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Thermodynamic inference of data manifolds
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The Gibbs-Boltzmann distribution offers a physically interpretable approach to massively reduce the dimen-
sionality of high dimensional probability distributions where the extensive variables represent “features” of the
state space and the intensive variables represent realization-specific “coefficients.” However, not all probability
distributions can be modeled using the Gibbs-Boltzmann form. Here, we present Thermodynamic Manifold
Inference (TMI), a thermodynamic approach to approximate arbitrary distributions using the Gibbs-Boltzmann
form. TMI simultaneously learns from data the intensive and the extensive variables and achieves dimensionality
reduction using a multiplicative, positive valued, and interpretable decomposition of the data. Importantly, the
reduced dimensional space of intensive parameters is not homogeneous. The Gibbs-Boltzmann form defines an
analytically tractable Riemannian metric on the space of intensive variables. We show applications of TMI and
its comparison with other related dimensionality reduction approaches. Possible extensions to TMI are discussed
as well.
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I. INTRODUCTION

Over the past few years, our ability to collect high di-
mensional data has improved substantially. This has been
accompanied by a flurry of dimensionality reduction methods.
The central goal of these methods is to uncover important
lower dimensional features in the high dimensional data.
These methods usually belong to one of two broad classes.
Methods such as principal component analysis (PCA), sin-
gular value decomposition (SVD), and non-negative matrix
factorization (NMF) [1,2] are examples of matrix factorization
based methods. Here, the high dimensional data (in the form
of a matrix) are expressed as a product of two or more
simpler (for example, sparse or low rank) matrices. In contrast
methods such as diffusion maps [3], Laplacian Eigenmaps [4],
Isomaps [5], tSNE (t-stochastic neighborhood embedding)
[6], and UMAP (uniform manifold approximation and pro-
jection) [7] are based on manifold learning. These methods
rely on the assumption that the high dimensional data lie
on a much lower dimensional embedded manifold. These
methods infer the manifold using estimation of local density
of data points in the higher dimensions using kernel based
approaches. Matrix-based methods do not infer data mani-
folds, they do allow us to approximate the data using “feature
vectors” and “coefficients.” In contrast, the latter manifold
learning-based class allows inference of a data manifold but
cannot represent the data using approximate reconstruction.
Notably, no current dimensionality approach achieves both
approximate reconstruction of the data and manifold learning.
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Orthogonal to these modern approaches, statistical physics
offers a physically interpretable solution to dimensionality re-
duction; albeit for a restricted class of distributions. Consider
a system at thermodynamic equilibrium with a surrounding
bath that can exchange K types of extensive variables with it.
Let the number of states in the system be d . Typically, d � 1
(d = 2Ns for an Ising model with Ns spins) and K ∼ o(1) � d
(K = 1, 2 for the canonical and the grand canonical ensemble
respectively). Imagine that there are N different realizations
of the bath. Each realization (α) (α ∈ [1, N]) is characterized
by K intensive variables λ

(α)
k (k ∈ [1, K]). At thermodynamic

equilibrium, the probability q(α)
a of observing the system in

state “a” is given by the Gibbs-Boltzmann distribution:

q(α)
a = 1

Z (α)
exp

(
−

K∑
k=1

λ
(α)
k Yka

)
. (1)

In Eq. (1), λ
(α)
k are realization-specific intensive variables, Yka

are state-dependent extensive variables, and

Z (α) =
∑

a

exp

(
−

K∑
k=1

λ
(α)
k Yka

)
(2)

is the partition function.
Importantly, recent work has shown that the Gibbs-

Boltzmann form has a much broader applicability, even be-
yond thermal systems at thermodynamic equilibrium. Moti-
vating the Gibbs-Boltzmann distribution using the maximum
entropy principle [8,9] has allowed us to employ it to model
probabilities in a variety of complex systems such as ensem-
bles of protein sequences [10], parameters of signaling net-
works [11,12], collective firing of neurons [13], and collective
motions of birds [14]. More recently, this approach approach
has also been used to approximate dynamics of chemical
reaction networks [15,16].

