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Differences in activities in colloidal particles are sufficient to drive phase separation between active and
passive (or less active) particles, even if they have only excluded volume interactions. In this paper, we study
the phase-separation kinetics and propose a theory of phase separation of colloidal mixtures in the diffusive
limit. Our model considers a mixture of diffusing particles coupled to different thermostats, it thus has a
nonequilibrium nature due to the temperature differences. However, we show that indeed the system recovers
an effective equilibrium thermodynamics in the dilute limit. We obtain phase diagrams showing the asymmetry
in concentrations due to activity differences. By using a more general approach, we show the equivalence of
phase-separation kinetics with the well-known Cahn-Hilliard theory. On the other hand, higher-order expansions
in concentration indicate the emergence of nonequilibrium effects leading to a breakdown of the equilibrium
analogy. We lay out the general theory in terms of accessible parameters which we demonstrate by several
applications. In this simple formalism, we capture a positive surface tension for hard spheres, and interesting
scaling laws for interfacial properties, droplet growth dynamics, and phase segregation conditions. Several of
our results are in agreement with existing numerical simulations while we also propose testable predictions.
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I. INTRODUCTION

Many-body systems self-organize and exhibit macroscopic
collective behavior, which is amenable to coarse-grained
dynamics [1]. The principles of equilibrium thermodynam-
ics which provide the essential tools for studying equilib-
rium self-assembly are not adapted to the new phenomena
emerging in active systems [2]. While active systems are
nonequilibrium in their nature, with each constituent having
its own energy budget and objective, it is quite fascinating
how these systems can display distinct characteristics which
are sometimes nontrivially related to the known basic physical
principles. A typical example is that of active phase separa-
tion.

In living organisms, activity-driven phase separation plays
an important role by promoting self-organization and in-
creasing the efficiency of biological functions inside cells
[3,4], which are due to operate in a very crowded and
noisy environment. The constant use of energy in unequal
amounts by individual cellular subcomponents reflects their
varieties in dynamical and chemical activities [5] as well
as with their innate physiological differences. In turn, these
activity differences may enhance phase separation by creating
effective attractions between alike components. Remarkably,
similar characteristics and governing principles are observed
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at various length scales on diverse biological systems and they
are now also guiding synthetic model systems [6–10].

It is now well known that activity differences in colloidal
particles are sufficient to drive phase separation between
active and passive (or less active) hard spheres having only
excluded volume interactions. These systems can be consid-
ered to have particles with two different temperatures which
mimics the effect of activity differences [11–13]. In principle,
the constituent particles exchange energy, the hotter ones
providing extra energy for the colder ones. This, in turn,
indicates a nonequilibrium behavior [14]. Similarly, in poly-
meric systems, tiny activity differences in active and passive
polymer mixtures enhance phase segregation [15,16]. If the
system is diffusive, the effective temperature can simply be
deduced from the effective diffusivity. For instance, at room
temperature T , bacteria may reach an effective temperature
TA ∼ 102–103 T in translational motion by chemotaxis [17].
These realizations are not limited to biological or polymeric
systems, but are also seen in plasma physics [18] and in
the description of thermal phases in the interstellar medium
[19,20]. Due to having different heating and cooling pro-
cesses, ionized hydrogen reaches a temperature ∼102 times
larger than atomic hydrogen distributed in the interstellar
medium [21]. In many other contexts, the concept of effective
temperature [22] proves quite useful in understanding large-
scale phenomena that originate from microscopic motility or
even chemical differences between the building components
[23–26]. Considering the growing interest in these systems, it
is important to study and establish a theory of phase separation
starting from the microscopic dynamics.

In this work, we extend the theory of mixtures of parti-
cles with different temperatures introduced in Ref. [11] to
inhomogeneous mixtures and we study the phase-separation
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kinetics of solutions composed of two diffusing species,
which are coupled to different thermostats. Starting from the
microscopic model (Sec. II), we derive and present the theory
in the dilute limit (Secs. II–IV) and obtain the scaling laws
for phase behaviors. Even though the system has inherently
nonequilibrium properties due to activity differences, it obeys
an effective equilibrium thermodynamics in the dilute limit
including the interfacial contributions, which generalizes the
Cahn-Hilliard theory of solutions [27] to two temperature
mixtures. We verify this comparing the equilibrium thermo-
dynamic route with the mechanical one. In Sec. V, we demon-
strate example applications of the theory in diverse systems,
and we discuss the results in comparison to previous studies
with new predictions. In Sec. VI, we consider higher-order
corrections in concentrations which break the equilibrium
analogy and raise the difficulty to define a scalar temperature.
For purely hard-core interactions, we present higher-order
corrections in density to the theory by considering depletion
interactions between spheres of different activities, and obtain
results, which do not seem to be easily obtainable otherwise.
We summarize and discuss all these results in the Conclusion.

II. MICROSCOPIC MODEL

We start by introducing the microscopic model and derive
an effective thermodynamic description, which is valid when
the solutions that we study are very dilute. We follow the
lines of Ref. [11] but we extend this approach to inhomoge-
neous mixtures. Thus, we study a solution of mixed particles
satisfying overdamped Langevin equations, in contact with
reservoirs at different temperatures

ζmẋm = −∂mU + (2Tmζm)1/2ξm(t ), (1)

where U is the overall interaction potential between the
particles. The position of particle m is denoted by xm, its
friction coefficient by ζm, its temperature by Tm, and ξm(t ) is
a standard zero mean, unit variance, Gaussian white noise.
Here, we consider two different species of particles, each
being in contact with a thermostat at temperature TA or TB.
This dynamics presented as a Langevin equation for each
particle in the system can be reformulated as a Fokker-Planck
equation for a multiparticle probability distribution P({r})
where {r} is a vector whose components are the positions
of all the particles. The Fokker-Planck equation is written in
terms of the fluxes Jm for each particle:

∂P({r})

∂t
= −

∑
m

∂mJm,

Jm = −∂mUP/ζm − Tm∂mP/ζm. (2)

Distinguishing the two species of particles A and B and
integrating over all coordinates except for one, we obtain the
single-particle distributions pα (r1) where now α, β = A or B
[11]:

∂ pα (r1)

