
PHYSICAL REVIEW RESEARCH 2, 023203 (2020)

Role of fluctuations in the yielding transition of two-dimensional glasses
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We numerically study yielding in two-dimensional glasses which are generated with a very wide range of
stabilities by swap Monte Carlo simulations and then slowly deformed at zero temperature. We provide strong
numerical evidence that stable glasses yield via a nonequilibrium discontinuous transition in the thermodynamic
limit. A critical point separates this brittle yielding from the ductile one observed in less stable glasses. We find
that two-dimensional glasses yield similarly to their three-dimensional counterparts but display larger sample-to-
sample disorder-induced fluctuations, stronger finite-size effects, and rougher spatial wandering of the observed
shear bands. These findings strongly constrain effective theories of yielding.
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I. INTRODUCTION

Amorphous solids encompass a wide variety of systems
ranging from molecular and metallic glasses to granular me-
dia, also including foams, pastes, emulsions, and colloidal
glasses. Their mechanical response to a slowly applied de-
formation exhibits features such as localized plastic rear-
rangements, avalanche-type motion, the emergence of strain
localization, and shear bands [1–5]. The universality of these
phenomena suggests that a unified description may be possi-
ble. When slowly deformed at low temperature from an initial
quiescent state, amorphous solids yield beyond some finite
level of applied strain and reach a steady state characterized
by plastic flow. Understanding yielding is a central issue in
materials science, where one would like to avoid the unwanted
sudden failure of deformed glass samples [6]. It is also
a challenging problem in nonequilibrium statistical physics
[1].

The ways in which amorphous materials yield can be clas-
sified in two main categories: the “brittle” extreme, where the
sample catastrophically breaks into pieces and shows macro-
scopic shear bands [6], as often observed in molecular and
metallic glasses, and the “ductile” behavior in which plastic
deformation increases progressively [4], commonly found in
soft-matter glassy systems. The key question is whether the
observed variety of yielding behaviors should be described by
(i) completely distinct approaches, with, e.g., ductile yielding
being describable by soft glassy rheology models [7] while
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brittle yielding falls into the realm of the theory of fracture
[8–10]; (ii) as a unique phenomenon, taken as the ubiquitous
limit of stability of a strained solid in the form of a critical
spinodal [11–14], or (iii) as we have recently argued on the
basis of mean-field elastoplastic models and simulations of
a three-dimensional atomic glass [15], within a unique theo-
retical framework but with the nature of yielding depending
on the degree of effective disorder that is controlled by the
preparation of the amorphous solid. In the latter case and in
analogy with an athermally driven random-field Ising model
(RFIM) [16], yielding evolves from a mere crossover (for
poorly annealed samples) to a nonequilibrium discontinuous
transition past a spinodal point (for well-annealed, very stable
samples); the transition between these two regimes is marked
by a critical point that takes place for a specific glass prepara-
tion [17] (see also a different approach [18]). Here we focus
on a uniform shear deformation, but a similar scenario would
apply to an athermal quasistatic oscillatory shear protocol
[19,20]. Strictly speaking, these sharp transitions can only be
observed at zero temperature in strain-controlled quasistatic
protocols [21]. However, temperature is likely to play a minor
role in realistic situations given the large energy scales at play.
In fact, there is experimental evidence that a given material
may indeed show brittle or ductile yielding, depending on the
preparation history of the sample [22–26].

If yielding is a bona fide (albeit nonequilibrium) discontin-
uous phase transition ending in a critical point akin to that of
a RFIM, one should wonder about its universality class and
its dependence on space dimension. By default or with the as-
sumption that the phenomenology is qualitatively unchanged
when changing dimension, many of the numerical studies of
yielding in model amorphous solids have been carried out in
two dimensions (2D) [27–29]. Whereas this may be legitimate
when focusing on the flowing steady state or on very ductile
behavior, one should be more cautious about the role of spatial
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fluctuations on the nature, and even the existence, of the
yielding transition itself as one decreases the dimension of
space. Fluctuations of the order parameter are expected to
change the values of the exponents of the critical point as
dimension is decreased below an upper critical dimension at
which the mean-field description becomes qualitatively valid.
More importantly, they smear the transition below a lower
critical dimension. In the standard RFIM with ferromagnetic
short-range interactions and short-range correlated random
fields, this lower critical dimension has been proven to be
D = 2 for the equilibrium behavior [30] and, although still
debated [31–33], appears to also be D = 2 for the out-of-
equilibrium situation of the quasistatically driven RFIM at
zero temperature. However, we expect that the relevant RFIM
providing an effective theory for yielding is not the standard
one. It is indeed known that elastic interactions in amorphous
solids are long-ranged and anisotropic [34,35] instead of
short-ranged ferromagnetic, as shown by the appearance of
strong anisotropic strain localization in the form of shear
bands.