While the Gibbs-Boltzmann form offers attractive dimen-
sionality reduction possibilities, unfortunately, however, not
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every arbitrary collection {x(α)}, α ∈ [1, N] of probability dis-
tributions can be described using it. To that end, we ask the
following question: Given data in the form of N arbitrary dis-
tributions {x(α)}, can we infer approximate extensive variables
Y s and intensive variables λs such that the Gibbs-Boltzmann
form in Eq. (1) approximates the data?

We introduce TMI: thermodynamic manifold Iinference.
In TMI, we simultaneously infer from data the extensive and
the intensive variables. The extensive variables represent state
space features while the intensive variables embed the data
points in a lower dimensional space. TMI achieves several key
objectives. By enforcing the number of extensive variables
to be much smaller than the dimension of the state space
(the data dimension), it achieves dimensionality reduction.
Notably, unlike principal component analysis (PCA) or sin-
gular value decomposition, but similar to non-negative matrix
factorization [1,2], TMI-based approximation of the data leads
to interpretable positive-valued factorization [see Eq. (1)].
Importantly, TMI defines a Riemannian manifold with an
analytically tractable distance metric on the space of intensive
variables. This metric allows us to define geodesic distances
between arbitrary points in the space of intensive variables as
well as volume elements.

Below, we first describe the theoretical developments of
TMI and its numerical implementation. Then, we illustrate its
applications using several data sets. Finally, we discuss future
extensions and applications.

II. TMI APPROXIMATES ARBITRARY DISTRIBUTIONS

Consider data in the form of discrete distributions
{x(α)}, α ∈ [1, N] defined on a d-dimensional state space. We
assume that x(α)

a > 0 ∀ a ∈ [1, d] and ∀α ∈ [1, N]. We want
to find K d-dimensional extensive variables {Ȳk} ≡ {Yka} and
N K-dimensional intensive bath parameters {λ̄(α)} ≡ {λ(α)

k }
such that the Gibbs-Boltzmann distributions q(α) in Eq. (1)
approximate the original distributions x(α).

In TMI, we enforce K � N to obtain an approximate lower
dimensional representation of each distribution. For a given
K , we minimize the sum of Kullback-Leibler divergences
between x(α) and q(α):

C =
∑

α

∑
a

x(α)
a ln

x(α)
a

q(α)
a

. (3)

The first term in the expanded Kullback—Leibler (KL) di-
vergence depends only on the distributions x(α) and can be
dropped. We have

C = −
∑

α

(∑
a

x(α)
a lnq(α)

a

)
(4)

=
∑

α

[∑
a

x(α)
a

(
K∑

k=1

λ
(α)
k Yka + lnZ (α)

)]
(5)

=
∑

α

lnZ (α) +
∑
α,a,k

x(α)
a λ

(α)
k Yka. (6)

The cost is convex with respect to λs when Y s are fixed
and vice versa. However, similar to non-negative matrix fac-
torization [1] it is not guaranteed to be globally convex (see

Appendix A for a discussion on convexity). We can minimize
C with respect to the intensive and the extensive variables
to find a local minimum. Differentiating with respect to the
intensive and the extensive variables and setting the derivative
to zero, we find that the intensive variables are fixed points of
nonlinear equations

∑
a

q(α)
a Yka =

∑
a

x(α)
a Yka (7)

and the extensive variables are fixed points of nonlinear
equations

∑
α

λ
(α)
k q(α)

a =
∑

α

x(α)
a λ

(α)
k . (8)

There are several indeterminacies in the cost function in
Eq. (6) and the corresponding fixed points in Eqs. (7) and
(8). First, for a fixed k, the cost is invariant to to an additive
shift Yka = Yka + c ∀ a ∈ [1, d]. This corresponds to the trans-
lational invariance in energies in a physical system. Second,
the cost is invariant with respect to a scaling λ

(α)
k → B × λ

(α)
k

for all distributions α ∈ [1, N] and a corresponding transfor-
mation that scales Yka = Yka/B for all a ∈ [1, d]. Physically,
this corresponds to the fact that extensive variables (for ex-
ample, energies) are always multiplied by the corresponding
intensive variables (for example, inverse temperatures) when
computing probabilities. More generally, if we multiple the
d × K matrix of extensive variables by a K × K matrix B and
simultaneously multiple the N × K matrix of intensive vari-
ables with (B−1)T, the Gibbs-Boltzmann probabilities don’t
change. Finally, the cost is invariant to permutations in k, the
label of the extensive variables.