∂t
= Tα

ζα

∇2
r1

pα (r1)− 1

ζα

∂r1 pα (r1)
∑

β

f̄αβ,

f̄αβ = −Nβ

∫
∂uαβ

∂r1

pαβ

2 (r1, r2)

pα (r1)
dr2, (3)

and Nβ is the number of β-type particles. We may write
the two-particle densities in terms of single-particle dis-
tributions and a pair distribution function pαβ

2 (r1, r2) =
pα (r1)pβ (r2)gαβ (r1 − r2). Accordingly, gαβ (r1 − r2) is the
pair distribution function and in the long time limit, it reaches
a steady-state value, i.e., gαβ (r1 − r2) → gss

αβ (r1 − r2). The
knowledge of the steady-state pair distribution function is suf-
ficient to close this set of equations. In general, gss

αβ (r1 − r2)
depends on the particle concentrations and can be expanded
in powers of the concentrations. In the dilute limit, when con-
sidering only pair interactions, the solution of Eq. (2) imposes

gss
αβ (r1 − r2) = exp[−uαβ (r1 − r2)/Tαβ], (4)

where Tαβ are the mobility-weighted average temperatures
and are defined as TAA ≡ TA, TBB ≡ TB, and TAB =
(ζBTA + ζATB )/(ζA + ζB ).

In order to determine the forces f̄αβ , we rewrite the two-
particle distribution function as pαβ

2 (r1, r) = pα (r1)pβ (r1 +
r) exp[−uαβ (r)/Tαβ ] by defining r2 = r1 + r. This change of
variables inside the integrals yields

f̄αβ = −NβTαβ

∫
∂

∂r1
(1 − e−uαβ (r)/Tαβ )pβ (r1 + r)dr. (5)

Assuming that the concentrations vary slowly over a length
scale much larger than the range of the pairwise interac-
tions, we expand pα (r1 + r) ≈ pα (r1) + r · ∇pα (r1) + 1

2 (r ·
∇)2 pα (r1). While inserting in the integrand, the first term
gives the uniform or homogeneous contribution to the force,
the second term vanishes, and the third term provides an
inhomogeneous contribution to the force.

A. Effective thermodynamic identities

We introduce the concentrations cα (x) = Nα pα (x), and
obtain closed equations for the concentrations:

∂cα (r1)

∂t
= Tα

ζα

∇2
r1

cα (r1) − 1

ζα

∇r1 cα (r1) f̄α (r1). (6)

We have defined here the total mean force f̄α = ∑
β f̄αβ acting

on a particle of species α due to all the other particles. In
this particular case, this total mean force is the gradient of
a potential and we can write the conservation equation for the
concentrations in the Cahn-Hilliard form

∂cα (r1)

∂t
= 1

ζα

∇r1 · cα (r1)∇r1μα. (7)

This equation defines the functions μα as nonequilibrium
analogs of chemical potentials

μα = μid
α + �α, μid

α = Tα ln cα, − f̄α (r1) = ∇r1�α. (8)

We decompose the nonequilibrium chemical potentials as
sums of a homogeneous part, which depends only on the
concentration and a nonhomogeneous part, which depends on
the concentration gradients

μα = μ0
α + μ∇

α , (9a)

μ0
α = Tα ln cα +

∑
β

TαβBαβcβ, (9b)

μ∇
α =

∑
β

Tαβ�αβ∇2cβ. (9c)
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The quantities Bαβ = ∫
(1 − e−uαβ (r)/Tαβ )dr are the effective

excluded volumes or second virial coefficients1 and �αβ =
1
6

∫
r2(1 − e−uαβ (r)/Tαβ )dr.

The nonequilibrium chemical potentials can themselves
be calculated as the functional derivatives of an effective
nonequilibrium free energy μα = δF/δcα which is the func-
tional derivative of the total free energy F[cA, cB] = ∫

f dr
with respect to the concentration cα (r). The reconstruction of
free energy from the chemical potentials gives the free energy
per unit volume which is given by

f = f 0 + f ∇, (10a)

f 0 =
∑

α

Tαcα ln(cα/e) +
∑
α,β

1

2
TαβBαβcαcβ, (10b)

f ∇ =
∑
α,β

1

2
Lαβ (∇cα )(∇cβ ), (10c)

where Lαβ = −Tαβ�αβ is negative. The free energy f 0 for
uniform concentrations has already been derived in Ref. [11].
It has a Flory-Huggins form with differences in interactions
dictated by the two different temperatures and the effective
excluded volumes Bαβ’s (second virial coefficients). The con-
trast in temperatures further enhances the tendency toward
demixing that is inherent to the Flory-Huggins free energy.
For instance, in the case where all the virial coefficients
Bα are identical (BA = BAB = BB) (which corresponds in
particular to equal-sized hard spheres), solely the difference
in temperatures drives asymmetrically weighted interactions
between particles that are responsible for phase separation.
A crucial remark is that the friction coefficients ζα or the
mobilities, which are the inverse of the friction coefficients,
only enter through the effective pairwise temperature TAB
which becomes indistinct for TA = TB. Hence, a difference
in diffusivities Dα ∝ Tα/ζα at the same temperature TA = TB
but ζA �= ζB has no influence on the thermodynamics. This is
expected a priori since in this case the system is at thermal
equilibrium.

It is remarkable that the concept of effective free energy
can be extended to inhomogeneous solutions of particles with
two different temperatures. In a dilute limit, at lowest order in
the concentration gradients, this shows compatibility with the
Landau-Ginzburg theory [28]. A major difference in this case
is that the steady state is maintained at the expense of extra
power input [29].