Therefore, a careful study of yielding in 2D model atomic
glasses as a function of preparation is both of fundamental
interest and relevant to two-dimensional physical materials,
such as dry foams [24], grains [36], or silica glasses [37].
This is what we report in this article, where we consider
glass samples that are prepared by optimized swap Monte
Carlo simulations [38,39] in a wide range of stability from
poorly annealed glasses to very stable glasses and that are
sheared through an athermal quasistatic protocol. We provide
strong evidence that strained 2D stable glasses yield through
a sharp discontinuous stress drop, which from finite-size
scaling analysis survives in the thermodynamic limit, as in
three dimensions (3D). As the stability of the glass decreases,
brittleness decreases, and below a critical point, which is
characterized by a diverging susceptibility, yielding becomes
smooth. Compared to the 3D case, we find that the 2D systems
are subject to larger sample-to-sample fluctuations, stronger
finite-size effects, and rougher spatial wandering of the shear
bands.

This paper is organized as follows. We describe the simula-
tion methods in Sec. II. We demonstrate that two-dimensional
stable glasses yield via a nonequilibrium discontinuous tran-
sition in Sec. III A. Then we show that the brittle yielding in
2D displays larger sample-to-sample disorder-induced fluc-
tuations with stronger finite-size effects in Sec. III B, and
rougher spatial wandering of the observed shear bands in
Sec. III C. Section III D presents a critical point separating the
brittle and ductile yielding. Finally, we conclude our results in
Sec. IV.

II. SIMULATION METHODS

A. Model

The two-dimensional glass-forming model consists of par-
ticles with purely repulsive interactions and a continuous size
polydispersity [38,39]. Particle diameters di are randomly
drawn from a distribution of the form f (d ) = Ad−3, for
d ∈ [dmin, dmax], where A is a normalization constant. The
size polydispersity is quantified by δ = (d2 − d

2
)1/2/d , where

the overline denotes an average over the distribution f (d ).

Here we choose δ = 0.23 by imposing dmin/dmax = 0.449.
The average diameter d sets the unit of length. The soft-disk
interactions are pairwise and described by an inverse power-
law potential,

vi j (r) = v0

(
di j

r

)12

+ c0 + c1

(
r

di j

)2

+ c2

(
r

di j

)4

, (1)

di j = (di + d j )

2
(1 − ε|di − d j |), (2)

where v0 sets the unit of energy (and of temperature with
the Boltzmann constant kB ≡ 1), and ε = 0.2 quantifies the
degree of nonadditivity of particle diameters. We introduce
ε > 0 in the model to suppress fractionation and thus enhance
the glass-forming ability. The constants c0, c1, and c2 enforce
a vanishing potential and continuity of its first- and second-
order derivatives at the cutoff distance rcut = 1.25di j . We
simulate a system with N particles within a square cell of
area V = L2, where L is the linear box length, under periodic
boundary conditions, at a number density ρ = N/V = 1. We
also compare the results with the corresponding results of the
3D system studied in Ref. [15].

B. Glass preparation

Glass samples have been prepared by first equilibrating
liquid configurations at a finite temperature Tini (which is
sometimes referred to as the fictive temperature of the glass
sample) and then performing a rapid quench to T = 0, the
temperature at which the samples are subsequently deformed.
We prepare equilibrium configurations for the polydisperse
disks using swap Monte Carlo simulations [38,40]. With
probability Pswap = 0.2, we perform a swap move where we
pick two particles at random and attempt to exchange their
diameters, and with probability 1 − Pswap = 0.8, we perform
conventional Monte Carlo translational moves. To perform
the quench from the obtained equilibrium configurations at
Tini down to zero temperature, we use the conjugate-gradient
method [41].