It is possible to incorporate information about constraints
on the state space in the inference as well (see [17] for
a related formalism for non-negative matrix factorization).
One such structural constraints is smoothness. Consider the
example of gray-scale images. Here, the distributions repre-
sent normalized pixel intensities of digitized images. In the
images, any state “a” is identified by planar two-dimensional
coordinates a ≡ (i, j) which define adjacency in the state
space. Let us consider two adjacent states a ≡ (i, j) and
b ≡ a + ê [ê ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}]. We can en-
sure that the extensive variables Yka and Ykb corresponding
to neighboring states a and b are similar to each other by
introducing regularizing constraints:

∑
a,b

nab(Yka − Ykb)2 < Ck ∀ k, (9)

where nab = 1 when a and b are adjacent and zero otherwise.
Such constraints will limit the ruggedness of the extensive
variables. Other constraints on the extensive variables, such
as orthogonality, can be imposed as well.

Finally, we note that though the above discussion was
restricted to data in the form of normalized distributions, TMI
can also be implemented to un-normalized positive valued
data. Notably, the equations to determine Y s and λs are
identical to those presented above [Eqs. (7) and (8)] (see
Appendix B for discussion on un-normalized data].
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III. NUMERICAL INFERENCE OF INTENSIVE
AND EXTENSIVE VARIABLES

The gradient descent approach is a straightforward way to
numerically learn the intensive and extensive variables. The
gradient of the cost function with respect to λ

(α)
k is given by

[see Eq. (7)]

∂C

∂λ
(α)
k

=
∑

a

x(α)
a Yka −

∑
a

q(α)
a Yka. (10)

Similary, the gradient with respect to Yka is given by [see
Eq. (8)]

∂C

∂Yka
=

∑
α

x(α)
a λ

(α)
k −

∑
α

q(α)
a λ

(α)
k . (11)

To numerically obtain a local minima, we start with a random
initialization for both and λ

(α)
k and Yka. Next, we iterate till the

gradients have reached a small value:

λ
(α)
k ← λ

(α)
k − η

∂C

∂λ
(α)
k

, (12)

Yka ← Yka − η
∂C

∂λ
(α)
k

. (13)

In Eq. (13), η > 0, the learning rate, is a small positive

number.

IV. TMI INTRODUCES A RIEMANNIAN
DISTANCE METRIC

Using ideas from nonequilibrium statistical physics, TMI
defines a Riemannian geometry and a distance metric on the
space of intensive variables. We note that the distance metric
is defined on the space of intensive variables and not on the
data itself.

Consider two different distributions approximated by in-
tensive variables λ̄(1) and λ̄(2). Consider a smooth and dif-
ferentiable path γ (t ) between the two distributions such
that γ (t = 0) = λ̄(1) and γ (t = T ) = λ̄(2). It was shown that
[18–21] in the linear-response regime, the excess work—work
done above the difference in thermodynamic potentials—
along this path can be computed as

P ∝
∫ T

0

dλ̄T

dt
g(λ̄)

dλ̄

dt
dt, (14)

where the elements of the friction tensor g are given by [19]

gi j (λ̄) =
∫ ∞

0
〈δȲi(0)δȲj (τ )〉λ̄dτ. (15)

In Eq. (15), δȲi = Ȳi − 〈Ȳi〉 where 〈Ȳi〉 is the ensemble average
value of the extensive variable Ȳi when the intensive variables
are fixed at λ̄(t ). We note that a similar derivation exists
for transforming two nonequilibrium steady-state (NESS)
distributions [22]. However, NESS distributions cannot be
expressed in the parametric Gibbs-Boltzmann form and there-
fore we do not pursue that direction here.