B. Internal stress

In order to derive the local stress tensor σi j in the solution,
we first calculate it from the free energy as could be done in
an equilibrium system and then give a mechanical derivation
based on the Irving-Kirkwood formulation of the stress, which
leads to the same results.

a. Effective thermodynamic construction. In a deformation
of the volume V + δV , the total work is obtained by integrat-

1This differs from the standard definition of virial coefficients by
a factor of 2. We chose it this way to keep the free energy in Flory-
Huggins form.

ing the work across each surface element. If we call dSj the
surface element and ui the infinitesimal displacement along,
respectively, the i and j direction in Cartesian coordinates, the
work associated to the deformation of the volume is

δW =
∫

∂V
dS juiσi j . (11)

On the other hand, if there is an effective free energy, the
work done by the displacement is δW = δF . Hence, we may
obtain the stress tensor σi j from the surface contribution to the
change in free energy δF which can be written as

δF =
∫

δV
f dr +

∫
δ f dr. (12)

The first term on the right-hand side gives the surface integral∫
f (u · dS) while the second one can be converted to a surface

integral by expanding δ f in terms of of the changes in the
concentrations δcα induced by the deformation, i.e.,

δ f = μAδcA + μBδcB

+ ∇ ·
(

∂ f

∂ (∇cA)
δcA

)
+ ∇ ·

(
∂ f

∂ (∇cB )
δcB

)
. (13)

We study here the stress in a steady state, and as discussed in
the previous sections, the chemical potentials μA and μB are
constant throughout the volume. We can therefore eliminate
the changes in concentrations δcα by using the conservation of
the total numbers of particles A and B during the deformation∫

V δcα + ∫
δV cα = 0.

The total change in the free energy can then be written as a
surface integral

δF =
∫

∂V
dS j[ui( f − μAcA − μBcB )δi j

+ δcA(LA∂icA + LAB∂icB )

+ δcB(LB∂icB + LAB∂icA)]. (14)

Finally, the variation of the concentration on the surface is
given by δcα = −u · ∇cα for both species. The resulting stress
tensor reads as

σi j = ( f − μAcA − μBcB )δi j

− ∂icA[LA∂ jcA + LAB∂ jcB]

− ∂icB[LB∂ jcB + LAB∂ jcA]. (15)

Accordingly, the pressure p can be deduced directly from the
diagonal component of the stress pδii = −σii which gives, in
three dimensions,

p = (μAcA + μBcB − f ) + 1
3 [LA(∇cA)2

+ LB(∇cB )2 + 2LAB(∇cA)(∇cB )]. (16)

The first term contains the locally uniform pressure p0 =
(μ0

AcA + μ0
BcB − f 0) that is given by the standard Gibbs-

Duhem equation and the gradient terms including the contri-
butions of μ∇

A, μ∇
B , and f ∇ determine the interfacial contribu-

tions.
b. Irving-Kirkwood method. An alternative, more general

method to calculate the stress tensor without any reference
to the equilibrium thermodynamics has been proposed by
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Irving and Kirkwood [30], starting from the mechanical virial
equation [31]. The stress tensor σ

(v)
i j is given by

σ
(v)
i j = σ K

i j + 1

2

〈∑
α,β

rir j

r

(
∂uαβ (r)

∂r

)〉
︸ ︷︷ ︸

σ u
i j

, (17)

where σ K
i j is the stress in the absence of interactions (for an

ideal gas), while the second part is the contribution to the
stress due to interparticle potentials that we name σ u

i j . The
interaction part of the stress can be decomposed into a sum
over the particle species α and β and the average in Eq. (17)
can be calculated using the two-particle probability distribu-
tion pαβ

2 (r1, r). As in the previous paragraphs, we expand
the two-particle densities around r1, and make a change of
variables to calculate the average values. This leads to the
following stress:

σ u
i j =

∑
α,β

NαNβ

2

∫
rir j

r
∂uαβ (r)

∂r

×
∞∑

l=1

(−r · ∇)l−1

l!
pαβ

2 (r1, r)dr. (18)

The rest of the calculation is straightforward. We give the
full result of this calculation in Appendix B. It turns out that
the stress tensor calculated by the Irving-Kirkwood method
is different from the stress calculated from the free energy;
it can be written as σ

(v)
i j = σ

( f )
i j + σ ′

i j where σ
( f )
i j is the stress

obtained in the previous paragraph from the free energy (15).
This shows that the stress is not defined in a unique way
[32]. However, it conserves all the properties of σ

( f )
i j for

our analysis, and strictly does not alter the force-balance
since ∂iσ

′
i j = 0. Interestingly, σ

(v)
i j could just be obtained

from a free-energy perturbation by adding surface terms
− 1

3∇2[LAc2
A + 2LABcAcB + LBc2

B] to the free energy given
by Eq. (10a).

This result validates that in the limit of low concentrations,
we can still use the thermodynamic approach to calculate the
stress inside the solution. In the more general case where there
is no effective free energy, one would need to rely on the
Irving-Kirkwood description. A final note is that an alterna-
tive formulation of Irving-Kirkwood method can be achieved
by using microscopic force balance [33,34] in the time-
evolution equations (6), thus summing up all mean internal
forces.

III. PHASE LINES AND THE CRITICAL POINT

We now use the effective thermodynamic description of
the solution to calculate the phase diagram of a solution of
particles at two different temperatures.

A. Dimensionless effective thermodynamic quantities

Let us introduce first the volume fractions φα = cαBα/εα

where εα ≡ Bα/vα is the conversion factor to molecular vol-
ume vα . The volume factions are well defined only if the
total volume fraction is smaller than one. They must then

satisfy φA + φB � 1. We also define βB = εBBAB/(BB ), the
temperature ratio αT = TA/TB, volume ratio αv = vA/vB,
and the friction ratio αζ = ζA/ζB. Finally, we define L̂αβ =
T −1
B LαβvA/(vαvβ ). Accordingly, we set the dimensionless

free-energy density f̂ = T −1
B vA f while the total free energy

is F̂ = ∫
f̂ dr. As a result, we obtain the dimensionless

chemical potentials μ̂α = δF̂/δφα:

μ̂A ≡ T −1
B μA = αT (ln φA + εAφA) + αT + αζ

1 + αζ

βBφB

− L̂A∇2φA − L̂AB∇2φB, (19)

μ̂B ≡ T −1
B αvμB = αv (ln φB + εBφB ) + αT + αζ

1 + αζ

βBφA

− L̂B∇2φB − L̂AB∇2φA, (20)

where we ignored the density-independent terms. Note that
μ̂B has an extra scaling factor αv in order to conserve all the
functional properties to construct the thermodynamic func-
tions of the previous section. Similarly for pressure we have
p̂ = T −1

B vAp. This completes our transformation to dimen-
sionless functionals X [cA(r), cB(r)] → X̂ [φA(r), φB(r)]. As
in the previous case, we can separate these into locally uni-
form and interfacial components, i.e., X̂ = X̂ 0 + X̂ ∇.

