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Quantum relative entropy shows singlet-triplet coherence is a resource in the radical-pair
mechanism of biological magnetic sensing

I. K. Kominis
Department of Physics, University of Crete, 71003 Heraklion, Greece

and Institute for Theoretical and Computational Physics, University of Crete, 70013 Heraklion, Greece

(Received 13 January 2020; accepted 1 May 2020; published 21 May 2020)

Radical-pair reactions pertinent to biological magnetic field sensing are an ideal system for demonstrating the
paradigm of quantum biology, the exploration of quantum coherence effects in complex biological systems. We
here provide yet another fundamental connection between this biochemical spin system and quantum information
science. We introduce and explore a formal measure quantifying the singlet-triplet coherence of radical pairs
using the concept of quantum relative entropy. The ability to quantify singlet-triplet coherence opens up a number
of possibilities in the study of magnetic sensing with radical pairs. We first use the explicit quantification of
singlet-triplet coherence to affirmatively address the major premise of quantum biology, namely, that quantum
coherence provides an operational advantage to magnetoreception. Second, we use the concept of incoherent
operations to show that incoherent manipulations of nuclear spins can have a dire effect on singlet-triplet
coherence when the radical pair exhibits electronic-nuclear entanglement. Finally, we unravel subtle effects
related to exchange interactions and their role in promoting quantum coherence.
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I. INTRODUCTION

Radical-pair reactions [1], central in understanding avian
magnetoreception [2,3] and spin transport in photosynthetic
reaction centers [4], have in recent years become a flourishing
paradigm of quantum biology [5,6], the study of quantum
coherence effects in complex biological systems [7–11]. In-
deed, it was shown that the understanding of the funda-
mental quantum dynamics of radical-pair reactions rests on
quantum measurement theory, quantum coherence quantifiers,
and quantum trajectories elucidating the physics at the sin-
gle molecule level [12–15]. These works also led to a new
master equation describing radical-pair spin dynamics [6],
qualitatively and quantitatively departing from the theory [16]
traditionally used in spin chemical calculations. Moreover,
quantum information concepts such as the violation of entropy
bounds were used to further demonstrate [17] the inadequacy
of the long-standing theoretical foundations of spin chemistry
[18] in a general way unaffected by the precise knowledge,
or lack thereof, of molecular parameters. Most recently, a
quantum metrology approach addressed the fundamental lim-
its to quantum sensing of magnetic fields using radical-pair
reactions by treating them as biochemical quantum magne-
tometers [19].

Following these developments, there have been several
other approaches exploring radical-pair quantum dynamics
[20–22], essentially concurring with the basic aforementioned
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findings, namely, that a new fundamental theory based on
quantum measurements is required to understand these spin-
dependent biochemical reactions, that tools of modern quan-
tum metrology are indeed useful to address their dynamics,
and that, in general, radical pairs are an ideal system demon-
strating the paradigm of quantum biology.

Yet apart from any quantitative or qualitative differences in
the various approaches being explored, it is broadly accepted
that radical pairs do exhibit quantum coherence, in particular,
singlet-triplet coherence defined by the pair’s two electronic
spins. The role of global quantum coherence in magnetore-
ception has been addressed [23], but the role of singlet-triplet
coherence has not been explored, because apart from some
empirical approaches [14], a formal and physically intuitive
measure of singlet-triplet coherence has been lacking. More-
over, there have been discussions on whether a semiclassical
treatment could replace coherent spin dynamics in radical-
pair magnetoreception [24], but again, such discussions are
phenomenological and of limited predictive power unless a
concrete singlet-triplet coherence measure is established. This
way it will be straightforward to understand the classical limit
of the relevant dynamics by gradually eliminating singlet-
triplet coherence, while being able to exactly quantify its
presence.

Interestingly, during the last few years quantum coherence
measures have been formally investigated in quantum infor-
mation science in the context of resource theories [25–31].
In this paper, we introduce and formally analyze quantum
relative entropy as a singlet-triplet coherence measure. In
particular, we formulate a quantum relative entropy measure
for quantifying coherence between two subspaces of the total
Hilbert space, which should be generally useful irrespec-
tive of the particular physical system under consideration
herein.
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FIG. 1. Radical-pair reaction dynamics. A charge transfer fol-
lowing the photoexcitation (not shown here) of a donor-acceptor
dyad DA produces a singlet state radical-pair SD•+ A•−, which is
coherently converted to the triplet radical pair, TD•+ A•−, due to
intramolecule magnetic interactions embodied in the spin Hamilto-
nian H. Simultaneously, spin-selective charge recombination leads
to singlet and triplet neutral products with respective rates kS and kT.

As the main application of our singlet-triplet quantifier,
we affirmatively, concretely, and quantitatively address the
main premise of quantum biology, namely, that singlet-triplet
coherence indeed provides for an operational advantage in
magnetoreception. We investigate the correlation of singlet-
triplet coherence with the figure of merit for the operation of
radical-pair reactions as a compass. Having an explicit quanti-
fier of singlet-triplet coherence, we can controllably suppress
it while always quantifying it, and thus study the compass
figure of merit as we transition from a highly coherent to a
highly incoherent regime.

As a by-product of introducing the so-called incoherent op-
erations while setting up the formal singlet-triplet coherence
quantification, we show that a class of incoherent operations
originates from operating on just the nuclear spins of the
radical pair. This can have dire consequences for the elec-
tronic singlet-triplet coherence when there is electron-nuclear
entanglement, a finding opening up a number of studies on
the effect of nuclear spin dynamics on the radical-pair spin
dynamics.

As another application, we study the role of specific mag-
netic interactions in promoting singlet-triplet coherence, in
particular, the exchange interaction, and find subtle effects
alluding to optimal values of exchange couplings promoting
the quantum advantage of singlet-triplet coherence.

The structure of the paper is the following. In Sec. II we
provide the basic definitions, motivate the need to introduce
a measure of singlet-triplet coherence in simple and intuitive
terms, and recapitulate our previous empirical attempts at
defining such a measure. In Sec. III we present the definition
of a singlet-triplet coherence quantifier based on relative
entropy and fully analyze its properties at a formal level. In
Sec. IV we study magnetoreception and argue quantitatively
in support of the main premise of quantum biology. We
conclude with a summary and an outlook in Sec. V.

II. DEFINITIONS, MOTIVATION, AND PREVIOUS WORK

Radical-pair reaction dynamics are depicted in Fig. 1. A
charge transfer following the photoexcitation (not shown) of
a donor-acceptor dyad DA leads to the radical pair D•+A•−,

where the two dots represent the two unpaired electron spins
of the two radicals. The initial state of the two unpaired
electrons of the radical pair is usually a singlet, denoted by
SD•+ A•−. Both D and A contain a number of magnetic nuclei
(their initial state is usually fully mixed) which hyperfine-
couple to the respective unpaired electron of D and A. The
resulting magnetic Hamiltonian H involves all such hyper-
fine couplings, and extra terms accounting for the electronic
Zeeman interaction with an applied magnetic field, exchange
and dipolar interactions, etc.

The initial electron singlet state (and for that matter the
triplet state) is not an eigenstate of H, hence the initial forma-
tion of SD•+ A•− is followed by singlet-triplet (S-T) mixing,
a coherent oscillation of the spin state of the electrons (and
concomitantly the nuclear spins), designated by SD•+ A•− �
TD•+A•−. This coherent spin motion has a finite lifetime since
charge recombination, i.e., charge transfer from A back to D,
terminates the reaction and leads to the formation of either
singlet or triplet neutral reaction products, produced at the rate
kS and kT, respectively. Both rates are in principle known or
measurable parameters (in general, different) of the specific
molecular system under consideration.