The friction tensor depends on the dynamics on the state
space {a} at a fixed λ̄. When the transition rate matrix
κa→b(λ̄) is provided, the friction tensor can be computed in
a straightforward manner (see Appendix C for a description

of the tensor calculations). What are reasonable choices for
the dynamics? We want an “equilibrium” (detailed balanced)
transition rate matrix that is constrained to reproduce the
Gibbs-Boltzmann distribution q(λ̄). Though this is not a re-
quirement, we may also like the dynamics to be local; states
that are closer to each other should have higher transition rates
and vice versa for states that are farther apart. One way to
incorporate the information about the underlying geometry is
to require that the rates penalize transitions between geomet-
rically “distant” states a and b. A simple transition rate matrix
that satisfies these properties is the one that maximizes the
path entropy [23]:

κa→b(λ̄) ∝
√

qb(λ̄)

qa(λ̄)
exp

(
−d (a, b)2

ε

)
. (16)

Another choice is the so-called Glauber dynamics [24]:

κa→b(λ̄) ∝ qb(λ̄)

qa(λ̄) + qb(λ̄)
exp

(
−d (a, b)2

ε

)
. (17)

In Eqs. (16) and (17), d (a, b) is a measure of separation
between states a and b (for example, Euclidean distance) and
ε > 0 plays the role of an inverse diffusion constant. We stress
that any other choice of the dynamics will define a well-
behaved friction tensor as long as the dynamics is reversible
and reproduces the stationary distribution q(λ̄).

When the dynamics is fast, the friction coefficient reduces
(up to a proportionality) to the Fisher information matrix
[18–21], which in the case of Gibbs-Boltzmann distributions
is the matrix of fluctuations [25]:

gi j (λ̄) = 〈ȲiȲj〉λ̄ − 〈Ȳi〉λ̄〈Ȳj〉λ̄. (18)

If we assume that the rate of change of λ̄ along a trajectory
is kept constant, the paths that minimize excess work are also
the paths that minimize the geodesic distance [18–21]. Hence,
the length of the path of minimum excess work between two
distributions, described by λ̄1 and λ̄2 respectively, also defines
a metric distance between them. We note that the Fisher
information matrix is invariant to a permutation of the indices.
Therefore, if the Fisher information matrix is used instead of
the friction tensor, the geodesic distances will not take into
account the geometry of the state space.

V. LEARNING ISING MODEL FROM DATA

As a test case, we show that TMI can infer the energy
landscape of an Ising model from samples of the Ising model
distributions. To that end, we consider a nearest-neighbor
Ising model with ns = 8 spins arranged as shown in Fig. 1(a).
Each spin σ can take the values 1 or −1. The probability of
observing any spin configuration σ̄ (a) is given by

p(σ̄ (a)) = 1

Z (H, J )
exp[−HEmag(a) − JEint (a)], (19)

where

Emag(a) =
∑

i

σ (a)i, and (20)

Eint (a) =
∑
i nn j

σ (a)iσ (a) j . (21)
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FIG. 1. (a) the connectivity graph of a eight-spin Ising model, (b) inferred extensive variable Ȳ1 (red) compared to the true extensive
variable Emag (black), and (c) inferred extensive variable Ȳ2 (red) compared to the true extensive variable Eint .

In Eq. (21), the summation is taken over the nearest neighbors
of the graph shown in Fig. 1(a) and Z (H, J ) is the partition
function.

We randomly sampled 50 pairs of H and J values from a
uniform distribution where H ∈ [−1, 1] and J ∈ [−1, 1] and
generated 50 Ising model distributions (see Appendix D for a
discussion on the random sampling). Next, we approximated
these input distributions using TMI with K = 2 extensive
variables Ȳ1 and Ȳ2. We simultaneously inferred 50 pairs of
intensive variables representing each of the 50 distributions.

As noted above, multiplication by a matrix Y → Y × B
and � → � × (B−1)T does not change TMI predictions.
Thus, in order to directly compare TMI predictions with the
ground truth, we need to reorient the TMI-inferred variables.
To that end, we find a matrix B such that (1) Ȳ1 and Ȳ2 have
the same dot product as the vectors Ēint and Ēmag and (2) Ȳ1

is orthogonal to Ēint. In Figs. 1(b) and 1(c) we show that the
reoriented extensive variables Ȳ1 and Ȳ2 closely approximate
the the true extensive variables Emag and Eint respectively only
from 50 sampled distributions. We note that constraints such
as symmetry were not imposed when inferring the extensive
variables.