The preparation temperature Tini then uniquely controls the
stability of glass. We consider a wide range of preparation
temperatures, from Tini = 0.035 to Tini = 0.200. To better
characterize this temperature span, we give some empiri-
cally determined representative temperatures of the model:
onset of slow dynamics [42] takes place at Tonset ≈ 0.23,
the dynamical mode-coupling crossover [43] at Tmct ≈ 0.11,
and the estimated experimental glass transition temperature,
obtained from extrapolation of the relaxation time [38], at
Tg ≈ 0.068. Note that these values are slightly different from
those presented in Ref. [39] due to a small difference in
the number density ρ. Our range of fictive temperature Tini

therefore covers from slightly below the onset temperature to
significantly below the estimated experimental glass transition
temperature.

C. Mechanical loading

We have performed strain-controlled athermal quasistatic
shear (AQS) deformation using Lees-Edwards boundary con-
ditions [44]. The AQS shear method consists of a succession
of tiny uniform shear deformation with �γ = 10−4, followed
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FIG. 1. (a) Stress-strain curves for several typical samples of
size N = 64 000 characterized for a wide span of preparation
temperature Tini. From top to bottom: Tini = 0.035, 0.050, 0.070,

0.100, 0.120, 0.150, and 0.200. For each Tini, three independent
samples are shown. (b) Averaged stress-strain curves at Tini = 0.035
for several values of N . (c) Disconnected susceptibility χdis at Tini =
0.035 for several values of N . (d) Peak values of the connected and
disconnected susceptibilities, χ peak

con and χ
peak
dis , at Tini = 0.035. The

straight lines are the predicted scaling behaviors (see Appendix A).

by energy minimization via the conjugate-gradient method.
The AQS deformation is performed along the x direction up
to the maximum strain γmax = 0.2. Note that during the AQS
deformation, the system is always located in a potential energy
minimum (except, of course, during the transient conjugate-
gradient minimization), i.e., it stays at T = 0.

To obtain the averaged values of the various observables,
〈(· · · )〉, in the simulations, we average over 800, 700, 400,
200, 200, 200, 200, and 100 samples for N = 1000, 2000,

4000, 8000, 16 000, 32 000, 64 000, and 128 000, respec-
tively. For the lowest Tini = 0.035, we average over 400
samples for N = 8000, 16 000, 32 000, and 64 000 systems.

D. Nonaffine displacement

We consider the local nonaffine displacement of a given
particle relative to its nearest-neighbor particles, D2

min [45].
D2

min is always measured between the origin (γ = 0) and a
given strain γ . We define nearest neighbors by using the cutoff
radius of the interaction range, Rcut = 3.0d . We determine the
nearest neighbors of a particle from the configuration at γ = 0.

III. RESULTS

A. Nonequilibrium discontinuous yielding transition

Figure 1(a) shows the stress-strain curves of typical sam-
ples for several values of Tini. The curves show different
types of behavior depending on the initial stability: monotonic
crossover for poorly annealed samples (Tini = 0.150–0.200),
mild stress overshoot for ordinary computer glass samples
(Tini = 0.100–0.120), and a sharp discontinuous stress drop
for very stable samples (Tini = 0.035–0.070). This plot is

qualitatively similar to that found in 3D [15]: ductile yielding
is observed for higher Tini and appears to continuously trans-
form into brittle yielding below Tini ≈ 0.10–0.12.

We first give evidence through finite-size scaling analysis
that brittle yielding persists in 2D as a nonequilibrium first-
order (or discontinuous) transition. For the most stable glass
considered (Tini = 0.035), we show in Figs. 1(b) and 1(c) the
stress-strain curves after averaging over many samples and the
so-called “disconnected” susceptibility [30],

χdis = N (〈σ 2〉 − 〈σ 〉2), (3)

where 〈· · · 〉 denotes an average over samples. As N is in-
creased, the slope of the drop following the stress overshoot
becomes steeper, suggesting that the averaged stress-strain
curve shows a discontinuous jump as N → ∞. As shown be-
low, this is due to the sudden appearance of shear bands [46].
Concomitantly, the disconnected susceptibility χdis grows
with N . We plot its peak values as well as that of the so-called
“connected” susceptibility [30],

χcon = −d〈σ 〉
dγ

, (4)

in Fig. 1(d). We find that both susceptibilities increase with
N, χ

peak
dis ∝ N and χ

peak
con ∝ N0.3, which is a signature of a

nonequilibrium first-order (i.e., discontinuous) transition. The
stronger divergence of χ

peak
dis indicates the predominant role of

disorder fluctuations, as generically found in the RFIM.
The observed finite-size scaling of χ

peak
dis is the same in 2D

and 3D; it reflects the discontinuous nature of the transition
where sample-to-sample stress fluctuations at a fixed yield
strain are of O(1). On the other hand, the scaling of χ

peak
con

is different from 3D, for which we found χ
peak
con ∝ N0.5 [15].