When discussing radical-pair states, we refer to a Hilbert
space comprising two electron spins, one for each radical,
and any number of nuclear spins residing in both radicals.
For the simplest possible approach, one could even consider
a fictitious radical pair without nuclear spins. In such a
case, the S-T basis states of the two-electron system are
denoted by |s〉 = (|↑↓〉 − |↓↑〉)/

√
2 for the singlet, and |t j〉

for the triplets ( j = 0,±1), where |t1〉 = |↑↑〉, |t0〉 = (|↑↓〉 +
|↓↑〉)/

√
2, and |t−1〉 = |↓↓〉. When considering radical pairs

with nuclear spins, the tensor product structure will be ex-
plicitly given. For example, for the case of a single nuclear
spin-1/2, a singlet electronic state and a spin-up nucleus will
be denoted as |s〉 ⊗ |⇑〉.

A. Singlet and triplet projectors

The singlet and triplet projection operators are QS =
(1/4 − s1 · s2) ⊗ 1 and QT = (3/4 + s1 · s2) ⊗ 1, with 1 be-
ing the unit operator in the nuclear spin space (the dimension
of the unit matrix should be evident from the context), and
s1 and s2 the electron spins of the two radicals. The projec-
tors QS and QT are orthogonal and complete, i.e., QSQT =
QTQS = 0 and QS + QT = 1 (here, 1 refers to the total Hilbert
space electrons + nuclei).

Using the completeness property we can multiply any
given radical-pair density matrix ρ from left and right with
1 = QS + QT and write

ρ = ρSS + ρTT + ρST + ρTS, (1)

where ρxy = QxρQy, with x, y = S, T. We will make frequent
use of the identity (1) in the following. We can already identify
ρSS + ρTT as the S-T “incoherent part” of ρ, and ρST + ρTS the
S-T “coherent part” of ρ, to be formally defined and quantified
later.

The density matrix, the projectors, and any other operator
relevant to a particular radical pair having M nuclei with
nuclear spins I1, I2, . . . , IM have dimension d = 4dnuc, where
4 is the multiplicity of the two electron-spin space, and
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dnuc = (2I1 + 1)(2I2 + 1) · · · (2IM + 1) is the dimension of
the nuclear spin space.

B. Motivation

To motivate this work, we can ask a few questions, the
answers to which are anything but obvious: (a) Which state
is “more” S-T coherent, |ψ1〉 = (|s〉 + |t0〉)/

√
2, or |ψ2〉 =

(|s〉 + |t1〉 + |t0〉 + |t−1〉)/2 ? Clearly, both states are pure and
normalized, and both involve a superposition of the singlet
and some of the triplet states, but which is “more coher-
ent”? Bringing nuclear spins into the picture, we might again
ask the following: (b) Which state is “more” S-T coherent,
|ψ3〉 = (|s〉 ⊗ |⇑〉 + |t1〉 ⊗ |⇓〉)/

√
2 or |ψ4〉 = (|s〉 ⊗ |⇑〉 +

|t0〉 ⊗ |⇑〉 + |t1〉 ⊗ |⇑〉)/
√

3? Finally, regarding the magnetic
interactions that directly drive or indirectly affect coherent
S-T oscillations in the radical-pair state, which are at the
heart of spin dynamics of this system, one might also ask
the following: (c) Which are the interactions promoting S-T
coherence and why?

C. Previous measures of S-T coherence

We first introduced the quantification of S-T coherence in
radical pairs in Ref. [13]. The motivation was the fundamental
description of reaction superoperators, which we claim de-
pends on “how much” S-T coherent are the radical pairs at
any given time (see Ref. [6] for further details). However, the
current work is decoupled from this discussion, because here
we choose kS = kT = k, simplifying the reaction dynamics
considerably. For completeness, we list the previous S-T
coherence quantifiers and comment on their shortcomings.

Our first quantifier [13] was introduced in analogy with
the coherence of a light field in a double-slit interferometer,
pcoh = Tr{ρSTρTS}/[Tr{ρSS}Tr{ρTT}]. One problem with this
definition is that any coherent superposition, e.g., α |s〉 +
β |t0〉, regardless of the coefficients α and β, is mapped into
a maximum (equal to 1) coherence, whereas it would make
intuitive sense that the more asymmetrical the superposition
(e.g., the closer to one is the singlet probability), the smaller
the S-T coherence should be. Yet another problem is that pcoh

is not a permissible measure based on the formal requirements
set forth in Ref. [25], because it is a so-called l2-norm,
i.e., pcoh scales with the square of the off-diagonal elements
of ρ.

In Ref. [14] we introduced the l1-norm C�ρ� =
4
3

∑
j=0,±

√
Tr{ρST|Tj〉〈Tj|ρTS}. This has another two

shortcomings. First, the normalizing factor of 4/3 is incorrect,
because the maximum value of the sum

∑
j=0,± |αsβ j | is not

3/4 but
√

3/2, and occurs for |αs| = 1/
√

2 and |β j | = 1/
√

6
[see Eq. (8) for the definition of αs and β j]. Second, the
sum

∑
j=0,± |αsβ j | is biased towards triplet states, i.e., it

produces a higher coherence measure when more triplet states
enter the superposition, for a given triplet character of the
state. For example, the superpositions 1√

2
|s〉 + 1√

6

∑1
j=−1 |tj〉

and 1√
2
(|s〉 + |t0〉) both have 〈QS〉 = 1/2, i.e., for both it is

equally uncertain whether they are found in the singlet or
triplet subspace upon a measurement of QS, yet the former
is maximally coherent whereas the latter is not. However,
we expect that maximum S-T coherence is attributed to

all pure states having maximum quantum uncertainty in a
measurement of QS or QT. All aforementioned shortcomings
are alleviated by the quantifier defined in the following based
on the quantum relative entropy.

III. FORMAL DEFINITION OF S-T COHERENCE
IN RADICAL PAIRS BASED ON THE QUANTUM

RELATIVE ENTROPY

We will now develop a formal theory of S-T coherence in
radical pairs using a central concept of quantum information,
quantum relative entropy, adapted to our case. The resource
theory of quantum coherence is built [25] on the notion of (i)
incoherent states and (ii) incoherent operations. In Ref. [25]
the authors consider a d-dimensional Hilbert space spanned
by the basis states |i〉, with i = 1, 2, . . . , d , and define as in-
coherent states all density matrices of the form

∑d
i=1 δi |i〉 〈i|,

where the non-negative weights δi sum up to unity.
In our case we consider a d-dimensional Hilbert space of

the radical pair under consideration, which is spanned by d
states, but we do not care about a “global” coherence, but only
about coherence between the singlet and triplet subspaces,
hence the following definition.

A. Definition of S-T incoherent states

Singlet-triplet incoherent radical pairs are those for which
the radical-pair density matrix ρ has the property that ρ =
QSρQS + QTρQT ≡ ρSS + ρTT, or equivalently, those for
which the density matrix has the property that QSρQT +
QTρQS ≡ ρST + ρTS = 0. This definition straightforwardly
results from the identity (1). Let all incoherent states (for a
particular radical-pair Hilbert space) define the set I.

