(0,0,=£1,0,0,0). The locus of
intersection here is composed of distinct “zero-dimensional”
points. There are several such zero-dimensional intersections
as can be seen in Fig. 12. We also have pairs of spheres that
do not intersect, e.g., X (xyz) and X7 (uvw) do not have any
points in common.

B. Physical interpretation of CGSS features

The zero-dimensional singularities in this space occur
along the six cardinal directions of the embedding space. They
are marked as X, X, Y, Y, Z, Z, U, U, V,V, W, and W
in Fig. 12. Note that there are 12 such points. These points
have a remarkable interpretation in the physical spin prob-
lem: they correspond to Cartesian states on the tetrahedron.
For example, the point X corresponds to {S{, Sz, S3, S4} =
S{x, —X, X, —x}. This corresponds to a dimer cover with
dimers placed on (12) and (34) bonds. The spins on the dimers
have been aligned along & and —X so as to maximally satisfy
these bonds. A simple analysis shows that there are only three
possible dimer covers on the tetrahedron. With each dimer
cover having two dimers and each dimer having two possible
spin configurations, we have 12 Cartesian states in total. The
eight Cartesian states of the Kitaev square, shown in Fig. 7, are
also Cartesian states of the tetrahedron. The four additional
Cartesian states of the tetrahedron are shown in Fig. 13. Note
that the Kitaev square CGSS can be viewed as a slice of
the tetrahedron CGSS. The tetrahedron CGSS of Fig. 12 is
embedded in six dimensions spanned by (xyzuvw). Its subset
that is contained in the four-dimensional space spanned by
(xyuv) gives the Kitaev square CGSS of Fig. 6.

In the context of the Kitaev problem on the honeycomb lat-
tice, BSS pointed out that Cartesian states could be connected

by smooth energy-preserving transformations. This property
holds for the tetrahedron as well. In the geometric picture of
the CGSS, these transformations are the great circles along
the axis planes. In Fig. 12, we see several such smooth
transformations that connect Cartesian states. For example, Z
is connected to X, X, Y, Y, U, U and V, V by quarter-arcs. At
the same time, we note that there are pairs of Cartesian states
that are not connected by simple arcs. For example, starting
from Z, we cannot reach W or W via simple arcs. However, we
may reach these points by multiple segments, e.g., by going
through X . This lack of direct connectivity can be understood
from the analysis in BSS. The Cartesian states Z and W
correspond to the same dimer cover, but with different spin
orientations on a given dimer. The BSS transformation does
not connect such states.

In the honeycomb lattice Kitaev problem, Chandra et al.
show that the space of ground states is much larger than the
set of Cartesian states and the valleys that connect them [16].
However, it is somewhat difficult to construct these additional
states following their formalism. Here, in the example of the
Kitaev tetrahedron, we clearly see this physics at play. The
Cartesian states form a set of zero-dimensional points, with
12 distinct points along the axes. The valleys that connect
them are one dimensional, forming great circles as shown
in Fig. 12. However, the CGSS is clearly much larger with

4 Z 3 4 Z 3 4 W 3 4 W 3
1 2 1 2 1 2 1 2

FIG. 13. Additional Cartesian states that emerge in the Kitaev
tetrahedron.
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the two-dimensional surfaces of the spheres. These additional
states lead to new connection pathways on the CGSS.

In summary, the CGSS is composed of eight spheres, em-
bedded in six dimensions. Intersections between spheres make
this space a nonmanifold. Certain pairs of spheres intersect
along great circles while certain pairs only share a common
diameter. We also have pairs of spheres that do not intersect at
all. The nature of the CGSS is much more involved than the
intersecting circles of the Kitaev square. In the Kitaev square,
the CGSS was generically one dimensional (circles) with
zero-dimensional intersections (points). Here, the CGSS is
generically two dimensional (spheres) with intersections that
are one dimensional (circles) and zero dimensional (points).

C. Particle on two intersecting sheets

Before describing the quantum eigenvalue spectrum of the
Kitaev tetrahedron, we discuss a toy problem that gives us a
suitable framework. We expect the low-energy physics of the
Kitaev tetrahedron to map to a single particle problem, where
the particle moves on the CGSS space of eight intersecting
spheres. This space is a nonmanifold that appears to be two
dimensional at a generic point, but has one-dimensional and
zero-dimensional self-intersections. What is the low-energy
behavior of a particle residing in this space? The insight
gleaned from the two-circle problem in Sec. III does not
suffice to address this question. Working in the same spirit,
we construct the simplest toy problem that has the same type
of self-intersections.