VI. ANALYSIS OF HANDWRITTEN DIGITS

Next, we illustrate the application of TMI using the MNIST
dataset [26]. The dataset represents handwritten digits be-
tween 0 and 9. We randomly selected 500 digits from the
set of all 6s and 9s from MNIST. The digits were repre-
sented as a 28 × 28 array of positive numbers. Each data
point was normalized and treated as a distribution repre-
sented by a 784-dimensional probability vector. Given that
there were two types of digits, we set out to infer K = 2

sample-independent extensive variables and 500 × 2 intensive
variables. In Figs. 2(a) and 2(b) we show the two inferred ex-
tensive variables Ȳ1 and Ȳ2. Notably, TMI correctly identifies
two extensive variables that correspond to a generic digit 9 and
a generic digit 6 respectively. These represent the two inferred
potential-energy minima in the data.

Moreover, as shown in panel (c), the two digits can also
be classified by two different regions of the space of intensive
variables; 9s are characterized by a high λ1 and a low λ2 while
6s are characterized by a low λ1 and a high λ2. Importantly,
the Fisher-Rao metric on the space of intensive variables
defines a notion of distance between the distributions as well
as the “number of points” in any given volume element [27].
The heat map in panel (c) represents the logarithm of the
volume element given by the square root of the determinant
of the Fisher information matrix. It is clear that the reduced
dimensional space is highly inhomogeneous; the same small
change in λ1 and λ2 may have very different effects on the
resulting distributions depending on the region of the space.
The Fisher-Rao metric allows us to construct geodesics be-
tween pairs of data point. As shown in Fig. 2(c), the geodesic
(dashed black line) between a 6 (top left) and a 9 (bottom
right) is substantially different than the straight line (dashed
red line).

VII. TMI PERFORMANCE IN DATA RECONSTRUCTION
AND CLASSIFICATION

Mathematically, TMI is most closely related to
non-negative matrix factorization (NMF) [1,2]. Therefore, we
compared the performance of TMI with NMF. While TMI
represents the thermodynamic potential of any state as a
matrix product, NMF approximates the probabilities
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FIG. 2. (a) A heat map of the inferred extensive variable Ȳ1 representing a generic “9.” (b) A heat map of the inferred extensive variable
Ȳ2 representing a generic “6.” (c) A scatter plot of the intensive bath parameters of the 500 data points. The data labeled “6” are colored cyan
while the data labeled “9” are colored magenta. The heat map represents the volume element (square root of the determinant of the metric
tensor). The dashed red line is a straight line transformation between two data points shown at the top left and bottom right. The dashed black
line is the geodesic computed using the Fisher-Rao metric.

themselves as a matrix product. Briefly, in NMF, positive
valued data is expressed as a product of two matrices:

x(α)
a ≈ q(α)

a =
∑

k

l(α)
k yka. (22)

The matrices l and y are determined by minimizing the
Kullback-Leibler divergence between the data {x(α)

a } and the
approximation {q(α)

a } (L2 norm minimization is possible as
well). NMF is a widely used technique to model positive
valued data as it leads to interpretable positive valued de-
composition (see [28] for a review). We note that NMF-
based decomposition of the data is a linear superposition
of positive valued “feature vectors” ȳks with positive valued
“coefficients” l̄(α)s. In contrast, TMI expresses the data as a
multiplicative decomposition [see Eq. (1)].

To compare the ability of TMI and NMF to approximate
the data, we chose four data sets of very different origins.
The first was the MNIST dataset of handwritten digits [26].
From the MNIST dataset, we randomly selected 500 samples
comprising digits from 0 to 9. As above, each digit was
represented by a 28 × 28 array of pixel intensities which was
normalized to 1. The second was the time series data collected
on the gut microbiome of a human [29]. The microbiome data
consisted of 318 samples collected approximately daily over
a period of a year from the feces of one human individual.
Each sample was represented by the relative abundances of 70
most abundant bacterial operational taxonomic units (OTUs).
The third dataset comprised a “bag of words” description
[30] of papers submitted to the Neural Information Processing
Systems conference (downloaded from [31]). Each paper was
represented as a collection of words wherein each word was
assigned a frequency in each submitted article. The fourth
dataset comprised 472 gray-scale images of human faces
stored as an array of 19 × 19 pixels (the CBCL database of
faces [32]) (see Appendix E for details of the data sets).