B. Definition of S-T incoherent operations

A set of Kraus operators Kn, with
∑

n K†
n Kn = 1, are called

incoherent [25] if for all n it is KnIK†
n ⊂ I. In our case, the

two projectors QS and QT qualify as a set of incoherent oper-
ations, since Q†

SQS + Q†
TQT = QSQS + QTQT = QS + QT =

1, and for any ρ ⊂ I, i.e., ρ = ρSS + ρTT, it is QSρQS =
ρSS ⊂ I and QTρQT = ρTT ⊂ I. The pair QS and QT are
incoherent operators of central significance for discussing S-T
coherence, but by no means are they the only ones.

For example, any operators acting only on the nuclear spins
are S-T incoherent operators. Consider Kn = 1 ⊗ kn, where
now 1 is the unit matrix in the electronic spin subspace (four-
dimensional), and kn are trace-preserving Kraus operators
acting in the nuclear spin subspace and satisfying

∑
n k†

nkn =
1. Take a density matrix ρ ⊂ I. Then ρ = QSρQS +
QTρQT, so that KnρK†

n = KnQSρQSK†
n + KnQTρQTK†

n . It
can be readily seen that QS and QT commute with
Kn, therefore KnQSρQSK†

n + KnQTρQTK†
n = QSKnρK†

n QS +
QTKnρK†

n QT. Since Kn define a trace-preserving map, KnρK†
n

is also a physical (yet unnormalized) density matrix, call
it R, hence finally KnQSρQSK†

n + KnQTρQTK†
n = QSRQS +

QTRQT ⊂ I. That is, we have shown that for any ρ ⊂ I it
will be KnρK†

n ⊂ I, thus Kn are incoherent operators.
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C. Definition of S-T coherence quantifier based
on relative entropy

For any radical-pair density matrix ρ we define the singlet-
triplet coherence quantifier as

C�ρ� = S�QSρQS + QTρQT� − S�ρ�, (2)

where S�r� is the von Neumann entropy of the density matrix
r. Since radical-pair reactions are non-trace-preserving, the
trace of the radical-pair state ρ is in general 0 � Tr{ρ} � 1.
For the definition (2) to work, we first need to normalize the
radical-pair state ρ with Tr{ρ} (see the Appendix of Ref. [17]
for a relevant discussion). In the following we will always
imply that whenever we calculate C�ρ� we do so for radical-
pair density matrices that have been appropriately normalized
to have unit trace.

At first sight, the quantum relative entropy is not present
in the definition (2). However, Eq. (2) readily follows by first
defining [25]

C�ρ� = min
δ⊂I

S�ρ||δ�, (3)

where now S�ρ||δ� ≡ Tr{ρ log ρ} − Tr{ρ log δ} is the quan-
tum relative entropy of the radical-pair density matrices ρ and
δ. Indeed, by denoting

ρ̂ = QSρQS + QTρQT, (4)

and for δ ⊂ I it is [25] S�ρ||δ� = S�ρ̂||δ� + S�ρ̂� − S�ρ�.
However, since the quantum relative entropy is always pos-
itive or zero, S�ρ̂||δ� � 0, it is seen that minδ⊂I S�ρ̂||δ� = 0,
the minimum obviously taking place for δ = ρ̂, since it is
known that for any density matrix r it is S�r||r� = 0. Hence
C�ρ� = S�ρ||ρ̂� = S�ρ̂� − S�ρ�.

D. Properties of C�ρ�

We here present the basic properties of definition (2).

1. Value of C�ρ� for incoherent states

As required from any acceptable coherence quantifier, for
all ρ ⊂ I it is C�ρ� = 0.

Proof. This follows trivially from the definition (2), since
if r ⊂ I it is r = QSrQS + QTrQT, hence C�r� = S�r� −
S�r� = 0.

2. Minimum value of C�ρ�

For any ρ it is C�ρ� � 0.
Proof. The proof follows from the fact that under a non-

selective (or blind) measurement the entropy does not de-
crease. This can be found in p. 75 of Ref. [32] and p. 92
of Ref. [33]. In our case, defining a measurement by the
Kraus operators QS and QT, which satisfy Q†

SQS + Q†
TQT =

QSQS + QTQT = QS + QT = 1, the nonselective postmea-
surement state is given by QSρQS + QTρQT. Indeed, the mea-
surement results are qs = 1 or qs = 0, taking place with prob-
abilities pS = Tr{ρQS} and pT = Tr{ρQT}, with the selec-
tive postmeasurement states being ρS = QSρQS/pS and ρT =
QTρQT/pT, respectively. The nonselective postmeasurement
state is pSρS + pTρT which indeed equals QSρQS + QTρQT.
Since, by the theorem found in Refs. [32,33] it is S�QSρQS +
QTρQT� � S�ρ�, it follows that indeed C�ρ� � 0.

3. Maximum value of C�ρ�

For any ρ it is C�ρ� � 1.
Proof. First, the quantum relative entropy is jointly convex

in both of its arguments [34], i.e.,

S�λρ1 + (1 − λ)ρ2||λσ1 + (1 − λ)σ2�

� λS�ρ1||σ1� + (1 − λ)S�ρ2||σ2� (5)

for any λ ∈ [0, 1]. Applying this property for ρ1 = ρ2 = ρ,
σ1 = ρS, σ2 = ρT, λ = pS, and given that ρ̂ = pSρS + pTρT,
it follows that

S�ρ||ρ̂� = S�ρ||pSρS + pTρT�

� pSS�ρ||ρS� + pTS�ρ||ρT�. (6)

Now, the interpretation of the quantum relative entropy
S�ρ||σ � is [35] the extent to which one can distinguish two
different states ρ and σ , in particular, by a series of quantum
measurements and their resulting statistics. Let us first con-
sider S�ρ||ρS�. This reflects the extent to which by doing some
measurement on ρ we can use the measurement statistics
to distinguish ρ from ρS. We can choose as measurement
the measurement of QS, the result of which can be either
0 or 1. Clearly if the state we were measuring was ρS =
QSρQS/Tr{ρQS}, we would obtain 1 for every measurement
performed in N identically prepared systems. But if the state
of each of those identical copies is ρ, measuring QS we will
obtain 1 only some of the times. The probability to obtain 1 in
all N such measurements will clearly be pN

S . This is the prob-
ability that ρS would “pass” our test and we would confuse
the actual state ρ with ρS. But it is known [35] that for an
optimal measurement using N identical copies of our system,
the probability that we will mistakenly confuse ρ for ρS is
2−NS�ρ||ρS�. Our choice of measurement is not necessarily op-
timal, hence 2−NS�ρ||ρS� � pN

S , or S�ρ||ρS� � − log[pS]. We
can similarly show that S�ρ||ρT� � − log[pT] = − log[1 −
pS]. Finally, using the inequality (6) we get

C�ρ� � H[pS, pT], (7)

where H[pS, pT] = −pS log pS − pT log pT = −pS log pS −
(1 − pS) log(1 − pS) is the Shannon entropy of the pair of
probabilities {pS, pT}. Since this Shannon entropy has max-
imum 1 (when the logarithms are calculated with base 2), the
maximum occurring for pS = pT = 1/2, we finally show that
the maximum of C�ρ� is 1.

4. Singlet-triplet coherence of pure states

Pure radical-pair states |ψ〉 saturate the bound (7), i.e., it is
C�|ψ〉 〈ψ |� = H[pS, pT], where pS = Tr{|ψ〉 〈ψ | QS}.