The dominant effect explaining this difference comes from
the scaling of the width of the distribution of γY at which the
largest stress drop takes place. Sample-to-sample fluctuations
seem to lead to a standard N−0.5 behavior in 3D but to a
broader distribution with a width decaying only as N−0.3 in
2D (see Appendix A). Within a RFIM perspective [47], this
entails that the variance of the effective random field at the
transition scales with the linear system size L = N1/D as

�L = χ
peak
dis(

χ
peak
con

)2 ∼ Lρ, (5)

with ρ ≈ 0.8 in 2D and ρ ≈ 0 in 3D. This in turn implies
that the random field at yielding has long-range correlations
decaying with distance as r−(D−ρ) with ρ > 0 [48,49] in
2D, a feature that seems absent in 3D yielding. Note that
the properties of the effective random field at the yielding
transition result from a highly nontrivial combination of the
disorder associated with the initial configurations and the
evolution under deformation [50]. This combination may vary
with space dimension, albeit at present in a way that is not
theoretically predicted.

B. Anomalous samples

To further illustrate the strong sample-to-sample fluctua-
tions present in 2D, even in the case of very stable glasses,
we show in Fig. 2(a) a zoomed-in plot of the stress-strain
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FIG. 2. (a) Stress-strain curves for six samples with N =
64 000, Tini = 0.035. The three black curves present typical samples
showing a large stress drop. The three other red curves present rare
samples showing multiple stress drops (which we call “anomalous”
samples). (b) Fraction fN of anomalous samples as a function of
N for stable glasses. The solid curves are exponential fits of the
data. (c), (d) Representative snapshots for typical (c) and anomalous
samples (d) at γ = 0.07. The color bar corresponds to the value of
the nonaffine displacement, D2

min.

curves for a few chosen samples. One can see that in addition
to typical samples that display a single sharp, large stress
drop [see also Fig. 1(a)] there are samples that yield through
multiple stress drops. These samples, which we refer to as
“anomalous,” display shear bands at yielding that tend to
strongly wander and splinter in space [see Fig. 2(d)], whereas
typical samples yield via the appearance of a well-defined
system-spanning shear band [see Fig. 2(c)] [51]. Anomalous
samples lead to very large fluctuations, but their fraction,
fN , decreases as N increases. To quantify this effect, we
have identified these samples from individual stress-strain
curves by using the conditions �σmax � 0.15, where �σmax

is the maximum stress drop observed in the strain window
γ ∈ [0, γmax] for each sample (see Appendix B for details).
In Fig. 2(b) we observe that fN decreases with N , in an
apparently exponential manner, and appears to vanish as N →
∞—hence the terminology “anomalous” versus “typical.”
Note that we have checked that the finite-size scaling of χ

peak
dis

and χ
peak
con in Fig. 1(d) hardly changes when we remove the

anomalous samples from the computation; this shows that
the observed value ≈0.3 for the scaling exponent of χ

peak
con is

not due to the presence of the anomalous samples. Repeating
the same analysis for 3D glass samples of a similar stability,
we find that fN virtually vanishes above N = 12 000 (not
shown), which indicates much weaker finite-size effects than
in 2D.

C. Rough spatially wandering shear bands

Next, we investigate the spatial characteristics of the shear
bands. We carefully analyze the wandering of the shear bands
in space, comparing 2D and 3D at the same length scale and

C
(Δ
x)

Δx

3D, Tini = 0.062
2D, Tini = 0.035

(c) ζ

FIG. 3. (a), (b) Snapshot of shear bands in typical glass samples
of similar stability in 3D (N = 96 000, Tini = 0.062 at γ = 0.13)
(a) and in 2D (a zoomed-in plot of Fig. 2(c); N = 64 000, Tini =
0.035 at γ = 0.07) (b). The color bars correspond to the value of the
nonaffine displacement D2

min. The white square region in (b) has the
same area as the surface of the 3D simulation box. (c) Height-height
correlation function C(�x) for 2D and 3D. The error bars correspond
to the standard deviation from sample-to-sample fluctuations. The
straight line corresponds to ζ ≈ 0.59.