We approximated each of the data sets using TMI and NMF
with several different values of K . For each K we compared
the Kullback-Leibler divergence between the data {x(α)

a } and

the reconstruction {q(α)
a }. As seen in Table I, TMI consistently

performed better than NMF at reconstructing the data for
every value of K . One possible reason behind this perfor-
mance is that real data sets often have widely varying ampli-
tudes. For example, the intensity of any given pixel in a set of
images can vary substantially from image to image [33]. The
multiplicative approximation using the intensive variables in
TMI may be better suited to capture such variability compared
to the linear superposition in NMF.

Next, we tested how TMI performed in data classification
using the MNIST dataset. To that end, used the 500 MNIST
digits as above and inferred intensive variables and extensive
variables for a range of K values. We used these intensive
variables and the known identities of the digits to train a
support vector machine (SVM) classifier. Next, we randomly
selected 2000 digits from the dataset and predicted their
identities. Similarly, we fitted the same data with NMF and
trained an SVM classifier with the same hyperparameters.
The accuracy of the two identifications is shown in Table II.

TABLE I. Comparison of KL divergences between the data {x(α)
a }

and the approximate reconstruction {q(α)
a } using TMI and NMF

respectively. K indicates the number of extensive variables used to
model the data. The divergences are reported as an average per data
point.

MNIST Microbiome NIPS CBCL

K TMI NMF TMI NMF TMI NMF TMI NMF

1 0.89 0.92 0.29 0.30 0.24 0.24 0.033 0.036
2 0.78 0.82 0.18 0.20 0.22 0.23 0.022 0.028
3 0.68 0.74 0.14 0.16 0.21 0.22 0.019 0.022
4 0.59 0.68 0.11 0.14 0.21 0.21 0.018 0.019
5 0.53 0.64 0.09 0.12 0.20 0.21 0.016 0.017
10 0.34 0.50 0.05 0.07 0.18 0.19 0.010 0.012
20 0.17 0.38 0.02 0.04 0.15 0.18 0.005 0.007
40 0.07 0.26 0.01 0.01 0.12 0.16 0.002 0.003
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TABLE II. Comparison of classification success rate (fraction) of
randomly chosen handwritten digits from the MNIST dataset using
TMI and NMF. The error bars are standard deviations estimated
using 20 equal subsamples of the test set.

K TMI NMF

5 0.62 ± 0.05 0.49 ± 0.04
10 0.75 ± 0.04 0.63 ± 0.05
15 0.77 ± 0.03 0.67 ± 0.05
20 0.80 ± 0.04 0.69 ± 0.05

Similar to its ability to fit the data accurately, TMI also
performs significantly better than NMF at classifying the data.

VIII. DISCUSSION

The manifold assumption [4], commonly invoked in mod-
ern data analysis, posits that high dimensional data is gov-
erned by a few parameters and as a result can be represented
by a lower dimensional manifold residing in the higher dimen-
sion. Several manifold inference methods such as diffusion
maps [3], Laplacian eigenmaps [4], isomaps [5], tSNE (t-
stochastic neighborhood embedding) [6], and UMAP (uni-
form manifold approximation and projection) [7] have been
developed to approximately reconstruct these manifolds from
the data.

While the manifold-based methods achieve dimensionality
reduction, unlike other approaches such as principal com-
ponent analysis (PCA) or non-negative matrix factorization
(NMF) [1,2], they cannot obtain an approximate reconstruc-
tion of the original data using lower dimensional “features.”
At the same time, these methods do not obtain an analytical
description of the manifold but only approximate it using
a nonlinear embedding of the data points in the lower di-
mensional space. As a result, analytical manipulations such
as computation of geodesics and volume elements are not
possible.

We presented TMI, an approach rooted in statistical
physics to embed positive valued high dimensional data
points in lower dimensions. TMI possesses advantages of both
manifold approximation methods as well as matrix-based di-
mensionality reduction methods. (1) Similar to matrix-based
methods such as PCA, SVD, and NMF, TMI can approximate
data using lower dimensional features. Notably, similar to
NMF, this decomposition is positive valued [see Eq. (1)] and
thus interpretable. Moreover, given the multiplicative nature
of the decomposition, TMI appears to be better suited to
model real data compared to NMF. (2) Similar to manifold
approximation methods, TMI can infer an approximate lower
dimensional manifold on which the data resides. Importantly,
unlike previously developed methods (discussed above), TMI
defines an analytically tractable and readily computable Rie-
mannian manifold (with an associated distance metric) in the
lower dimension. This in turn allows us to compute geodesics
and volume elements in the reduced dimensional description.