Proof. The most general pure state of a radical pair can be
written as

|ψ〉 = αs |s〉 ⊗ |χs〉 +
1∑

j=−1

β j |t j〉 ⊗ |χ j〉 , (8)

where |χs〉 and |χ j〉 are normalized nuclear spin states “living”
in a nuclear spin space of dimension dnuc (see Sec. II A).
Setting ρ = |ψ〉 〈ψ |, in order to calculate C�ρ�, we need to
calculate the entropies S�ρ� and S�ρ̂�. The former is zero
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since ρ is a pure state. To calculate the latter, we write

ρ̂ = QSρQS + QTρQT

= |αs|2 |s〉 〈s| ⊗ |χs〉 〈χs| + |φT〉 〈φT| , (9)

where for brevity we set |φT〉 = ∑1
j=−1 β j |t j〉 ⊗ |χ j〉 for the

triplet-subspace component of the most general pure state
|ψ〉. The matrix ρ̂ clearly has a block-diagonal form, one
block being the singlet and the other the triplet subspace. To
calculate S�ρ̂� we need to find the eigenvalues of ρ̂. They are
easily obtained by finding the eigenvectors and corresponding
eigenvalues of ρ̂ by construction.

For example, the state |s〉 ⊗ |χs〉 is an eigenvector of
the singlet block diagonal of ρ̂ with eigenvalue |αs|2 =
Tr{ρQS} = pS. Remaining in this singlet subspace block-
diagonal, we can span the nuclear spin space with dnuc or-
thogonal basis states, one being |χs〉 itself. Hence the other
dnuc − 1 eigenvalues of the singlet block-diagonal of ρ̂ are
zero. Similarly, the unnormalized state |φT〉 is an eigenstate of
|φT〉 〈φT| with eigenvalue 〈φT|φT〉 = |β−1|2 + |β0|2 + |β1|2 =
Tr{ρQT} = pT. We can clearly span this triplet subspace with
3dnuc orthogonal basis states, one of which is |φT〉 itself.
Hence the other eigenvalues of |φT〉 〈φT| are zero. Thus,
the state ρ̂ has two nonzero eigenvalues, pS = Tr{ρQS} and
pT = Tr{ρQT} = 1 − pS, hence the coherence measure of the
most general pure radical-pair state (8) is exactly equal to
H[pS, pT].

5. States with maximum singlet-triplet coherence

It readily follows that the states having maximum S-T
coherence, equal to 1, are all pure states of the form |ψ〉maxC =

1√
2
|s〉 ⊗ |χs〉 + ∑1

j=−1 c j |tj〉 ⊗ |χ j〉, where
∑1

j=−1 |c j |2 =
1/2, while |χs〉 and |χ j〉 are arbitrary normalized nuclear spin
states.

6. Connection with quantum uncertainty

For the general pure state |ψ〉 of Eq. (8) it can be easily
seen that the quantum uncertainty of QS, given by �qs ≡√

〈ψ | Q2
S |ψ〉 − 〈ψ | QS |ψ〉2 =

√
〈ψ | QS |ψ〉 − 〈ψ | QS |ψ〉2,

is �qs =
√

|αs|2(1 − |αs|2). Evidently, �qs is maximized
for |αs| = 1/

√
2, i.e., the maximally coherent pure states

|ψ〉maxC also have maximum uncertainty in their singlet (or
equivalently triplet) character. This is intuitively satisfactory,
since thinking at the level of a simple qubit, we intuitively
relate the maximum coherence state (|0〉 + |1〉)/

√
2 with

the fact that this state is maximally uncertain regarding a
measurement in the computational basis {|0〉 , |1〉}.

7. Additional comments

All other conditions for an acceptable measure of coher-
ence, such as (i) monotonicity under incoherent completely
positive and trace-preserving maps, (ii) monotonicity under
selective measurements on average, and (iii) convexity, are
automatically satisfied, as has been shown for the relative
entropy measure defined in Ref. [25].
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FIG. 2. Singlet probability Tr{ρtQS} (black solid line), and co-
herence measure C�ρt� (red dashed line), for a two-electron system
evolving by H = ω1s1z + ω2s2z, with the initial state at t = 0 being
|s〉. The S-T Rabi frequency is 
 = ω1 − ω2. (a) Unitary evolution
driven only by H. S-T coherence is zero whenever the state is a pure
singlet (Tr{ρtQS} = 1) or a pure triplet (Tr{ρtQS} = 0), and maxi-
mum (equal to 1) when the state is (|s〉 − i |t0〉)/

√
2. (b) Nonunitary

evolution caused by S-T dephasing at a rate Kd = 
/5.

E. Examples

1. Fictitious radical pair with no nuclear spins

We will first consider a simple and analytic example of
a fictitious radical pair with no nuclear spins, hence a four-
dimensional spin space spanned by |s〉 and |tj〉, with j =
0,±1. In fact, high magnetic fields, at which the Zeeman
terms dominate hyperfine interactions, readily lead to this
approximation and in such cases S-T mixing is driven by
a difference in the g-factor for the electronic spins in the
two radicals [36]. Explicitly, consider a Hamiltonian H =
ω1s1z + ω2s2z, where ω1 
= ω2 are the Larmor frequencies of
the electrons in the two radicals. If the initial state is |ψ0〉 =
|s〉, it is easily seen that |ψt 〉 = cos 
t

2 |s〉 − i sin 
t
2 |t0〉, where


 = ω1 − ω2. Thus the singlet and triplet probabilities are
pS = cos2 
t

2 and pT = sin2 
t
2 , respectively.

The state ρt = |ψt 〉 〈ψt | is pure, hence S�ρt� = 0. The
incoherent state ρ̂t = QSρQS + QTρQT is ρ̂t = pS |s〉 〈s| +
pT |t0〉 〈t0|. It readily follows that the eigenvalues of ρ̂t

are pS and pT, hence S�ρ̂t� = −pS log pS − pT log pT. Thus
the coherence measure for ρt is C�ρt� = S�ρ̂t� − S�ρt� =
−pS log pS − pT log pT. In Fig. 2(a) we plot the time evo-
lution of the singlet probability pS = Tr{ρtQS} and C�ρt�.
Evidently, C�ρt� is zero when |ψt 〉 is a pure singlet or a pure
triplet, and reaches its maximum value of 1 in between the
maxima of pS, i.e., at those times where we have the most
uncertain coherent superposition of |s〉 and |t0〉, of the form

1√
2
(|s〉 − i |t0〉).
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We can now introduce an S-T dephasing through the
operation ρ → ρ − Kd dt (QSρQT + QTρQS), i.e., by
removing from ρ its coherent part ρST + ρTS at a rate Kd

(we will elaborate more about this in the following section).
In the presence of such an S-T dephasing mechanism, a pure
initial state necessarily evolves into a mixed state, which in
general satisfies the master equation dρ/dt = −i[H, ρ] −
Kd (QSρQT + QTρQS). This is easy to solve analytically
in the considered example, since the problem is essentially
reduced to a two-dimensional system spanned by |s〉 and |t0〉.
For Kd < 2|
| the off-diagonal density matrix elements are
oscillatory and decay exponentially at a rate Kd/2. An analytic
expression can be obtained for ρt , but it is a bit cumbersome.
For Kd � 2|
| an excellent approximation is ρt =
1
2 (1 + e−Kdt/2 cos 
t )|s〉〈s| + 1

2 (1 − e−Kdt/2 cos 
t )|t0〉〈t0| +
i
2 e−Kdt/2 sin 
t |s〉〈t0| − i

2 e−Kdt/2 sin 
t |t0〉〈s|.
The singlet probability is now Tr{ρt QS} = 1

2 (1 +
e−Kdt/2 cos 
t ). The eigenvalues of ρt and ρ̂t are e1 = 1

2 (1 −
e−Kdt/2), e2 = 1

2 (1 + e−Kdt/2) and ê1 = 1
2 (1 − e−Kdt/2 cos 
t ),

ê2 = 1
2 (1 + e−Kdt/2 cos 
t ), respectively. Thus we can

readily calculate the entropies S�ρt� and S�ρ̂t�, and from
them C�ρt� = S�ρ̂t� − S�ρt� = −ê1 log ê1 − ê2 log ê2 +
e1 log e1 + e2 log e2. These analytic results are shown in
Fig. 2(b).