for similar glass stability [52]. In Figs. 3(a) and 3(b), we show
snapshots right after yielding for 3D (γ = 0.13) and 2D (γ =
0.07), respectively. The 2D shear band appears thicker than
the 3D one, and a quantitative comparison is provided in Ap-
pendix C. More importantly, the shear band seems to wander
more or, said otherwise, to be “rougher” in 2D. This roughness
can be quantified by the height-height correlation function
[8,53–55]:

C(�x) = 〈[Ycom(x + �x) − Ycom(x)]2〉1/2
x , (6)

where Ycom(x) is the average height of the shear band and
〈· · · 〉x denotes a spatial average. Note that we exclude the
anomalous samples from the analysis, because defining the
shear band interfaces is hard and often ambiguous in anoma-
lous samples, e.g., when a shear band forms a closed-loop
structure. For the 3D case we use an expression analogous
to Eq. (6), which also takes into account the average in
the additional z coordinate (see Appendix D for a detailed
explanation). A manifold is rough on large scales if the height-
height correlation function scales with distance as C(�x) ∝
�xζ , where ζ > 0 is the roughness exponent. Therefore, the
log-log plot of C(�x) versus the distance �x provides a way
to assess the roughness of the shear bands. We show such a
plot in Fig. 3(c). The data in 3D show no convincing effect
over the (limited) covered range, but the results in 2D point
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to a nontrivial intermediate regime (limited at the longest
length scales by a saturation due to the system size) where an
effective roughness exponent ζ ≈ 0.59 can be observed [36].
It is also clear that the overall magnitude of C(�x) in 2D is
much larger than that in 3D, and this difference is expected
to grow even larger in larger samples. This again reflects the
presence of larger spatial fluctuations in 2D.

D. A critical point separates brittle and ductile yielding

Because we have found strong evidence that yielding in 2D
is a genuine nonequilibrium discontinuous transition for very
stable glasses and that poorly annealed samples clearly show
a continuous ductile behavior [see Fig. 1(a)], it is tempting
to look for signatures of a critical point separating brittle and
ductile yielding as one varies the preparation temperature Tini

of the glass samples. In Ref. [15], we showed that the dif-
ference between the stress before (σ1) and after (σ2) the largest
stress drop, �σmax = σ1 − σ2, plays the role of the order
parameter distinguishing brittle from ductile yielding in 3D.
In particular, we demonstrated that the critical point at Tini,c

can be identified by the divergence of the variance of this
order parameter, N (〈�σ 2

max〉 − 〈�σmax〉2). In 2D, however, as
seen in Fig. 1(a), strong fluctuations seem to also affect the
plastic steady state, irrespective of the presence of a critical
point. Even for typical samples, this blurs the determination
of the largest stress drop when the latter becomes small as
one approaches the putative critical point. As an operational
procedure to remove this effect, we have therefore defined
the order parameter as �σmax ≡ σ1 − 〈σ2〉. In this way the
fluctuations of σ2 that we tentatively attribute to the plastic
steady-state regime are explicitly removed. When applied to
3D this new definition captures the critical point even more
sharply without affecting the results.

The mean value 〈�σmax〉 is shown in Fig. 4(a) (we have
removed a trivial offset at high Tini which vanishes in the large-
N limit, see the inset): 〈�σmax〉 appears rather flat at high Tini

and starts to grow and to develop a significant dependence on
system size below Tini ≈ 0.1, showing a similar trend as the
3D case. The variance of �σmax is displayed in Fig. 4(b). It
shows a peak that grows and shifts toward higher Tini with N .
The data is not sufficient to allow for a proper determination
of critical exponents but nonetheless gives support to the
existence of a brittle-to-ductile critical point at around Tini,c ≈
0.1.

IV. CONCLUSIONS

We have given strong numerical evidence that 2D yielding
of very stable glasses under athermal quasistatic shear re-
mains a nonequilibrium first-order (discontinuous) transition
that survives in the thermodynamic limit, with a dominance
of the disorder-induced, i.e., sample-to-sample, fluctuations.
Furthermore, the transition to ductile yielding is signaled
by a critical point. The scenario found in 2D is therefore
analogous to the one found in 3D but with stronger fluctuation
effects. On the one hand, this suggests that the brittle-to-
ductile transition as a function of sample preparation could be
also experimentally observed in 2D or quasi-2D amorphous
materials. On the other hand, it confirms that if indeed the
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FIG. 4. Mean (a) and variance (b) of the largest stress drop �σmax

as a function of the glass preparation temperature Tini for several
system sizes N . In (a) we plot 〈�σmax〉 − 〈�σmax〉|Tini=0.2. We subtract
the trivial high-temperature dependence that vanishes at large N ,
as shown in the inset where the data are fitted with a power law,
〈�σmax〉 ∝ N−0.41. The vertical arrows in (a) and (b) indicate the
putative critical point associated with the brittle-to-ductile transition
in 2D.