We consider a space composed of two sheets, as shown
in Fig 14(a). The sheets ABCD and A’B'C'D’ are taken to be
squares. Each sheet is taken to have periodic boundaries with
opposite sides identified, i.e., AB = DC, AD = BC, A'B' =
D'C’, and A’'D’ = B'C’. The two sheets are assumed to inter-
sect along two perpendicular lines, LL and MM, with these
lines intersecting at a point O. Note that L and L represent the
same point due to periodic boundaries, as do M and M. This
geometry represents the simplest nonmanifold space that has
the same qualitative features as the Kitaev tetrahedron CGSS.
At generic points, it appears two dimensional. However, it has
intersections that are one dimensional and zero dimensional.
The former are the lines LL and MM, while the latter is the
point O that lies at the intersection of LL and MM.

In order to study the dynamics of a particle on this space,
we discretize this space and adopt a tight-binding approach.
The squares ABCD and A’B'C'D’ are both replaced with
N x N meshes with periodic boundaries. Points along the
common lines LL and MM are identified. A generic point in
this tight-binding problem has four nearest neighbors that lie
on the same sheet. A point that lies on one of the intersection
lines, but not on the other, has six nearest neighbors: two on
the common line and two on each sheet. Finally, the common
point O has four nearest neighbors: two on each intersection
line with all four points shared by both sheets. We construct
the corresponding tight-binding Hamiltonian and diagonalize
it numerically. The resulting spectrum contains, in order of
increasing energy, (i) a sharply localized ground state that
is centered at O and decays in all directions, (ii) a large
number of semilocalized states that are peaked along one
of the common lines, (iii) extended states. We focus on the

A L D

FIG. 14. Toy problem with two sheets. (a) Geometry of the two
sheets intersecting along perpendicular lines. (b) Ground-state wave
function on one of the two sheets. The size of the marker at each
site is proportional to the squared amplitude at the site. All sites have
the same phase. We show only one sheet as the wave function is the
same on the other sheet as well.

ground state that provides a truly localized state. Its wave
function is plotted in Fig. 14(b).

We now summarize the lessons learned from the toy prob-
lem. We have studied a particle moving on a space with
two one-dimensional intersection lines. The lines themselves
intersect, giving rise to a zero-dimensional singular point.
In this scenario, we find only one truly localized state that
is centered on the zero-dimensional singularity. Crucially, as
the lowest-energy state, this state dominates the low-energy
dynamics of the particle. We now make a connection to
the Kitaev tetrahedron CGSS shown in Fig. 12. We have
spheres that intersect along lines, with the lines themselves
intersecting at points.

D. Spectrum in the spin-S quantum problem

The low-energy spectrum for the Kitaev tetrahedron is
shown in Fig. 15 for various S values. We interpret its features
in terms of the single-particle problem on the eight-sphere
CGSS of Fig. 12. Crucially, the lowest-energy states are a
set of 12 levels. As S increases, the 12 progressively separate
from the other, higher-energy, states. Figure 15 shows the
spectrum for S = 6, 7, 8. For smaller-S values, we find that the
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FIG. 15. Low-energy spectra in the Kitaev tetrahedron for S = 6, 7, 8 [(a)—(c), respectively]. The spectra are shifted by the classical ground-
state energy and scaled by the coupling strength K. The lowest 12 states are shown using blue diamonds, in order to distinguish them from

higher states (magenta squares).

12 states do not separate out completely from the higher states.
This is possibly due to the presence of many one-dimensional
singularities in the CGSS. In the problem of two intersecting
sheets in Sec. VIC, there are many “semilocalized” states
that are centered on one-dimensional lines. We expect a large
number of such states in the eight-sphere CGSS. As they
hybridize with one another, they can acquire a large spread in
energy. We believe the lowest state from this set is comparable
in energy with the highest of the low-lying twelvefold set.
For small-S values, this makes it difficult to identify the
twelve low-lying states from the numerics. As S increases,
this hybridization decreases, with the twelvefold set becoming
clearly visible for § > 5.5.