2. Incoherent operations on nuclear spins

The phenomenological wealth of coherence phenomena
increases dramatically by considering realistic radical pairs
involving one or more nuclear spins. In particular, plots sim-
ilar to Fig. 2 can also be produced by introducing just one
nuclear spin and calculating the evolution of S-T coherence in
various scenarios. However, here we will explicitly mention
as a second example a more subtle effect having to do with
the fact that the pair {QS, QT} are not the only incoherent
operations, as mentioned in Sec. III B. In the presence of
nuclear spins, there is a mechanism irrelevant to the electronic
spins, by which S-T dephasing can be produced. This can
happen when there is electronic-nuclear entanglement.

Consider in particular a pure radical-pair state of the form
|ψ〉 = (|s〉 ⊗ |⇑〉 + |t0〉 ⊗ |⇓〉)/

√
2. Ignoring for the moment

the electronic states |t1〉 and |t−1〉, so that the electron spin
subspace “looks” two dimensional, the state |ψ〉 is clearly a
maximally entangled state of two qubits, one spanned by the
states |s〉 and |t0〉 and the other by |⇑〉 and |⇓〉. Now, suppose
we perform a measurement on the nuclear spin only, e.g.,
in the z basis, using the Kraus operators K1 = 1 ⊗ |⇑〉 〈⇑|
and K2 = 1 ⊗ |⇓〉 〈⇓|, which evidently leave the electrons
untouched. Yet, because of the electron-nucleus entangle-
ment, these S-T incoherent operators will also damp S-T
coherence, as easily seen by setting ρ = |ψ〉 〈ψ | and con-
sidering K1ρK1 + K2ρK2 = 1

2 |s〉 〈s| ⊗ |⇑〉 〈⇑| + 1
2 |t0〉 〈t0| ⊗

|⇓〉 〈⇓|. The state ρ is maximally S-T coherent, while
K1ρK1 + K2ρK2 has zero S-T coherence.

IV. SINGLET-TRIPLET COHERENCE AS A RESOURCE
FOR MAGNETORECEPTION

We will now use the formally introduced quantifier to
show that S-T coherence is a resource for biological mag-

netoreception. This is not an innocuous statement, and care
should be exercised in arguing for S-T coherence providing
an operational advantage to the chemical compass.

It is known that an anisotropic hyperfine coupling can
render the radical-pair reaction yields dependent on the angle
φ of the external magnetic field with respect to a molecule-
fixed coordinate frame. As is usually the case, we consider a
single-nuclear-spin radical pair, with Hamiltonian

H = s1 · A · I + ω cos φ(s1x + s2x ) + ω sin φ(s1y + s2y),

(10)

where A is the hyperfine tensor coupling the electron spin s1

of one radical with the single nuclear spin I of that radical,
and ω the external magnetic field lying on the x-y plane
and producing the Zeeman terms of the two electronic spins
(we omit the nuclear Zeeman term). We will now calculate
the singlet reaction yield as a function of the angle φ, al-
ways starting at t = 0 with a singlet state for the electrons
and a fully mixed nuclear spin state, ρ0 = QS/Tr{QS}. As
mentioned in Sec. II B, we assume that kS = kT = k, in
which case the quantum dynamics of the radical-pair reac-
tion are simplified, and the differences between our master
equation and Haberkorn’s are less exacerbated. In particu-
lar, when kS = kT = k it is dρ/dt = e−kt R, with dR/dt =
−i[H, R] − k(QSRQT + QTRQS) according to our theory,
whereas dR/dt = −i[H, R] according to Haberkorn’s, i.e.,
we have an additional dephasing term −k(QSRQT + QTRQS)
inherent in our description of the dynamics. In the following
we will anyhow use a significantly stronger dephasing term
of the form −Kd (QSRQT + QTRQS), with Kd � k, hence it
really does not matter for this discussion which of the two
master equations we use [37].

We now calculate the singlet reaction yield, YS(φ) =∫ ∞
0 dtkTr{ρtQS}, and plot it as a function of φ in order to

define the figure of merit for the magnetic compass. We
remind the reader that the yield YS is a function of φ because
the master equation evolving ρ0 into ρt depends on φ through
the Hamiltonian H. An example of such a φ dependence of YS
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FIG. 3. Example of the angular dependence of the singlet re-
action yield, for the Hamiltonian of Eq. (10), having a diagonal
hyperfine tensor with Ayy = Azz = 0, Axx/k = 10, and ω/k = 1. The
figure of merit of the compass is the value δYS, which quantifies the
highest slope of YS vs φ.
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FIG. 4. (a) Correlation map of the compass’ figure of merit δYS vs the S-T coherence averaged along the reaction C, as calculated from the
master equation ρ = e−kt R, with dR/dt = −i[H, R] − Kd (RST + RTS), where H is the Hamiltonian of Eq. (10) including an exchange term.
Each point results from a random set of parameters 0 � Axx, Ayy, Azz � 10k, −10 � J/k � 10, and ω/k = 1. The dephasing rate Kd was given
the values Kd = 0, Kd = k, Kd = 5k, and Kd = 10k, with 5000 points for each. Initial state was always a singlet with mixed nuclear spin,
ρ0 = QS/Tr{QS}. (b) Mean value of δYS vs mean value of C over all 5000 points for each value of Kd . (c) Correlation coefficient between δYS

and C for each value of Kd . (d1)–(d4) Distribution of YS and YT for each value of Kd . Also shown is the mean of each distribution (black lines).
The distributions are seen to become more narrow at high Kd . This is because the dephasing operation is equivalent to a quantum measurement
with Kraus operators QS and QT, the narrowing reflecting the measurement-induced localization of the radical pair’s state.

is shown in Fig. 3. As is usually the case, we define the figure
of merit by

δYS = max
φ0

|YS(φ0 + ε) − YS(φ0 − ε)|. (11)

A. Correlation of δYS and C
We will now explore the connection between S-T coher-

ence quantified by C and the figure of merit δYS. Since C
depends on the time-dependent density matrix ρt , we define
a mean value of C�ρt� along the whole reaction as C =∫ ∞

0 dtke−ktC�ρt�. We remind the reader that in order to cal-
culate C�ρt� using the definition (2), we always have to first
normalize ρt by Tr{ρt} (since this trace changes with time due
to the reaction), and then calculate the entropies in (2). We
use the Hamiltonian of Eq. (10), and for completeness we add
an exchange term of the form −Js1 · s2. We use a diagonal
hyperfine tensor, randomizing all three diagonal elements Aj j ,
with j = x, y, x. We also randomize the exchange coupling J .
For each set of parameters Axx, Ayy, Azz, and J we calculate δYS

and C. Additionally, we calculate the mean values along the

reaction of the singlet and triplet expectation values, 〈QS〉t =
Tr{ρtQS} and 〈QT〉t = Tr{ρtQT}, which are nothing other than
the singlet and triplet reaction yields, YS = ∫ ∞

0 dtkTr{ρtQS}
and YT = ∫ ∞

0 dtkTr{ρtQT}, respectively. The mean values C,
YS, and YT are calculated for the particular φ0 maximizing δYS

[see Eq. (11)].
Now, the density matrix evolution is ρt = e−kt R, where

the density matrix R satisfies the master equation dR/dt =
−i[H, R] − Kd (QSRQT + QTRQS). We repeat the aforemen-
tioned calculations for four different values of the dephasing
rate Kd , in particular, for Kd = 0, Kd = k, Kd = 5k, and Kd =
10k. That is, we vary Kd appreciably in order to explore the
effect of suppressing S-T coherence. The main results of this
simulation, making a clear case that S-T coherence is indeed
a resource for magnetoreception, are shown in Fig. 4. We
will make a number of observations, and then provide their
interpretation in the following section.