effective theory describing the yielding transition is an ather-
mally quasistatically driven RFIM, the basic features of the
model are necessarily modified by the presence of long-range
anisotropic Eshelby-like interactions and, in 2D possibly, by
long-range correlations in the effective random field. The
long-range and quadrupolar nature of the elastic interactions
accounts for the appearance of a shear band at the spinodal
point marking the start of brittle yielding in stable glasses.
In this modified RFIM, the nature of the spinodal and its
potential critical character [14] still need to be investigated.
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FIG. 5. Parametric (log-log) plot of the peak values of the dis-
connected and connected susceptibilities for all system sizes and
preparation temperatures. For Tini � 0.10 the logarithm of the dis-
connected susceptibility grows with the logarithm of the connected
one.

APPENDIX A: SUSCEPTIBILITIES

1. Computation of the susceptibilities

To numerically compute the susceptibilities, we perform
a smoothing procedure by averaging over ten adjacent data
points, as described in Ref. [15]. Figure 5 shows the paramet-
ric plot of the logarithms of the peak values of χdis and χcon.
The data points roughly follow in a straight line in the putative
brittle yielding phase (Tini � 0.10), with a slope of about 3.

2. Finite-size scaling of the susceptibilities for a discontinuous
transition in the presence of disorder

We consider the case of a very stable glass (appropriate,
e.g., for Tini = 0.035), for which each typical finite-size sam-
ple yields through a discontinuous stress drop �σmax of O(1)
at a strain value γY. Both the size of the stress drop and the
yield strain are sample dependent. It is easily realized that
provided the mean value of 〈�σmax〉 is strictly positive and
of O(1), the fluctuations of �σmax lead only to subdominant
contributions to the finite-size scaling of the susceptibilities, at

least well below Tini,c. The fluctuations of the yield strain, on
the other hand, are crucial. They are likely to regress with the
system size N but possibly in a nontrivial fashion. We assume
that the values of γY are distributed around the peak position
γ ∗

Y of the distribution according to some probability function
scaling with N as

PN (γY) ∼ NδP ((γY − γ ∗
Y )Nδ ), (A1)

with δ > 0 and P (0) > 0. We have computed this distribution
of γY for 2D samples prepared at Tini = 0.035, and the result
is shown in Fig. 6(a). We then perform exercises of scaling
collapse assuming Eq. (A1) with various δ in Figs. 6(b) and
6(c). We find that the conventional value, δ = 0.5 [56], does
not work, while a smaller value, δ = 0.3, provides a good
scaling collapse. In the following we will relate the obtained
value, δ = 0.3, with the scaling of the susceptibilities.

In the vicinity of yielding, one may describe the stress in
each sample as given by

σ (γ ) ≈ σ2 + �σmaxθ (γY − γ ), (A2)

where θ (x) is the Heaviside step function and σ2 is the stress
right after the stress drop. As discussed in the main text,
this value may also fluctuate, but just as for the fluctuations
of �σmax this leads to only subdominant corrections to the
leading finite-size scaling in the regime where a strong discon-
tinuous transition is present. We therefore assume from now
on that neither �σmax nor σ2 fluctuate from sample to sample.
One then easily derives that the first two cumulants of σ (γ )
close to the yielding transition are expressed as

〈σ (γ )〉 = σ2 + �σmax

∫ +∞

γ

dγYPN (γY) (A3)

and

〈σ (γ )2〉 − 〈σ (γ )〉2

= (�σmax)2
∫ +∞

γ

dγYPN (γY)

(
1 −

∫ +∞

γ

dγYPN (γY)

)
.

(A4)

From the above expressions it is easy to derive the con-
nected susceptibility,

χcon(γ ) = −d〈σ (γ )〉
dγ

= �σmaxPN (γ ), (A5)

P
N
(γ
Y
)

γY

N = 8000
N = 16000
N = 32000
N = 64000

(a) Tini = 0.035
(b)
δ = 0.5

N
-δ
P
N
(γ
Y
)

(γY−γY
*)Nδ

N = 8000
N = 16000
N = 32000
N = 64000

(c)
δ = 0.3

N
-δ
P
N
(γ
Y
)

(γY−γY
*)Nδ

N = 8000
N = 16000
N = 32000
N = 64000

FIG. 6. (a) Probability distribution of γY determined by the position of the largest stress drop, �σmax. (b), (c) Scaling analysis assuming
Eq. (A1) with δ = 0.5 (b) and δ = 0.3 (c).