We plot two quantities that describe the low-energy spec-
trum in Fig. 16. As in the Kitaev square, we define the
binding energy as E, = Ej3 — E. Here, Ej3 is the energy of
the 13th state and E is the mean of the 12 lowest-energy
states. We see that Ej increases linearly in S, in line with
the scaling arguments in Sec. VF. We also plot the spread
AE, defined as the standard deviation of the 12 lowest-energy
states. In analogy with Kitaev square, we expect the spread
to decrease with increasing S and to vanish in the S — oo

1.10 w 0.29
1.05 0.29
1.00 0.28
E, 0.95 0.28 AE
0.90 0.27
0.85 0.27
0.80 0.26
6 7 8
S

FIG. 16. Binding energy and spread of the low-lying set of 12
eigenvalues. The binding energy is shown using blue squares. The
plotted curve is the fitting function, given by E;(S) = 0.386 788 +
0.079 194S. The spread is shown as magenta circles. The dashed line
is a guide to the eye.

limit. Indeed, we see that the spread decreases with S. Due
to the limited number of data points, we are not able to
find a meaningful fitting function that describes AE(S). As
a consequence, we cannot quantitatively address the § — oo
limit. Nevertheless, in analogy with the Kitaev square, we
surmise that a twelvefold degenerate ground state emerges
as § — oo. We argue that these states are related to the 12
Cartesian states of the tetrahedron. This can be understood
from the problem of two intersecting sheets in Sec. VIC
which had a nondegenerate ground state, localized at the
pointlike singularity. Here, the CGSS of the tetrahedron has
12 pointlike singularities, corresponding to Cartesian states.
The 12 low-lying states arise from bound states around these
12 points. We discuss quantitative tests of this notion below.

E. Character of low-lying states

We next present a test of the hypothesis that the 12 low-
lying states are essentially composed of Cartesian states. We
follow the same steps as in Sec. VD above to quantify the
Cartesian weight in the low-lying states. The only difference is
that we have 12 Cartesian states on the tetrahedron as opposed
to 8 on the square.

In Fig. 17, we plot the Cartesian weight of the low-lying
states of the Kitaev tetrahedron. The two curves correspond
to Cartesian weight (a) of the ground state (the state with the
lowest-energy among the 12), and (b) averaged over the 12
low-lying states. We find sizable Cartesian weight in both. For
example, the ground state at S = 7 has a Cartesian weight of
~30%. Here, the 12 Cartesian states are a minuscule subset
of the full Hilbert space that contains 15% = 50625 states.
Nevertheless, they constitute more than a quarter of the weight
in the ground state.

Figure 17 shows the S dependence of the Cartesian
weights. As with the Kitaev square, we find a smooth variation
with S only if we separate integer and half-integer cases.
This indicates a role for Berry phases, that is beyond the
scope of our discussion. Crucially, in both integer and half-
integer cases, the Cartesian weight extrapolates to nonzero
values as § — oo. In this limit, the full Hilbert space grows
exponentially while the number of Cartesian weights remains
fixed at 12. And yet, the Cartesian states support a finite
fraction of the ground-state weight. We interpret this result
as follows: the low-lying states are admixtures of bound
states formed around zero-dimensional intersections in the
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FIG. 17. Cartesian weight in the low-lying states of the Kitaev
tetrahedron for (a) integer and (b) half-integer values of S. The blue
squares show the Cartesian weight in the ground state vs S. The
red circles show the average Cartesian weight of the 12 low-lying
states. For integer S (top), the data are fit using f(S) = 0.169 07 +
1.12538/S and g(S) = 0.11449 4 1.30306/S. For half-integer S
(bottom), the fitting curves are f(S)=0.18512+ 0.97489/S and
g(§) =0.12233 + 1.2582/8.

CGSS. Their Cartesian weight is less than 100% because the
bound states are not delta-function localized. They contain
contributions from non-Cartesian states that are in the vicinity
of the intersection points.

These results, put together, show that the 12 low-lying
states are essentially composed of Cartesian states. In this
sense, the Cartesian states solely determine the low-energy
physics of the Kitaev tetrahedron.