(1) In Fig. 4(a) we show for each value of the dephasing
rate Kd the distribution of 5000 pairs of δYS and C̄. We first
note that by increasing Kd , the distribution moves to smaller
δYS and smaller C̄. This is more evident in Fig. 4(b), where we
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plot the mean value of these two quantities over the sample of
5000 points.

(2) Irrespective of Kd , there seems to be an appreciable
correlation coefficient (around 0.3) between δYS and C, as
shown in Fig. 4(c). Moreover, the correlation between the
sample means 〈〈δYS〉〉 and 〈〈C̄〉〉, presented in Fig. 4(b), is
much larger, and has the value 0.95.

(3) Finally, in Figs. 4(d1)–4(d4) we plot the distribution
of the singlet and triplet character of the radical-pair state
along the reaction, quantified by the singlet and triplet reaction
yields YS and YT, respectively.

B. Interpretation

We will now interpret the aforementioned observations.
The first question to ask is, does singlet-triplet coherence
provide a quantum advantage to the operation of the compass?
The answer should clearly be affirmative, because of three
facts: (a) Due to the correlation between δYS and C̄ at a specific
value of Kd , large values of S-T coherence C are on average
connected with large figures of merit δYS for the compass.
(b) Strong S-T dephasing produced by increasing Kd leads
to small values of C̄ and small values of δYS. (c) At the
same time the average singlet and triplet populations, as seen
in Figs. 4(d1)–4(d4), are not affected by increasing Kd . In
other words, we have a process by which an initially singlet
radical-pair state is coherently transformed into a triplet, and
back and forth, but it is the underlying coherence and not the
population exchange that seems to be directly correlated with
the figure of merit δYS. It should be clear that we were able
to arrive at these conclusions because we have an explicit
quantifier of S-T coherence.

To be precise, however, we should limit the affirmative
answer to this statement: What the previous findings demon-
strate is that S-T coherence allows for a quantum advan-
tage not present in conditions of singlet-triplet incoherence.
Whether such an advantage is actually realized in nature, or
in other words, whether the actual molecular parameters of
the naturally occurring compass are such that the compass
operating point is among those exhibiting large S-T coherence
is a different question. However, this is not of fundamental
interest for quantum biology. Of interest is what is in principle
possible with such biochemical spin-dependent reactions. If
it is found that they naturally work in a regime of large S-T
coherence it would be quite an exciting finding, but even if
this is not the case, knowing what is in principle possible
would allow for the design of an artificial compass (or mag-
netometer in general) taking advantage of quantum coherence
effects.

Put differently, since the correlation coefficient of δYS with
C is at the level of 0.3 [Fig. 4(c)], the mean of δYS over
the 5000 points is seen to drop with the decreasing mean of
C [Fig. 4(b)], but not excessively, i.e., by about 60% from
Kd = 0 up to Kd = 10k. In contrast, considering the subset
of highest δYS for each Kd , the drop with decreasing C is
much more significant (order of magnitude). However, as
previously mentioned, it is unknown if the natural compass
has evolved exploring those molecular parameters placing it at
the high-δYS and high-C regime [the upper part of the stripes
in Fig. 4(a)].
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FIG. 5. (a) Correlation between the compass figure of merit δYS

and the singlet-triplet coherence measure C̄ (left y axis, black disks)
and the mean value of δYS (right y axis, red squares), for various
subintervals of the exchange coupling, shown in the gray boxes (in
units of the reaction rate k). Here, Kd/k = 1. (b) Same correlation,
but for the particular subinterval |J| < 2 and for all four values of Kd .

C. The role of the exchange interaction

The exchange interactions are known to play a subtle role
in magnetoreception [38,39]. To explore their role, we in-
cluded them in the Hamiltonian with an exchange coupling in
the interval −10k � J � 10k. Now we split this interval into
five subintervals of width �J = 4k, and study the correlation
of the figure of merit δYS with the S-T coherence C̄. The result
is plotted in Fig. 5(a) for the case Kd = k. In the same figure
(right y axis) we also plot the mean value, 〈〈δYS〉〉, of δYS for
those same subintervals of J .

The observed behavior of 〈〈δYS〉〉 with J is known since the
work of Ref. [38], i.e., it is already known that large values
of J suppress the figure of merit δYS of the compass, as is
also evident in Fig. 5(a). We here observe two additional,
counterintuitive effects. Namely, (i) for small values of J it
is the correlation between singlet-triplet coherence C̄ and the
figure of merit δYS that is significantly suppressed, to recover
for large values of |J|. (ii) There is also an asymmetry in this
correlation between J > 0 and J < 0.

The interpretation of both of these observations, being
rather challenging, will be left as an open problem. However,
we will speculate on the interpretation of Fig. 5. If the ex-
change coupling |J| for a realistic compass is indeed large,
we can still make the case that S-T coherence is a resource
because of the large correlation observed between δYS and C̄
at large |J|, albeit at smaller absolute values of δYS. On the
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other hand, if |J| is small, in Fig. 5(b) we observe that the
correlation between δYS and C̄ recovers for large values of Kd .
Based on this, we anticipate that there is another regime of
the reaction dynamics, which we have not addressed in this
work, and where the correlation could be significant even for
small |J|. Namely, we here considered equal recombination
rates kS = kT = k, in order to simplify reaction dynamics and
decouple from the ongoing discussion on the form of the
reaction superoperators. However, the regime kT � kS is also
interesting [39], and based on Fig. 5(b) it is conceivable that
in this regime there is a large correlation between the figure
of merit and S-T coherence for all values of the exchange
coupling J .

V. CONCLUSIONS

Quantum coherence is a fundamental resource for modern
quantum technology. Its formal quantification has been estab-
lished in recent years. One quantifier of quantum coherence is
the quantum relative entropy between the density matrix de-
scribing the quantum state of the system under consideration
and its diagonal version.

We have here adapted this quantifier to radical pairs, defin-
ing singlet-triplet coherence as the relative entropy between
the radical-pair density matrix and its block-diagonal version
in the singlet-triplet subspaces. We have then established
the properties of this singlet-triplet coherence quantifier at a
formal level. Having an explicit quantifier of singlet-triplet

coherence, one can study the fundamental properties of bio-
logical magnetic sensing in various regimes, for example, in
regimes where the relevant spin states are highly coherent or
highly incoherent.

By doing so, we have shown that singlet-triplet coherence
is indeed a quantum resource for magnetoreception, since (i) it
is highly correlated with the figure of merit of the radical-pair
compass, (ii) both singlet-triplet coherence and the figure of
merit decrease significantly in the presence of singlet-triplet
dephasing, and (iii) the singlet and triplet populations remain
on average unaffected by such dephasing.