B. Two-phase coexistence

At zero-flux steady state for single-particle concentrations,
we should have uniform chemical potentials and pressure.
For a mixed state this would suggest to have uniform con-
centrations (a single phase). However, if there are any two
phases coexisting, they should satisfy the following conditions
at their interface:

μ̂0
A

(
φa
A, φa

B
) = μ̂0

A
(
φb
A, φb

B
)
, (21a)

μ̂0
B
(
φa
A, φa

B
) = μ̂0

B
(
φb
A, φb

B
)
, (21b)

p̂0
(
φa
A, φa

B
) = p̂0

(
φb
A, φb

B
)
, (21c)

where a and b denote the two coexisting phases. Together,
these suggest no net particle exchange and force balance at
phase boundary while concentrations continuously vary from
one phase to the other. We obtain the coexistence curve (or
binodal line) in our phase diagrams by numerically solving
the above conditions.

C. Spinodal line

The stability of the uniform state φA(r) = φ0
A and φB(r) =

φ0
B can be analyzed by linearizing ∂φA/∂t and ∂φB/∂t around

the uniform state by introducing φA(r) = φ0
A + δφA(r) and

φB(r) = φ0
B + δφB(r) where φ0

A and φ0
B denote the uniform

states. As a result, we obtain in Fourier space the equation
of the relaxation of a perturbation of wave vector q, δφ̃(q) =
(δφ̃A(q), δφ̃B(q))

∂δφ̃(q)

∂t
= −q2δφ̃(q), (22)
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with the relaxation matrix

 = TB

(
φ0
Aζ−1

A 0
0 α−1

v φ0
Bζ−1

B

)
κ−1

p ,

κ−1
p =

⎛⎝αT
( 1+εAφA

φA

) αT +αζ

1+αζ
βB

αT +αζ

1+αζ
βB αv

( 1+εBφB
φB

)
⎞⎠, (23)

where κ−1
p is the inverse of the compressibility matrix ob-

tained from the linearization of the chemical potentials and
we have neglected terms of order q4. Note that in κ−1

p and for
the remainder, we no longer write the superscript zero of φα’s.
The instability occurs when at least one of the eigenvalues of
 becomes negative. Thus, it is enough to determine the limit
where the determinant |κ−1

p | is negative. The nondimensional-
ized spinodal line equation is obtained as

νs = 1 + εAφA
φA

1 + εBφB
φB

− (αT + αζ )2β2
B

(1 + αζ )2αT αv

= 0 (24)

for vanishing wave vector q. The instability occurs when νs <

0. The spinodal line is symmetric if εA = εB. It is clear that
a larger contrast of activity, i.e., a larger αT enlarges unstable
region of the phase diagram.

D. Critical point

The critical point is calculated by finding the point where
the two phases in equilibrium are identical [35]. This is the
point along spinodal line where the fluctuations are maximum.
Hence, we search for the point along the spinodal line where
the gradient of the spinodal line in the volume fraction pa-
rameter space ∇νs = φ̂A∂φAνs + φ̂B∂φBνs is aligned with the
eigenvector e0 of the inverse compressibility matrix, corre-
sponding to the eigenvalue ε = 0. Accordingly, the volume
fractions at the critical point (φ∗

A, φ∗
B ) satisfy

φ∗
B(1 + εBφ∗

B )

(1 + εAφ∗
A)2

= αT (1 + αζ )

βB(αT + αζ )
, (25a)

νs(φ
∗
A, φ∗

B ) = 0. (25b)

We observe that even at εA = εB where the spinodal line is
symmetric, the location of the critical point can be shifted
along the spinodal line by controlling the ratio αT /αv . One
easy way to see that is to use the conjugate of Eq. (25) and
symmetrize these two forms for φA and φB. Accordingly,
choosing αT > αv moves the critical point toward the B-
rich part of the phase diagram while setting αT < αv moves
it toward the A-rich side. However, if εA �= εB, it seems
more complicated to get a sense on such symmetrization and
one should follow Eq. (C2). We will investigate further the
properties of such asymmetric phase diagrams in Sec. V in
order to get a hint on the structure of coexisting phases that
can be either both liquidlike phases or a solidlike and a gaslike
phase.

E. Condition for existence of phase separation

In the previous paragraphs, we outlined the calculation of
phase diagrams using the effective free energy obtained in the
limit of low concentrations, but imposing no constraints on the
volume fractions and assuming that both phases remain fluid.

If the volume fractions are high enough in one of the phases,
this phase cannot be fluid and is solid. There is in this case
equilibrium between a liquid or gaseous (very dilute) phase
and a solid phase for which our concentration expansion is
not accurate but approximate. Still, it qualitatively indicates
a crystalline phase. Simulations show that this phase exhibits
hexagonal packing in two dimensions [12], while both face-
centered-cubic and hexagonal-close-packed structures in three
dimensions [36]. On the other hand, for hard-sphere interac-
tions and considering that the two phases remain fluid, we
improve our approximation in Sec. VI by adding one order
in concentration.

A general constraint on the volume fractions is that the
total volume fraction is not space filling and that it is smaller
than the critical concentration for space filling φmax (for a
random packing of identical spheres φmax � 0.64). Here, for
generality, we stick with φmax = 1 following the general liter-
ature. This choice, together with low-density approximation,
is sufficient to observe qualitative tendency to phase separate
while varying interaction and activity parameters.

A common approach to study the conditions for phase
separation [37] is to impose this space-filling condition for
the spinodal line given by Eq. (24). This conjecture accepts
the emergence of an instability region in the phase diagram
as the sufficient condition for phase separation. An alternative
more restrictive view would be that the critical point should
exist inside a physical phase diagram. In this case, the valid
condition is the existence of the critical point inside the phys-
ical regime. These two approaches are identical if the critical
point is at the tip of the spinodal line while the latter condition
delays the onset of the coexistence region. We evaluate both
conditions for the cases we consider (Fig. 3).