F. Cartesian fidelity of the low-lying states

As with the Kitaev square, we next discuss an independent
quantitative test for the Cartesian character of the low-lying
states. We show that the low-lying states can be mixed into
a form that reproduces the 12 classical Cartesian states. We
define a resolving operator

Otet,res. = Osq,res. + )‘«13(3‘? - Sg) + A4 (Sé - Sf;)v (N

where Osq,m has been defined in Eq. (4). We have two addi-
tional terms due to the two additional bonds in the tetrahedron

0.80
0.75
I~ 0.70
0.65
0.60 : :
6 7 8
S

FIG. 18. Cartesian fidelity in the Kitaev tetrahedron vs S. The
data are fit using F(S) = 1.079 78 — 2.54565/S.

Hamiltonian. As discussed in Sec. VE, these terms resolve
Cartesian states with dimers on the z-z bonds.

Starting the matrix elements of Oy res. in the low-lying
states, we define the Cartesian fidelity as in Sec. V E above.
All details of the definition carry over from the Kitaev square
to the tetrahedron, but for the number of Cartesian states
changing from 8 to 12. In Fig. 18, we plot F, i.e., F,,, averaged
over all «, for various values of S. We see that F is very
large, increases with S, and extrapolates to unity as S — oo.
This demonstrates that the 12 low-lying states can be mixed
to recover Cartesian states with high fidelity.

VII. SUMMARY AND DISCUSSION

We have presented low-energy descriptions for two Ki-
taev clusters, the square and the tetrahedron. We have ex-
plicitly enumerated the classical ground states in each case,
demonstrating that they form self-intersecting spaces. The
Kitaev square leads to a space with four circles embedded
in four dimensions, while the tetrahedron leads to eight
spheres that are embedded in six dimensions. We understand
the low-energy spectra of the spin clusters in terms of a
particle moving on these spaces. In both clusters, the low-
energy dynamics of this particle is determined by bound
states that form at self-intersection points. The intersection
points have a very interesting interpretation as “Cartesian”
states that were first proposed in Ref. [15]. Our results
show conclusively that Cartesian states, although few in
number, completely determine the low-energy physics. The
validity of this picture improves with S, becoming exact in
the classical S — oo limit. Our results shed light on the
semiclassical physics of Kitaev-type problems. More gen-
erally, they provide an enlightening example of order by
singularity.

The Kitaev model on the honeycomb lattice also exhibits
strong frustration for higher spins. Theoretical studies have
discussed possible interesting features for § > 1 [27-30]. An
interesting proposal has been put forth for realizing higher-
spin Kitaev models in materials [31]. In the large-S limit,
previous studies have sketched the contours of the ground-
state space, using the notion of Cartesian states as a con-
venient starting point. Our results on two clusters suggest
a fresh perspective that prompts a reexamination of earlier
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results. In particular, on the honeycomb lattice, Chandra et al.
[16] have suggested that the space of ground states is a
manifold with Cartesian states as extremal points. From an
analysis of thermal fluctuations, they further argue that there
is no selection of Cartesian states. Here, we have explic-
itly demonstrated that the two clusters have self-intersecting
ground-state spaces with clear nonmanifold nature. Our anal-
ysis also shows that Cartesian states are strongly selected,
not by fluctuation contributions to energy but by bound-
state formation. An exciting future direction is to investi-
gate whether these features carry over to the honeycomb
lattice.

There is a large body of work on Kitaev-Heisenberg
models, where Kitaev interactions coexist with Heisenberg
couplings [32]. The effects of an additional Heisenberg in-
teraction have also been studied in the classical limit [33].
In this context, our results on the Kitaev-tetrahedron assume
significance. We have characterized the space of classical
ground states in the pure Kitaev limit. This space of eight
spheres persists as the ground-state space even in the presence
of antiferromagnetic Heisenberg couplings. This can be seen
as follows. On the tetrahedron, the Heisenberg interaction
can be reexpressed as the square of the total spin. It is
minimized in configurations where the sum of four spins
vanishes. The set of all such states has been shown to form
a nonmanifold space that is generically five dimensional
[34]. Here, as seen from Table II, all configurations in the
Kitaev-tetrahedron CGSS have zero total spin. Thus, they
continue to be minimum energy states when a Heisenberg
interaction is introduced. This indicates that order by singu-
larity operates in the Kitaev-Heisenberg tetrahedron as well.
The Kitaev-tetrahedron CGSS of Fig. 12 can be viewed as
a slice of the larger nonmanifold CGSS of a Heisenberg
tetrahedron.