Finally, we explored the subtle role played by exchange
interactions in promoting the correlation between singlet-
triplet coherence and the figure of merit of the chemical
compass. Along the same lines one could explore the role
of other interactions entering the Hamiltonian, in particular,
when more nuclear spins are included.

Last but not least, while defining the incoherent operations
needed in the formulation of singlet-triplet coherence quan-
tification, we gave an example where incoherent operations
on nuclear spins only can have a significant effect on the
singlet-triplet coherence, which is of an electronic nature.
This can happen when nuclear spins and electrons in the
radical pair are entangled, which is in general the case. This
observation opens up a promising direction of studying the
effects of nuclear spin dynamics, e.g., the interaction with
the environment of the radical pair’s nuclear spins, and their
consequences on radical-pair spin dynamics.

[1] U. E. Steiner and T. Ulrich, Magnetic field effects in chemical
kinetics and related phenomena, Chem. Rev. 89, 51 (1989).

[2] T. Ritz, S. Adem, and K. Schulten, A model for photoreceptor-
based magnetoreception in birds, Biophys. J. 78, 707 (2000).

[3] S. Johnsen and K. J. Lohmann, Magnetoreception in animals,
Phys. Today 61(3), 29 (2008).

[4] I. F. Céspedes-Camacho and J. Matysik, in The Biophysics
of Photosynthesis, edited by J. Goldbeck and A. van der Est
(Springer, New York, 2014).

[5] S. F. Huelga and M. B. Plenio, Vibrations, quanta and biology,
Contemp. Phys. 54, 181 (2013).

[6] I. K. Kominis, The radical-pair mechanism as a paradigm for
the emerging science of quantum biology, Mod. Phys. Lett. B
29, 1530013 (2015).

[7] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal,
Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, Evidence
for wavelike energy transfer through quantum coherence in
photosynthetic systems, Nature (London) 446, 782 (2007).

[8] F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio,
Highly efficient energy excitation transfer in light-harvesting
complexes: The fundamental role of noise-assisted transport,
J. Chem. Phys. 131, 105106 (2009).

[9] M. Tiersch and H. J. Briegel, Decoherence in the chemical
compass: The role of decoherence for avian magnetoreception,
Philos. Trans. R. Soc. London, Ser. A 370, 4517 (2012).

[10] J. A. Pauls, Y. Zhang, G. P. Berman, and S. Kais, Quantum
coherence and entanglement in the avian compass, Phys. Rev. E
87, 062704 (2013).

[11] L.-S. Guo, B.-M. Xu, J. Zou, and B. Shao, Quantifying mag-
netic sensitivity of radical pair based compass by quantum
Fisher information, Sci. Rep. 7, 5826 (2017).

[12] I. K. Kominis, Quantum Zeno effect explains magnetic-
sensitive radical-ion-pair reactions, Phys. Rev. E 80, 056115
(2009).

[13] I. K. Kominis, Radical-ion-pair reactions are the biochemical
equivalent of the optical double slit experiment, Phys. Rev. E
83, 056118 (2011).

[14] M. Kritsotakis and I. K. Kominis, Retrodictive derivation of the
radical-ion-pair master equation and Monte Carlo simulation
with single-molecule quantum trajectories, Phys. Rev. E 90,
042719 (2014).

[15] K. Tsampourakis and I. K. Kominis, Quantum trajectory tests
of radical-pair quantum dynamics in CIDNP measurements
of photosynthetic reaction centers, Chem. Phys. Lett. 640, 40
(2015).

[16] R. Haberkorn, Density matrix description of spin-selective rad-
ical pair reactions, Mol. Phys. 32, 1491 (1976).

[17] K. Mouloudakis and I. K. Kominis, Quantum information
processing in the radical-pair mechanism: Haberkorn’s theory
violates the Ozawa entropy bound, Phys. Rev. E 95, 022413
(2017).

[18] P. J. Hore and H. Mouritsen, The radical-pair mechanism of
magnetoreception, Ann. Rev. Biophys. 45, 299 (2016).

[19] K. M. Vitalis and I. K. Kominis, Quantum-limited biochemi-
cal magnetometers designed using the Fisher information and
quantum reaction control, Phys. Rev. A 95, 032129 (2017).

023206-9

https://doi.org/10.1021/cr00091a003
https://doi.org/10.1021/cr00091a003
https://doi.org/10.1021/cr00091a003
https://doi.org/10.1021/cr00091a003
https://doi.org/10.1016/S0006-3495(00)76629-X
https://doi.org/10.1016/S0006-3495(00)76629-X
https://doi.org/10.1016/S0006-3495(00)76629-X
https://doi.org/10.1016/S0006-3495(00)76629-X
https://doi.org/10.1063/1.2897947
https://doi.org/10.1063/1.2897947
https://doi.org/10.1063/1.2897947
https://doi.org/10.1063/1.2897947
https://doi.org/10.1063/1.2897947
https://doi.org/10.1080/00405000.2013.829687
https://doi.org/10.1080/00405000.2013.829687
https://doi.org/10.1080/00405000.2013.829687
https://doi.org/10.1080/00405000.2013.829687
https://doi.org/10.1142/S0217984915300136
https://doi.org/10.1142/S0217984915300136
https://doi.org/10.1142/S0217984915300136
https://doi.org/10.1142/S0217984915300136
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature05678
https://doi.org/10.1063/1.3223548
https://doi.org/10.1063/1.3223548
https://doi.org/10.1063/1.3223548
https://doi.org/10.1063/1.3223548
https://doi.org/10.1098/rsta.2011.0488
https://doi.org/10.1098/rsta.2011.0488
https://doi.org/10.1098/rsta.2011.0488
https://doi.org/10.1098/rsta.2011.0488
https://doi.org/10.1103/PhysRevE.87.062704
https://doi.org/10.1103/PhysRevE.87.062704
https://doi.org/10.1103/PhysRevE.87.062704
https://doi.org/10.1103/PhysRevE.87.062704
https://doi.org/10.1038/s41598-017-06187-y
https://doi.org/10.1038/s41598-017-06187-y
https://doi.org/10.1038/s41598-017-06187-y
https://doi.org/10.1038/s41598-017-06187-y
https://doi.org/10.1103/PhysRevE.80.056115
https://doi.org/10.1103/PhysRevE.80.056115
https://doi.org/10.1103/PhysRevE.80.056115
https://doi.org/10.1103/PhysRevE.80.056115
https://doi.org/10.1103/PhysRevE.83.056118
https://doi.org/10.1103/PhysRevE.83.056118
https://doi.org/10.1103/PhysRevE.83.056118
https://doi.org/10.1103/PhysRevE.83.056118
https://doi.org/10.1103/PhysRevE.90.042719
https://doi.org/10.1103/PhysRevE.90.042719
https://doi.org/10.1103/PhysRevE.90.042719
https://doi.org/10.1103/PhysRevE.90.042719
https://doi.org/10.1016/j.cplett.2015.10.001
https://doi.org/10.1016/j.cplett.2015.10.001
https://doi.org/10.1016/j.cplett.2015.10.001
https://doi.org/10.1016/j.cplett.2015.10.001
https://doi.org/10.1080/00268977600102851
https://doi.org/10.1080/00268977600102851
https://doi.org/10.1080/00268977600102851
https://doi.org/10.1080/00268977600102851
https://doi.org/10.1103/PhysRevE.95.022413
https://doi.org/10.1103/PhysRevE.95.022413
https://doi.org/10.1103/PhysRevE.95.022413
https://doi.org/10.1103/PhysRevE.95.022413
https://doi.org/10.1146/annurev-biophys-032116-094545
https://doi.org/10.1146/annurev-biophys-032116-094545
https://doi.org/10.1146/annurev-biophys-032116-094545
https://doi.org/10.1146/annurev-biophys-032116-094545
https://doi.org/10.1103/PhysRevA.95.032129
https://doi.org/10.1103/PhysRevA.95.032129
https://doi.org/10.1103/PhysRevA.95.032129
https://doi.org/10.1103/PhysRevA.95.032129


I. K. KOMINIS PHYSICAL REVIEW RESEARCH 2, 023206 (2020)

[20] J. A. Jones and P. J. Hore, Spin-selective reactions of radical
pairs act as quantum measurements, Chem. Phys. Lett. 488, 90
(2010).