023203-6



ROLE OF FLUCTUATIONS IN THE YIELDING … PHYSICAL REVIEW RESEARCH 2, 023203 (2020)

(a)

P(
Δσ

)

Δσ

N = 8000
N = 16000
N = 32000
N = 64000

2D
Tini = 0.035

2D
Tini = 0.040

(b) N = 8000
N = 16000
N = 32000
N = 64000

P(
Δσ

)

Δσ

2D
Tini = 0.050

(c)
N = 8000
N = 16000
N = 32000
N = 64000
N = 128000

P(
Δσ

)

Δσ

(d)

N = 6000
N = 12000
N = 24000
N = 48000
N = 96000

3D, Tini = 0.062

P(
Δσ

)

Δσ

FIG. 7. Probability distribution of the maximum stress drop
�σmax at Tini = 0.035 (a), 0.040 (b), and 0.050 (c) in 2D. The
3D model at Tini = 0.062 is shown in (d) for comparison. The
vertical dashed lines indicates the chosen cutoff separating typical
and anomalous samples.

and the disconnected one,

χdis(γ) = N[〈σ (γ )2〉 − 〈σ (γ )〉2]

= N (�σmax)2
∫ +∞

γ

dγYPN (γY)

(
1 −

∫ +∞

γ

dγYPN (γY)

)
.

(A6)

Now, by taking into account the scaling form of the distri-
bution PN (γY) in Eq. (A1), one immediately obtains that the
maximum of the susceptibilities scales as

χpeak
con ∼ Nδ�σmax,

χ
peak
dis ∼ N (�σmax)2. (A7)

Putting δ = 0.3, obtained numerically by the scaling analysis
in Fig. 6, we show a comparison between the above pre-
dictions and the directly determined N dependence of χ

peak
con

and χ
peak
dis in Fig. 1(d) of the main text. We find excellent

agreements.

APPENDIX B: IDENTIFICATION OF THE ANOMALOUS
SAMPLES

Figure 7 shows the probability distribution function of
the maximum stress drop �σmax for 2D (a)–(c) and 3D (d)
for low Tini’s. For the most stable case in 2D, Tini = 0.035,
there are two peaks for the smaller values of N . The right
peak corresponds to samples with a single large discontinuous
stress drop, which we call typical samples, and the left peak to
samples with multiple stress drops at yielding, which we call
anomalous samples. For N = 8000 the peak at smaller �σmax

is dominant, which means that the majority of samples show
multiple stress drops. However, the peak at higher �σmax

grows with increasing N , and for large enough system size,
most of the samples show a single large discontinuous stress
drop at yielding (hence the denomination of typical samples);
yet there remains a tail at smaller �σmax corresponding to the
anomalous samples. We observe the same trend up to Tini =
0.050, but the peak positions shift toward smaller �σmax

with increasing Tini. Above this Tini = 0.050, we do not find
any hint of two separate peaks, which forbids any sensible
distinction of typical and anomalous samples.

To separate anomalous samples from typical samples
for Tini = 0.035–0.050, we choose a cutoff �σmax = 0.15,
which seems to reasonably distinguish anomalous sam-
ples (�σmax � 0.15) from typical ones (�σmax > 0.15); see
Figs. 7(a)–7(c). There is some leeway in defining this cutoff
value, but the conclusion in this paper does not change if we
slightly change the value. In contrast to 2D, 3D systems do
not show a clear bimodal distribution, as seen in Fig. 7(d).
Besides, the tail at smaller �σmax is significantly suppressed
compared to 2D. To nonetheless make an attempt to quantify
the fraction of anomalous samples, we have chosen a cutoff at
�σmax = 0.2.