Our analysis has strong overlaps with the study of quantum
graphs. The low-energy physics of the Kitaev clusters is dom-
inated by bound states formed at intersection points. These
points are connected by pathways, allowing for hybridiza-
tion among the bound states. At low energies, the clusters
can be faithfully modeled as a set of discrete points that
are connected by channels. This has strong connections to
quantum graph models [35-39]. It is conceivable that more
general Kitaev models can be modeled as quantum graphs
with a larger number of nodes and connecting pathways.
This could allow for new ways of understanding Kitaev spin
liquids.

The results presented here are a convincing demonstration
of order by singularity. This is only the second known ex-
ample, after the quantum XY quadrumer studied in Ref. [5].
In Kitaev clusters, Cartesian states are essentially a classi-
cal concept. Nevertheless, they acquire a dominant role in
the quantum problem. In the § — oo limit, the quantum
ground states become the same as Cartesian states. They
are separated from other classical ground states by an O(S)
binding energy. This opens the door to several interesting
questions. Is there state selection in the purely classical
model with thermal fluctuations? Can order by singularity
be distinguished from order by disorder in an experimental
context? We hope future studies will be able to answer these
questions.

APPENDIX A: DERIVATION OF THE CGSS
OF THE KITAEV SQUARE

We follow the approach of BSS in Ref. [15] to enumerate
classical ground states. As is appropriate for the classical
limit, we treat the spins as vectors with three real scalar
components. The Kitaev square Hamiltonian is given by

H = K[S{S5 + 558} + S38% + 8387 (AD)

with K > 0. We seek to minimize this Hamiltonian over the
space of all possible spin configurations. We have 12 varia-
tional parameters arising from three components in each spin.
However, the minimization is subject to four constraints that
fix the spin lengths to be S. We use the method of Lagrange
multipliers, introducing

K ¢ . .
H= 3 LAl 6 )

The minimization conditions are now given by
d(H —H,)/dS8Y =0, where i=1,...,4 and o =x,y,z.
This immediately leads to S; = O for all , i.e., all four spins
lie in the XY plane. In addition, for each bond that connects
spins S; and §; in the direction o (x or y), we obtain

% = SE; 8% =189 (A3)

This represents eight separate equations arising from the four
bonds in the problem. Substituting the second equation in the
first, we find

Sj»[ = ()Ll)\.j)Si = )"i)"j =1, (A4)

unless S7 is zero. For simplicity, we proceed with the analysis

assuming that all in-plane components Sf/ Y are nonzero. We
will soon show that relaxing this assumption does not lead to
any new ground states. This immediately implies A; = A3 and
Xy = A4. Using these relations in the Hamiltonian, we obtain

Emin = 2KS%11 = 2KS§%1,. (A5)

We conclude that A; = A, in the ground states, with all A’s
being equal. In order to minimize energy while satisfying
Eq. (A4), we set A; = —1. The resulting minimum value for
the energy is given by Epi, = —2KS2.

The classical ground states are to be determined from
Eq. (A3), taking all A’s to be (—1). To systematically enu-
merate them, we start with the most general form for the first
spin

S; = S{cos ¢X + sin ¢F}. (A6)
From Eq. (A4), we obtain two other spin components
Sy =—Scosp, S, =—Ssing. (A7)

Since we have no constraints on S; so far, we consider a
general form with a different angle parameter

Sz = S{cos ¥x + sin ¥ y}. (A8)
In turn, this fixes two other components with
Si=-Scosy, §5=-—Ssiny. (A9)
To preserve the length of S, and S4, we must have
sin? ¢ = sin® . (A10)
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To satisfy this condition, ¢ must take one of four possible
values: ¢, —¢, m + ¢, T — ¢. Each choice corresponds to
one sector in the CGSS, as listed in Table I. Each sector is a
one-parameter family of states, parametrized by ¢. All states
correspond to the minimum energy, given by Ep;i, = —2KS>.