[21] T. P. Fay, L. P. Lindoy, and D. E. Manolopoulos, Spin-
selective electron transfer reactions of radical pairs: Beyond
the Haberkorn master equation, J. Chem. Phys. 149, 064107
(2018).

[22] H. G. Hiscock, T. W. Hiscock, D. R. Kattnig, T. Scrivener,
A. M. Lewis, D. E. Manolopoulos, and P. J. Hore, Navigating
at night: Fundamental limits on the sensitivity of radical pair
magnetoreception under dim light, Q. Rev. Biophys. 52, e9
(2019).

[23] J. Cai and M. B. Plenio, Chemical Compass Model for Avian
Magnetoreception as a Quantum Coherent Device, Phys. Rev.
Lett. 111, 230503 (2013).

[24] T. P. Fay, L. P. Lindoy, D. E. Manolopoulos, and P. J. Hore, How
quantum is radical pair magnetoreception?, Faraday Discuss.
221, 77 (2020).

[25] T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying
Coherence, Phys. Rev. Lett. 113, 140401 (2014).

[26] A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium: Quan-
tum coherence as a resource, Rev. Mod. Phys. 89, 041003
(2017).

[27] I. Marvian and R. W. Spekkens, How to quantify coherence:
Distinguishing speakable and unspeakable notions, Phys. Rev.
A 94, 052324 (2016).

[28] A. Winter and D. Yang, Operational Resource Theory of Coher-
ence, Phys. Rev. Lett. 116, 120404 (2016).

[29] C. Radhakrishnan, M. Parthasarathy, S. Jambulingam, and T.
Byrnes, Distribution of Quantum Coherence in Multipartite
Systems, Phys. Rev. Lett. 116, 150504 (2016).

[30] K. Bu, U. Singh, S.-M. Fei, A. K. Pati, and J. Wu, Maximum
Relative Entropy of Coherence: An Operational Coherence
Measure, Phys. Rev. Lett. 119, 150405 (2017).

[31] C. Radhakrishnan, Z. Lü, J. Jing, and T. Byrnes, Dynamics of
quantum coherence in a spin-star system: Bipartite initial state
and coherence distribution, Phys. Rev. A 100, 042333 (2019).

[32] K. Jacobs, Quantum Measurement Theory and its Applications
(Cambridge University Press, Cambridge, UK, 2014).

[33] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, UK, 2002).

[34] M. Ohya and N. Watanabe, Quantum entropy and its ap-
plications to quantum communication and statistical physics,
Entropy 12, 1194 (2010).

[35] V. Vedral, The role of relative entropy in quantum information
theory, Rev. Mod. Phys. 74, 197 (2002).

[36] A. V. Veselov, V. I. Melekhov, O. A. Anisimov, and Yu. N.
Molin, The induction of quantum beats by the �g mechanism
in radical ion pair recombination, Chem. Phys. Lett. 136, 263
(1987).

[37] We note that the dephasing term −k(QSRQT + QTRQS) is of
a Lindblad form, because due to the identity R = QSRQS +
QTRQT + QSRQT + QTRQS, the dephasing term is identically
equal to −k(QSR + RQS − 2QSRQS), which is a form fre-
quently used in our previous work.

[38] O. Efimova and P. J. Hore, Role of exchange and dipolar
interactions in the radical pair model of the avian magnetic
compass, Biophys. J. 94, 1565 (2008).

[39] A. T. Dellis and I. K. Kominis, The quantum Zeno effect
immunizes the avian compass against the deleterious effects
of exchange and dipolar interactions, Biosystems 107, 153
(2012).

023206-10

https://doi.org/10.1016/j.cplett.2010.01.063
https://doi.org/10.1016/j.cplett.2010.01.063
https://doi.org/10.1016/j.cplett.2010.01.063
https://doi.org/10.1016/j.cplett.2010.01.063
https://doi.org/10.1063/1.5041520
https://doi.org/10.1063/1.5041520
https://doi.org/10.1063/1.5041520
https://doi.org/10.1063/1.5041520
https://doi.org/10.1017/S0033583519000076
https://doi.org/10.1017/S0033583519000076
https://doi.org/10.1017/S0033583519000076
https://doi.org/10.1017/S0033583519000076
https://doi.org/10.1103/PhysRevLett.111.230503
https://doi.org/10.1103/PhysRevLett.111.230503
https://doi.org/10.1103/PhysRevLett.111.230503
https://doi.org/10.1103/PhysRevLett.111.230503
https://doi.org/10.1039/C9FD00049F
https://doi.org/10.1039/C9FD00049F
https://doi.org/10.1039/C9FD00049F
https://doi.org/10.1039/C9FD00049F
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/PhysRevA.94.052324
https://doi.org/10.1103/PhysRevA.94.052324
https://doi.org/10.1103/PhysRevA.94.052324
https://doi.org/10.1103/PhysRevA.94.052324
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.116.150504
https://doi.org/10.1103/PhysRevLett.116.150504
https://doi.org/10.1103/PhysRevLett.116.150504
https://doi.org/10.1103/PhysRevLett.116.150504
https://doi.org/10.1103/PhysRevLett.119.150405
https://doi.org/10.1103/PhysRevLett.119.150405
https://doi.org/10.1103/PhysRevLett.119.150405
https://doi.org/10.1103/PhysRevLett.119.150405
https://doi.org/10.1103/PhysRevA.100.042333
https://doi.org/10.1103/PhysRevA.100.042333
https://doi.org/10.1103/PhysRevA.100.042333
https://doi.org/10.1103/PhysRevA.100.042333
https://doi.org/10.3390/e12051194
https://doi.org/10.3390/e12051194
https://doi.org/10.3390/e12051194
https://doi.org/10.3390/e12051194
https://doi.org/10.1103/RevModPhys.74.197
https://doi.org/10.1103/RevModPhys.74.197
https://doi.org/10.1103/RevModPhys.74.197
https://doi.org/10.1103/RevModPhys.74.197
https://doi.org/10.1016/0009-2614(87)80248-8
https://doi.org/10.1016/0009-2614(87)80248-8
https://doi.org/10.1016/0009-2614(87)80248-8
https://doi.org/10.1016/0009-2614(87)80248-8
https://doi.org/10.1529/biophysj.107.119362
https://doi.org/10.1529/biophysj.107.119362
https://doi.org/10.1529/biophysj.107.119362
https://doi.org/10.1529/biophysj.107.119362
https://doi.org/10.1016/j.biosystems.2011.11.007
https://doi.org/10.1016/j.biosystems.2011.11.007
https://doi.org/10.1016/j.biosystems.2011.11.007
https://doi.org/10.1016/j.biosystems.2011.11.007