IV. PHASE-SEPARATION KINETICS

Knowing the coexisting phases and the effective thermo-
dynamic description, we can develop the theory of phase-
separation kinetics for two temperature mixtures. We start
here by determining the surface tension between two phases at
equilibrium and then discuss phase-separation kinetics. Note
that the interface between the two phases is stable only if the
surface tension is positive.

A. Surface tension

We consider a mixture with two phases at equilibrium
and with a flat interface between the two phases. In this
geometry, the two concentrations or the volume fractions vary
only along one direction, say the z direction, so that ∂ycα =
∂xcα = 0. The stress is isotropic in the bulk of each phase
but becomes anisotropic close to the interface. The interfacial
tension between the two phases can be calculated from the
stress distribution in the solution

γ =
∫ zb

za

(σxx − σzz )dz, (26)

where the integration is from one phase (phase a) to the other
(phase b). Using our calculated value of the stress tensor σi j

[Eq. (15)], we see that the isotropic component of the stress
proportional to δi j cancels out and that only the nondiagonal
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components of the stress contribute to the surface tension:
they vanish for σxx but do not vanish for σzz. In dimensionless
form, σ̂i j ≡ vAT −1

B σi j , we find

σ̂xx − σ̂zz = L̂A(∂zφA)2 + L̂B(∂zφB )2 + 2L̂AB(∂zφA)(∂zφB ).

(27)

In order to determine the surface tension γ from Eqs. (26)
and (27), we then need to determine the concentration profiles
along the z direction. We first introduce the boundary con-
ditions in the two phases in equilibrium: (i) μ̂A(φa

A, φa
B ) =

μ̂
†
A = μ̂A(φb

A, φb
B ), (ii) μ̂B(φa

A, φa
B ) = μ̂

†
B = μ̂B(φb

A, φb
B ),

and (iii) p̂(φa
A, φa

B ) = p̂† = p̂(φb
A, φb

B ), where the values with
daggers are the constant values of the chemical potentials and
the pressure at equilibrium. The concentration profiles can
then be calculated from the coupled differential equations:

μ̂0
A(z) − μ̂

†
A = L̂A∇2φA(z) + L̂AB∇2φB(z), (28a)

μ̂0
B(z) − μ̂

†
B = L̂B∇2φB(z) + L̂AB∇2φA(z). (28b)

Using the Gibbs-Duhem expression of the free en-
ergy in the phases at equilibrium, f̂ 0 = μ̂0

AφA + μ̂0
BφB −

p̂0 and integrating Eq. (28) is consistent with σ̂xx − σ̂zz =
� f̂ [φA(z), φB(z)] where the tilted free energy is given by

� f̂ = f̂ − (μ̂†
AφA + μ̂

†
BφB − p̂†). (29)

While this is the generic form, the same treatment more
specifically implies that � f̂ = 2� f̂ 0. The tilted free energy
is the difference between the local free energy along the con-
centration profiles and the energy obtained from the so-called
common tangent construction. Since the common tangent
construction gives the minimal possible free energy, the tilted
free energy is always positive � f̂ > 0 as long as one can
solve the set of equations (28) with appropriate boundary
conditions. We may therefore write an alternative form of the
interfacial tension :

γ̂ ≡ T −1
B vAγ = 2

∫ zb

za

� f̂ 0(φA(z), φB(z))dz. (30)

If there is a consistent profile, the surface tension γ is
therefore always positive and the interface between the two
phases is stable. The set of equations (28) can be solved
numerically by linearization of the two equations around
one boundary (say phase a) and integrating up to the other
boundary (phase b) using a shooting method. Alternatively, an
analytical approximation can be obtained by considering the
system close to the critical point as done in the next paragraph.
This analytical approximation is in excellent agreement with
the numerical results.

Surface tension near the critical point. In the vicinity of
the critical point, we show in Appendix C how the effective
thermodynamics can be expressed as a function of a single
order parameter ψ which is a linear combination volume frac-
tions relative to the critical point. In addition, the other normal
coordinate η gives the normal distance from the critical point,
and a phase separation occurs when a solution exists ηa ≈
ηb > 0. Each value of ηa defines the two coexisting phases ψa

and ψb. The transformed coordinates are illustrated in Fig. 1,
where at first the concentration profiles φA(z) and φB(z) are
obtained by solving Eq. (28) numerically. The effective tilted
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0.04

2

δφA δφB

-0.04

-0.02

0

0.02

0.04 ψ

η

(a)

(b)

FIG. 1. Example density profiles between coexisting phases for
hard spheres with αv = 27 and αT = 20 and εA = εB = βB = 8 and
hence tan θ∗ ≈ 0.836. We show (a) profiles of the particle volume
fractions δφA = φA(z) − φ∗

A and δφB = φB(z) − φ∗
B, (b) profiles of

the normal coordinates ψ (z) and η(z); we observe that η(z)  ψ (z).
The interface width is 2� and away from the interface the densities
take constant values at two coexisting phases.

free-energy density is given in (C11) as a function of the order
parameter only, which is obtained by transforming (29) to
normal coordinates. Minimization with respect to ψ leads to

� f̂ 0 = 1
4 kψ (ψ − ψa)2(ψ − ψb)2 = 1

2 L̂ψ (∇ψ )2. (31)

Equations (30) and (31) suggest that γ̂ = L̂ψ

∫
(∇ψ )2, and

hence the sign of Lψ determines the sign of the surface
tension. It is then simple to prove that the surface tension for
equal-sized hard spheres is positive for all αT values. For hard
spheres with varying size ratios, we checked by numerical
evaluation of Lψ that it is positive for the values of the
parameters αV and αT that lead to a phase separation except
when αv  1 or αv � αT (see Appendix D for calculations,
and Sec. V B for more discussion). The solution of (31) gives
the concentration profile

ψ = �ψab

2
tanh z/�, (32)

where the interface width is � = ( 8Lψ

�ψab
2kψ

)
1/2

. The surface

tension can then be calculated by integration of Eq. (27) where
we keep only the terms involving the gradient of ψ :

γ̂ ≈ 1
12 (�ψab)3(2kψ L̂ψ )1/2. (33)

In order to look at the scaling variation with parameters
of the mixture such as αT or αv , one must express the
dimensionless quantities that we used as functions of these
parameters. Taking as an example equal-sized hard spheres
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where αv = 1, and hence αζ = 1, εA = εB = βB = 8, the
volume fractions at the critical point are given by φ∗

A = α−1
T ,

φ∗
B = 1/8 + (5/4)α−1

T when αT � 1. Considering a particle
mixture of given volume fractions of particles (which could
be called the laboratory conditions) φ0

A and φ0
B defined by

φ0
α = V −1

∫
V φα (r)dr and for finite volume fractions in the

vicinity of the critical point, we obtain

γ̂ ∼ (
φ0
A

)3/2
v

1/3
0 α

3/2
T , (34)

where v0 is the volume of the particles. The real surface
tension is then γ = TBv−1

0 γ̂ . The surface tension therefore
increases as a power law of the ratio between the temperatures
of the two types of particles αT (see Appendix E for details).