While TMI outperformed NMF in modeling and classi-
fying data, in the current implementation, TMI was slower
than NMF. Therefore, in the future, it will be important to
optimize the numerical algorithms in TMI. Similarly, the

calculation of the geodesic can be time consuming given that
it requires solving boundary value nonlinear differential equa-
tions. However, numerically efficient techniques have been
developed [21,34,35] which will be more useful in situations
when using K > 2 extensive variables. Another potential way
to avoid solving the nonlinear differential equations is to rely
on the observation that the geodesics pass through the data
rich regions of the λ̄ space. Consequently, we can potentially
approximate the geodesic as the shortest path on a graph
connecting the data points themselves.
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APPENDIX A: COST FUNCTION IS CONVEX IN λs and Y s

In this section, we show that the (1) cost function in
Eq. (6) is convex with respect to λ

(α)
k ∀ k ∈ [1, K] when all

the other λs and all the Y s are fixed and (2) the cost function
is convex in Yka ∀ a ∈ [1, d] when λs and all other Y s are fixed.

The double derivative of the cost function for a fixed α is
given by Eq. (A1):

∂2C

∂λ
(α)
k λ

(α)
j

= (〈YkaYja〉α − 〈Yka〉α〈Yja〉α ). (A1)

The matrix in Eq. (A1) is a covariance matrix. Given that
covariance matrices are non-negative, the Hessian matrix in
Eq. (A1) is non-negative as well.

Next, we look at the Hessian with respect to the Ykas for a
fixed k when λs and other Y s are fixed. We have the derivative

∂C

∂Yka
= −

∑
α

λ
(α)
k q(α)

a +
∑

α

x(α)
a λ

(α)
k , (A2)

∂2C

∂YkaYkb
= −

∑
α

λ
(α)
k

∂q(α)
a

∂Ykb
. (A3)

We have the derivative

∂q(α)
a

∂Ykb
= ∂

∂Ykb

f (α)
a

Z (α)
, (A4)

where

f (α)
a = exp

(
−

∑
k

λ
(α)
k Yka

)
. (A5)

From Eq. (A4), we have

∂q(α)
a

∂Ykb
= 1

Z (α)

∂ f (α)
a

∂Ykb
− q(α)

a

∂lnZ (α)

∂Ykb
. (A6)

We have

∂lnZ (α)

∂Ykb
= −λ

(α)
k q(α)

b (A7)

and

∂ f (α)
a

∂Ykb
= −δabλ

(α)
k f (α)

a . (A8)
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Putting everything together, we have

∂q(α)
a

∂Ykb
= −δabq(α)

a λ
(α)
k + q(α)

a λ
(α)
k q(α)

b (A9)

= q(α)
a λ

(α)
k

( − δab + q(α)
b

)
. (A10)

Thus, the elements of the Hessian are given by

∂2C

∂YkaYkb
= −

∑
α

(
λ

(α)
k

)2
q(α)

a

(
q(α)

b − δab
)

= δab

(∑
α

(
λ

(α)
k

)2
q(α)

a

)
−

∑
α

(
λ

(α)
k

)2
q(α)

a q(α)
b .

(A11)

Given that q(α)
a > q(α)

a q(α)
b , the sum of off-diagonal entries

in the Hessian matrix is smaller than the diagonal entry;
according to Gershgorin’s disk theorem, the Hessian matrix
in Eq. (A11) will be positive semidefinite.