We now show that the same conditions emerge even if
some of the spin components are zero. We first list the
equations encoded in Eq. (A3):

ST =183, S5 = St (A11)
S =08, 8 = M8, (A12)
SY = M85, 81 o= AsS%, (A13)
=08, 8 = A4S (A14)

These are necessary conditions (along with S7 = 0 for all i) for
aminimum energy solution. We now consider the case of ST =
0, with the first spin taken to point along the Y axis. In order to
preserve the length of the first spin, we must have S| = S,
where n; = £1. We now use Eq. (A14) to give §} = 15| =
X1mS. Note that this implies A4 # 0, A; # 0, and A1 A4 = 1.
We must also have |A;| < 1, as any component of S4 cannot
exceed S without violating the spin-length constraint. As the
y component of S4 is now fixed, we fix its x component to

satisfy the spin length condition. We take % = nsv'1 — A28,
with ny = £1.

In the same way, we now fix S, and S3. From Eq. (A11), we
have S5 = 0 and therefore S = 1,S, where 7, = 1. Equa-
tion (A12) gives §} = 1285 = AomS. We have A, # 0, A3 #
0, and A3 = 1. We also have |A;| < 1 as no component can
exceed S. With S known, we fix its x component from the
spin-length condition §5 = n3v'1 — A%S , with n3 = £1.

We have a constraint in Eq. (A13) that relates S3 and Sj.
Using the relation 85 = 1457, we obtain

)’]3,/1—)»%:7]4)\.4,/1—)x%:)’}m/)\.i—l. (AIS)

This gives 13 = n4 as well as A2 + A2 = 2.
Gathering the four spins together, we have

S = 50, m1,0), (A16)

$ = 5(0, 12, 0), (A17)
83 = S(nay/1 = 23, 1222, 0), (A18)
Sy = S(nay/1 = 22,1121, 0). (A19)

Substituting these expressions in the Hamiltonian, we have

H=KS[h+,/1=22/1 =22+ 1]

The energy is determined by the A coefficients that must
be chosen subject to the constraints |1;| < 1 and |x;]| < 1.
Clearly, the choice that gives the lowest-energy value is 1| =
Xy = —1, the same conclusion that was drawn earlier by
assuming that all spin components were nonzero. Here, in
fact, our choice of one component being zero fixes the spin
configuration to be a Cartesian state. The resulting energy
is the same as En, given above. These arguments can be

(A20)

extended to states where any of the other components are zero.
This invariably leads to the same minimum energy and the
same conditions.

APPENDIX B: BERRY PHASE EFFECTS
IN THE KITAEV SQUARE

The low-energy physics of the Kitaev square maps to a
particle moving on the CGSS of four intersecting circles.
This mapping is based on the spin-path-integral formulation,
wherein deviations from the CGSS are exponentially sup-
pressed due to their energy cost. Apart from an energy term,
the spin path integral has a geometric (Berry) phase term that
attaches complex phases to closed paths. In the mapping to the
single-particle problem, these manifest as Aharonov-Bohm
phases arising from flux lines that thread the CGSS. This has
been demonstrated in Ref. [5] in the case of the trimer with
XY antiferromagnetic couplings.

We now demonstrate the existence of paths within the
Kitaev-square CGSS that accrue a nontrivial Berry phase.
We work in the spin-path-integral language, where the Berry
phase has a simple geometric interpretation, given by

4
Sp=5Y A
i=1

where A; is the solid angle subtended at the north pole by the
spin S; as it describes a closed trajectory.

In the CGSS shown in Fig. 6, we consider the path X —
Y - U — V — X. This path consists of four arcs, each
within one of the circles of the CGSS. In each arc, all four
spins move along a quarter-arc in spin space. As we move
along the entire path, each spin describes a closed trajectory
given by

(B1)

Si:2—>9—> 32— -9 —> 3%, (B2)
S:—t—> -9 >3- -9y > %, (B3)

S3: 89> 18— 99— 3%, (B4)
S4: - V> —3F—> 9> —1%. (BS)

Here, £X% and =+ represent directions in spin space. No-
tably, S; describes a complete circle in the counterclock-
wise direction (looking down from the positive-Z axis),
whereas the other three spins do not. In other words,
the first spin subtends a solid angle of 27 at the north
pole. The other three spins subtend a net-zero solid
angle.