B. Kinetics of droplet growth

We consider a mixture quenched in the two-phase region
which is therefore supersaturated. We focus on a spherical
droplet of phase b with radius R, growing inside the back-
ground phase which has a composition close to phase a.
The volume fractions outside the droplet are not equal to
the concentrations in the a phase due to the supersaturation,
i.e., φA → φa

A + δφA and φB → φa
B + δφB. Note that the

concentrations inside the droplet are also slightly different
from the concentrations of the b phase but we can ignore this
difference here.

This is a multiscale problem with two well-separated
length scales: the width of the interface � is much smaller
than the droplet size R. At the scale of the small length �, the
system is still close to equilibrium with chemical potentials
μ̂′
A and μ̂′

B which are the chemical potentials slightly shifted
from the phase equilibrium values and calculated outside the
droplet on its surface. The steady-state equations, which give
the particle concentration profiles, are

∂ f̂

∂φA
− μ̂′

A = L̂A

(
∂2φA
∂r2

+ 2

r

∂φA
∂r

)

+ L̂AB

(
∂2φB
∂r2

+ 2

r

∂φB
∂r

)
, (35)

∂ f̂

∂φB
− μ̂′

B = L̂B

(
∂2φB
∂r2

+ 2

r

∂φB
∂r

)

+ L̂AB

(
∂2φA
∂r2

+ 2

r

∂φA
∂r

)
. (36)

In order to solve the so-called inner problem at the length
scale �, we choose a length δ such that �  δ  R. We
multiply the first equation by ∂φA/∂r and the second one by
∂φB/∂r, add them up and then integrate across the interface
over a region of size δ such that in both phases, ∂φA/∂r =
∂φB/∂r = 0 away from the interface. As a result, we obtain
the Gibbs-Thomson relation [38]

δμ̂A�φab
A + δμ̂B�φab

B = 2γ̂

R
, (37)

where for each species, �φab
α = φb

α − φa
α and δμ̂α = μ̂†

α −
μ̂′

α . Note that outside the droplet, as discussed below, the
volume fractions and the chemical potentials vary over the

large length scale R and do not change over the length δ. As in
the previous section, we now transform the volume fractions
to normal coordinates and obtain

δμ̂η�ηab + δμ̂ψ�ψab = 2γ̂

R
. (38)

The noncritical variable η is identical in the two phases so
that �ηab = 0. The small variation of the chemical potential
δμ̂ψ can be obtained from Eq. (C7) as δμ̂ψ � 2kψψ2

a δψ

using Eq. (C10) where δψ = ψ (R) − ψa is the small shift
of the order parameter on the surface of the droplet from its
equilibrium value in phase a. Then, rearranging Eq. (38), we
have

δψ (R) = γ̂

Rkψψ2
a �ψab

. (39)

We now study the dynamics of the growing droplet by
studying the outer problem, calculating the order-parameter
profile of the droplet material. As the noncritical variable
η has the same value in the two phases and as we find
numerically that its variation is very small, we will assume
here that there is no flux associated to this variable. The
problem then has a single conserved order parameter ψ .

Outside the droplet, the order parameter ψ follows a diffu-
sion equation ∂ψ/∂t = Dψ∇2ψ . We discuss the value of the
effective diffusion constant Dψ in Appendix F. The boundary
conditions for this diffusion equation are the value δψ (R)
given by the Eq. (39) and the value at infinity ψ∞ which
measures the supersaturation. The solution of the diffusion
equation is

ψ (r) = ψ∞ − (R/r)[δψ∞ − δψ (R)]. (40)

The growth of the droplet is due to the radial flux jψ =
−Dψ

∂ψ

∂r |r=R The conservation of the flux of the order pa-
rameter ψ on the surface of the droplet leads to �ψab

dR
dt =

Dψ
∂ψ

∂r |R. Inserting the solution of the diffusion equation, we
obtain the evolution of the radius of the droplet

dR

dt
= Dψ

R

(
� − d0

R

)
, (41)

where the supersaturation is defined as � = δψ (∞)/�ψab

and d0 = γ̂ /(kψψ2
a �ψ2

ab) is a length of the order of the
interfacial width �. This gives the critical nucleation radius
of the droplet Rc = d0/�. Droplets smaller than d0 collapse
whereas droplets larger than d0 grow.

At the early stages of the phase separation just after the
quench, there are few droplets and the droplets that are
larger than the critical radius grow as R ∼ t1/2. At long
times, the value of the supersaturation decreases with time
and a much more detailed analysis is required, which has
been made by Lifshitz and Slyozov [39]. The supersatura-
tion decreases as � ∼ d0/R and the average droplet radius
increases as R ∼ t1/3. Plugging in the value of Dψ obtained
in Appendix F gives the scaling of droplet growth with time,
R ∼ (rGt )1/3 in which the growth rate of mean droplet volume
rG ∼ (φ0