APPENDIX B: TMI FOR UN-NORMALIZED DATA

The cost function for un-normalized distributions can be
written as [36]

C =
∑
a,α

(
x(α)

a ln
x(α)

a

q(α)
a

− x(α)
a + q(α)

a

)
, (B1)

where

q(α)
a = exp

(
−

K∑
k=1

λ
(α)
k Yka

)
(B2)

is the un-normalized distribution and {x(α)
a } is the un-

normalized positive valued data. We rewrite C after dropping
terms that do not depend on λs and Y s:

C =
∑
a,α,k

x(α)
a λ

(α)
k Yka +

∑
a,α

q(α)
a . (B3)

We differentiate Eq. (B3) with respect to λ
(α)
k and set the

derivative to zero:∑
a

x(α)
a Yka =

∑
a

q(α)
a Yka. (B4)

Notably, Eq. (B4) is identical to the normalized version [see
Eq. (7)]. Similarly, we differentiate with respect to Y s and set
the gradient to zero:∑

α

x(α)
a λk(α) =

∑
α

q(α)
a λ

(α)
k . (B5)

Similar to Eq. (B4), Eq. (B5) is identical to Eq. (8). This shows
that TMI can be implemented with both normalized and un-
normalized data.

APPENDIX C: COMPUTING THE FRICTION TENSOR

Consider a transition rate matrix κ whose stationary distri-
bution is given by qa(λ̄). The probability of being in state b at
time t conditioned on being in state a at time t = 0 is given
by Kab where the matrix K is given by

K = exp (κτ ) = V exp (�τ )V −1, (C1)

where V �V −1 is the diagonalization of κ . We can now
express the friction tensor:

gi j (λ̄) =
∫ ∞

0
〈δYi(0)δYj (τ )〉λ̄dτ (C2)

=
∫ ∞

0

⎛
⎝∑

a,b

qaδYiaδYjbKab

⎞
⎠dτ (C3)

=
∫ ∞

0
Ci exp (�τ )Djdτ, (C4)

where

Ci = (q ◦ δȲi )
TV and Dj = V −1δȲj, (C5)

where a ◦ b is the Haddamard (elementwise) product. Thus,
we have

gi j =
∫ ∞

0

∑
a

CiaDja exp (�aτ )dτ (C6)

= −
∑

a

CiaDja

�a
, (C7)

where the sum omits the zero eigenvalue.

APPENDIX D: FIGURE FOR ISING MODEL

Figure 3 shows 50 randomly sampled points in the space of
intensive variables (H, J) used in the inference of the intensive
and extensive variables in Fig. 1.

APPENDIX E: DATA FOR NMF/TMI COMPARISON
AND IMPLEMENTATION OF NMF

1. Microbiome data

The microbiome data were obtained from David et al. [29].
Briefly, the data consisted of bacterial operational taxonomic

FIG. 3. Scatter plot of 50 randomly chosen H and J values
between [−11]. The color represents the logarithm of the trace (sum
of eigenvalues η1 and η2) of the Fisher information matrix of the
Ising model [20].

023201-7



PURUSHOTTAM D. DIXIT PHYSICAL REVIEW RESEARCH 2, 023201 (2020)

unit (OTU) abundances collected over a period of a year.
There were 318 samples; each sample comprised relative
abundances of ∼8 × 103 OTUs. Based on our previous anal-
ysis [37], we discarded from the data OTUs whose average
relative abundance was less than 0.1% as these abundances are
likely to represent technical noise in data collection. The data
on the remaining 70 high abundant OTUs were renormalized
to relative fractions.

2. Bag of words data from NIPS conferences

The bag of words description [30] is a simple way to
characterize text documents. Briefly, for a collection of doc-
uments, one first identifies all possible words. Next, the
frequency of each word in each document is estimated. The
document is then represented as a vector of frequencies,
regardless of the order in which the words appear.

We downloaded the bag of words model of article submis-
sions to the NIPS conference from the UCI machine learning
repository [31]. From the data, we removed article submis-
sions that were characterized by less than 1000 words and
words that had less than 100 appearances across all articles.
The resultant dataset had 1322 articles each represented by a
normalized probability vector with 2753 entries.

3. Implementation of non-negative matrix factorization

We implemented a modified algorithm to learn the matrices
l and y in Eq. (22). We followed the update algorithm that
corresponds to minimization of Kullback-Leibler divergence
between the data and the approximate representation [36]. To
ensure normalization of the approximate reconstruction, in
each iteration of l, for each α, we scaled the vectors l̄(α) such
that the predictions q(α) sum to 1.
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