Thus, the Berry phase associate with the path X — Y —
U — V — X is 2 S. For integer S values, this Berry phase
is trivial. However, for half-integer spins, this is a physically
relevant Berry phase of 7. This explains the qualitative differ-
ence in behavior between half-integer and integer spins seen
in Fig. 10. We argue that there is no further distinction beyond
integer and half-integer cases, e.g., there is no qualitative
difference between even or odd integer values of S. This can
be seen by the following argument. As all the states in the
CGSS are coplanar, each spin is constrained to move along a
circle in the XY plane. A closed path traversed by a spin must
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necessarily be composed of an integral number of circles.
Thus, the solid angle subtended at the north pole is an integer
multiple of 27 for each spin. The overall Berry phase for any
closed path has the form 2nm S, where n is an integer. This
only allows for a distinction between integer and half-integer
S values.

We believe there is a role for Berry phases in the Kitaev
tetrahedron as well. We see a clear distinction between half-
integer and integer S values in Fig. 17. The nontrivial path
discussed in the context of the Kitaev square (X — Y —
U — V — X) is a valid path in the tetrahedron CGSS as
well. This shows that Berry phase has a role to play in the
tetrahedron. However, unlike the square, we do not have a pre-
cise argument as to why the Berry phase can only distinguish
half-integer and integer S values. As the tetrahedron CGSS
is more complex than that of the square, we content ourselves
with the empirical observation that separating half-integer and
integer values of S leads to smooth S dependence.

APPENDIX C: ENERGY MINIMIZATION
IN THE KITAEV TETRAHEDRON

The classical ground states of the Kitaev tetrahedron can
be found in the same manner as for the Kitaev square in
Appendix A above. This leads to the equations in Eqs. (A11)—
(A14). In addition, we have four more equations given by

ST =385, S% = M85, (C1)
Si = S5, L= M85 (C2)

We first make a simplifying assumption, taking all twelve spin
components to be nonzero. This leads to A;A; =1, for all
pairs (i, j). This implies that all A’s are equal, given by *1.
The classical energy comes out to be E = 2KS?A. In order to
minimize the energy, we choose A = —1. Thus, the ground
states are to be chosen from Egs. (A11)—(A14) as well as
Egs. (C1) and (C2), with all A’s set to (—1).

If we allow for some spin components to be zero, we do
not obtain any new conditions or ground states. We simply
recover a subset of the states obtained from the considerations

given above. In all cases, the ground-state energy is the same
as that for the Kitaev square, Eni, = —2K S2.

APPENDIX D: CLASSICAL GROUND STATE
IN THE KITAEV TETRAHEDRON

To derive the CGSS of the tetrahedron, we start with the
most general form for Sy,

S| = S{sin @ cos pX + sin O sin ¢y + cosHZ}, (D1)

where 6 € [0,7] and ¢ € [0,27) are arbitrary. From
Egs. (A11)-(A14), (C1), and (C2), we obtain

83 = —S sinf cos¢p, S = —S sinf sing, S5 = —S cosh.

The equation for S5 implies that (Sg‘)2 + (Sg)2 = §%sin% 0.
Introducing a new angle ¥, we have

S; = S{sin @ cos X + sin 6 sin Yy — cosOZ}. (D2)

This, in turn, fixes the following components:
Sy =—Ssinfcosy, S =—S sin6siny.

The only undetermined components now are S5 and S
which are related by S5 = —S5. This implies (S%‘)2 + (Sg)2 =
(83)* + (53)%, giving

sin? O(cos ¥ + sin” ¢) = sin® O(cos® ¢ + sin” ).

This has two solutions. Either sin & = 0 (which gives just the
Cartesian states in the z direction) or sin? s = sin®¢. The
latter has four solutions (as discussed in the Kitaev square):
v =¢, —¢, T + ¢, ® — ¢. Inall four cases, we find (53)* =
(5)* = S cos? 0. As S5 = —S%, we have

S5 ==xS cosf, S;=FS cosb. (D3)

‘We note that there are eight distinct cases here: four choices
for ¥ and two possible signs in S5. These choices correspond
to the eight sectors of the CGSS described in the main text.
In each sector, we have a family of states that is parametrized
by two angles 6 and ¢. In all eight cases, upon substituting
the expressions for spin components in the Hamiltonian, we
obtain E = —2KS? = Ep,. This confirms that every state in
each of the eight sectors is indeed a classical ground state.
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