APPENDIX C: SHEAR BANDWIDTH

We measure a typical width of the shear band, wSB, and its
temperature evolution, following a similar method conducted
in Refs. [57,58]. We first divide the configuration into slabs
along the direction perpendicular to the shear band and then
compute the average nonaffine displacement D2

min for each
slab. D2

min is computed between the origin γ = 0 and γ =
0.07 (0.13) for 2D (3D). Figures 8(a) and 8(b) show the
D2

min profile obtained in 3D and 2D for several preparation

(a)
Tini = 0.062
Tini = 0.075
Tini = 0.085

D
2 m
in

y

3D
Tini = 0.035
Tini = 0.050
Tini = 0.070

D
2 m
in

2D

(b)

y

(c)

3D
2D

w
S
B

Tini/Tini, c

FIG. 8. Averaged D2
min profile along the direction perpendicular to the shear band for several preparation temperatures in 3D (a) and 2D

(b). (c) Width of the shear band as a function of the normalized preparation temperature Tini/Tini,c.
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(a)
γ = 0.03
γ = 0.05
γ = 0.07
γ = 0.09

2D, N = 64000, Tini = 0.035

P
(D

2 m
in
)

D2min

3D, N = 96000, Tini = 0.062(b)
γ = 0.09
γ = 0.11
γ = 0.13
γ = 0.15

D2min

P
(D

2 m
in
)

FIG. 9. Probability distribution of the particle nonaffine
(squared) displacement D2

min in 2D (a) and in 3D (b) for several
values of the strain γ covering the regimes before and after yielding.
The vertical arrows indicate the threshold above which particles are
considered as belonging to a shear band. We have chosen D2

min > 0.4
in 2D and D2

min > 0.59 in 3D.

temperatures Tini. Clearly, the 2D systems have a wider
D2

min profile, in accord with the visual impression given by
Figs. 3(a) and 3(b) of the main text. Moreover, the width
of the profile does not change as much along Tini in both
3D and 2D. To quantify this feature, we operationally define
wSB as the width of the D2

min profile at D2
min = 0.3. We plot

wSB for several degrees of stability in Fig. 8(c), where Tini

is normalized by the critical preparation temperature Tini,c

to allow a comparison between 2D and 3D cases. We find
that the width wSB in 2D is always wider than that in 3D.
This conclusion does not change when considering a different
normalization temperature, e.g., an estimated experimental
glass transition temperature, Tg.

APPENDIX D: ROUGHNESS ANALYSIS

We present some details on how we have computed the
height-height correlation function C(�x) for the shear bands
from the molecular simulation data.

Particles are considered as part of the shear band if their
nonaffine (squared) displacement D2

min is large enough. Fig-
ure 9 shows the probability distribution of D2

min, P(D2
min ), for

several values of the strain γ covering the regimes before and
after yielding. Before yielding (γ = 0.03 − 0.05 for 2D and
γ = 0.09 − 0.11 for 3D), P(D2

min ) is localized near the origin,
which reflects the fact that most of the particles show a purely
affine deformation and that only a very small fraction of

(b)

Y c
om

x

FIG. 10. (a) Snapshot representing the particles belonging to a
shear band (shown in red) for a 2D sample at a strain γ = 0.07. The
rest of the sample is essentially an elastic body and is shown in blue.
(b) The y coordinate of the center of mass of the shear band for each
bin along the x direction.

particles undergo nonaffine displacements in the preyield
regime. After yielding (γ = 0.07–0.09 for 2D and γ =
0.13–0.15 for 3D), on the other hand, a significant tail sud-
denly appears due to strain localization in the form of shear
bands, and this tail grows with increasing γ . By introducing
the thresholds shown in the vertical arrows in Fig. 9, we sep-
arate particles belonging to the shear band (with a nonaffine
displacement above threshold, D2

min > 0.4 for 2D and D2
min >

0.59 for 3D) from particles undergoing affine displacement
characteristic of a purely elastic solid. An illustration is given
in Fig. 10(a) for a 2D sample.

We compute the average location of the shear band (line in
2D or surface in 3D) by discretizing the base space [x for a
horizontal shear band in 2D, and (x, z) for a horizontal band
in 3D]. More specifically, we compute the y coordinate of the
center of mass, Ycom(x), of the particles belonging to the shear
band and located within the bin specified by the position x (or
x and z in 3D). The output is illustrated in Fig. 10(b). For the
bin width we have used 2.53 in 2D and 2.28 in 3D.

The height-height correlation functions C(�x) are finally
defined as

C(�x) = 〈[Ycom(x + �x) − Ycom(x)]2〉1/2
x (D1)

in 2D. In 3D where the z axis has to be taken into account, the
averaging procedure for C(�x) is also performed along the z
direction, according to

C(�x) = 〈[Ycom(x + �x, z) − Ycom(x, z)]2〉1/2
x,z . (D2)
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