AαT )1/2v
1/3
0 TB/ζ that is linearly proportional to the

geometric mean of TA and TB.
Here, we obtain these power laws in the dilute limit of

our two-temperature model (which can be mapped on an
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FIG. 2. Triangular phase diagrams for three-component system φA, φB, φs(solvent) where φA + φB + φs = 1; for every point in the
triangle, the volume fractions are given by their distance from the facing triangle side (exemplified on scaled inset by star). Both diagrams
are for hard-sphere systems (aαβ = 0, εA = εB = 8) with temperature ratio TA/TB = 20 while size ratios differ. In (a) vA = vB whereas
in (b) vA = 27vB. The purple and dashed orange lines show binodal and spinodal lines, respectively, and red dots are the critical points.
The location of the critical point is asymmetric in both cases (though in opposite directions). Moreover, in (a) we mark two coexisting
phases a and b (purple squares) which are strongly asymmetric. Starting from the initial well-mixed setup, the system phase separates into
a solidlike close-packed B particle (phase b) surrounded by an A gas (phase a) as illustrated in top left inset. In (b) the phase diagram
appears to be more symmetric, indicating both liquidlike coexisting phases though shifted slightly toward A-rich side. This results from
having αT /αv = 20/27 � 1, the ratio which controls the symmetry of two phases (see Sec. III D)

equilibrium system). On the other hand, at higher order in
the density expansion even though the solution parameters
(�, d0, Dψ, rG) change, there is no reason to expect a different
power-law behavior than R ∼ t1/3 as long as the droplet
material is transported by diffusion. Similar examples include
one-component active fluids which respect the 1

3 law [40,41].

V. SOME APPLICATIONS OF THE THEORY

In this section, we show a few examples of application of
the theory, to various systems. Some of these results are in
accordance with existing numerical studies while some may
motivate future experiments and simulations.

As discussed earlier, the intraspecies and interspecies in-
teractions can be controlled either by modifying the interac-
tion potentials between particles or by changing the activity
difference (the temperature ratio). In the first case, one alters
the virial coefficients while in the latter case, one changes
both the entropic part of the effective free energy by changing
the temperatures Tα but also the weight of the interactions
through the pairwise temperatures Tαβ as seen in Eq. (10b).
In general, for short-range interactions, the second virial co-
efficients can be written as Bαβ ≈ bαβ + aαβ/Tαβ , where bαβ

is the effective pair excluded volume and aαβ is the additional
interaction part. Moreover, bαβ can be approximated by its
hard-core value. As an example, for spherical particles, bαβ ≈
(4π/3)d3

αβ and aαβ ≈ 4π
∫ ∞

dαβ
uαβ (r)r2dr where dαβ is the

distance between the centers of the particles at contact for
an αβ pair. If the additional interaction is purely attractive,
aαβ < 0 is negative whereas it is positive if the additional
interaction is repulsive. For a mixture of particles with given
hard-core sizes, this part of the virial coefficient can be tuned
by chemical modifications. In addition, the contrast in activity
which can be adjusted by the energy input per constituent,
provides an extra handle [6,42] for controlling the phase
separation.

A. Colloidal hard spheres with different temperatures

Pure hard spheres interact with each other only through
excluded volume interactions, which do not allow them to
interpenetrate: aαβ = 0 and Bαβ = bαβ . The dramatic influ-
ence of activity contrast toward demixing is clearly observed
in mixtures of hard spheres with equal sizes and hence equal
mobilities [12]. In Fig. 2(a) we show the phase diagram for
equal-sized hard spheres αv = 1, αζ = 1, then εA = εB =
βB = 8 with temperature ratio αT = 20.2 The volume frac-
tions of the cold and hot particles are not equal at the critical
point where the volume fraction of the cold particles is larger,
indicating asymmetric phases. As exemplified in the phase
diagram, starting from a mixture in the unstable region, the
system phase separates into a solidlike close-packed B particle
(phase β, which is not quantitatively well described by our
low-density approximation) surrounded by an A gas (phase
α) as illustrated by top left inset.

Using our formalism, we can also investigate the phase
behavior of hard-sphere mixtures with different sizes. As we
mentioned earlier, exclusively for active systems where TA �=
TB, do the mobilities (or the friction coefficients ζα) come
into play via the effective pairwise temperature TAB when
ζA �= ζB. For a given size ratio αv , βB = (1 + α

1/3
v )3 and

using Stoke’s law αζ = α
1/3
v . In Fig. 2(b) we plot the phase

diagram for mixtures of hard spheres where the hot particles A
are larger with a volume ratio αv = 27 and a temperature ratio
αT = 20. The evolution of the phase diagram upon increasing
the size ratio can be appreciated by comparison to equal-
size hard spheres at the same temperature ratio [Figs. 2(a)
and 2(b)]. A more symmetrical phase diagram is predicted
by increasing the volume ratio to reach αv ≈ αT and we

2Note that αT > 4 is the updated demixing condition for isometric
hard spheres consistent with the second-order virial expansion. In
Ref. [11], the authors had obtained αT > 34 where they chose εA =
εB = 1 for simplicity.
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FIG. 3. Control over mixing. (a) Phase diagram for the existence of a phase separation in the temperature ratio αT = TA/TB and volume
ratio αv = vA/vB plane for pure hard spheres. The purple line follows the spinodal condition while the outer brown boundary more strictly
requires the existence of a critical point (see Sec. III E). Inside these lines the solution remains mixed at all compositions. Interestingly, the
phase diagram shows reentrance in both the lateral and vertical directions. The gray line αT = αv separates the different regimes of phase
compositions: (i) on lower half-plane, we expect solidlike B-rich phase and gaslike A-rich phase, and (ii) vice versa on upper half-plane, (iii)
whereas near the gray line we expect both liquidlike phases. In (b) we use the same condition (in purple) for the existence of demixing for
equal size hard spheres with short-range interactions of equal magnitude but opposing behavior (attractive vs repulsive) for intraspecies and
interspecies. The inset shows the favored interactions in both regimes. If a0 > 0, the molecular interactions only promote mixing while at
sufficiently large temperature ratios, the system can still reach phase separation.

expect coexistence between two liquidlike phases [Fig. 2(b)].
A further increase of size ratio shifts the phase diagram toward
the A-rich side as expected for mixtures of hard spheres
with different sizes at the same temperature. Another way to
observe the effect of tuning both size and temperature ratios is
to evaluate the conditions required for the existence of a phase
separation given in Sec. III E as a function of temperature and
size ratios. We show this phase diagram in Fig. 3(a) which
displays reentrances in both size-ratio and temperature-ratio
axes.

B. Relation to active swimmers and active-passive
particle mixtures

In dilute mixtures of active swimmers and passive parti-
cles, the run and tumble mechanism of the swimmers with
propulsion speed VA and reorientation time τr dictated by
the time step between two tumbling events can be considered
at long times as entirely diffusive. If the reorientation time
of swimmers is much smaller than the mean collision time
(or mean-free time), i.e., τr  τc, then (TA − TB ) ≈ Pcsτr/3
where TB is the background temperature and PA

cs = V 2
AζA

is the mean power required to drive chemotaxis [43] for an
active particle. Accordingly, keeping τr high will serve lower
dissipation rate to maintain the same translational diffusivity.
The validity range of this approximation in terms of the
Péclet number Pe = 3VAτr/dA where dA is the diameter
can be obtained by estimating τc for active swimmers [44]
using collision theory. It suggests that the effective diffusive
approximation (TA − TB ) ≈ Pcsτr/3 remains valid for Pe 

3
8φA

and density corrections are required as the concentra-
tion increases (τr � τc). Moreover, when we consider the
emergence of the spinodal region as the demixing condition
(Sec. III E), we obtain at equal volume fractions φA = φB =
φs, the phase boundary follows φs ∼ Pe−1. This relation is

in accordance with simulations of mixtures of passive and
active Brownian particles in two dimensions [45], although
the simulations probe the phase separation at denser concen-
trations where both the diffusive approximation of the active
swimmers fails (high Pe) and the dilute limit approximation
of the phase separation theory is not qualitatively accurate.

One interesting aspect of our results is that we predict a
positive surface tension as discussed in the previous section.
In single-component active fluids, the contribution from the
swim pressure to the sign of surface tension is controversial.
Certain approaches report negative [46], near zero [47], or
positive [48] values, or even supporting both [49]. For the two-
temperature model, at this order, the traditional “effective”
equilibrium route coincides with the mechanical framework,
however, we discuss the breakdown of this construction on
Sec. VI while going one order higher in density. We can also
express the cluster growth rate in terms of the mean power
input. If the A and B constituents have the same volume v0,
at later stages of clustering, Eq. (F5) suggests that the growth
rate of mean cluster size rG ∼ (φAPcsτr )1/2v

1/3
0 T 1/2

B /ζ when
Pcs � TB/τr . This can be generalized similarly when there are
two different types of swimmers, and so on.

C. Interacting particles with different temperatures

Another interesting scenario appears when the interactions
between particles enhance mixing while the activity contrast
opposes and boosts demixing. To illustrate this scenario with
an example, consider a system of particles with equal strength
of interactions which are repulsive for identical particles and
attractive between different particles. This could be achieved,
for example, by mixing hot and cold particles of opposite net
electric charges in a medium with a finite screening length.
Similar other systems can be prepared by engineering chemi-
cal interactions. The interaction part of the virial coefficients
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can in this case be written as aAA = aBB = a0 and aAB =
−a0. We may further simplify the problem by considering
spherical particles of equal sizes such that bαβ = b0 = 8v0

where v0 is the molecular volume of the particles. We can
evaluate the parameter range where a phase separation occurs.
In Fig. 3(b), we show the phase diagram in terms of the
scaled interaction parameter a0/(TAv0), and the temperature
ratio αT = TA/TB for TA > TB. When a0 > 0, the molecular
interactions only promote mixing while at sufficiently large
temperature ratios, the system can still reach phase separation.

D. Active-passive polymer blends

Biopolymers play a key role in intracellular or intranuclear
organization in many instances [50], while they often interact
with active proteins which confer them an active character.
In our context, such activity in biopolymers has been shown
to enhance spatial segregation and maintain compaction. This
is the case, for example, displayed in the structure and com-
paction of DNA inside the cell nucleus [51,52]. Similarly
to colloidal particles, the active forces induce an effective
temperature higher than the ambient one [53]. To give an
example within our theory, we consider here a mixture of
poly-A and poly-B chains in solution with equal lengths but
with different temperatures (or activities) TA > TB and having
only excluded-volume interactions. For dilute solutions, one
can still expect an effective thermodynamic behavior with
an effective free energy given by a Flory-Huggins theory.
In the spirit of the Flory-Huggins mean-field theory, we
suppose here that the interaction part of the free energy
does not depend on the connectivity between the monomers
and that we can employ the results obtained for colloidal
particles. Therefore, in order to describe the polymers, we
use the chemical potentials obtained in the Sec. II A by
making the transformation μα → μid

α /Nα + �α , where Nα is
the number of monomers in each chain. Here, we consider the
size interactions to be identical such that εA = εB = βB =
ε0. By using the phase-separation conditions described in
Sec. III (both approaches agree in this case when Nα � 1), we
observe that segregation requires (TA − TB )/TB = αT − 1 >

(2ε
−1/2
0 )(N−1/2

A + N−1/2
B ). This result agrees with extensive

simulations of active-passive polymer mixtures [15] where
the same scaling law is observed for NA = NB = N as the
condition becomes αT − 1 > (4ε

−1/2
0 )N−1/2, though in terms

of effective temperatures. Our mean-field exponents on the
profile �ψ ∼ α

1/2
T and interface width � ∼ α

−1/2
T seem close

to the values obtained from simulations by the same authors
in Ref. [16].

VI. HIGHER-ORDER EXPANSIONS IN CONCENTRATION

A. General form

Up to this point, we have studied the general phase
behavior of a suspension of mixed particles with different
temperatures in the dilute limit. In this limit, the theory takes
into account only two-particle correlations, the system has an
effective thermodynamic description and the phase behavior
can be obtained from the direct analog of the equilibrium
construction of phase separation, despite the existence of
nonequilibrium aspects such as the violation of detailed bal-

ance that are observed at the microscopic level [11]. A natural
extension of this approach is then to calculate higher-order
corrections in concentration and see whether the effective
thermodynamic description is preserved.

In order to answer this question, we must first obtain the
steady-state pair distribution function gss

αβ (r1 − r2) at next
orders in particle densities cα . A general strategy would be
to start from the Fokker-Planck equation (2) for the mul-
tiparticle probability distribution P, and integrate up to the
desired order in densities. One can then solve the remaining
coupled equations to obtain the pair distribution functions
gss

αβ (r1 − r2). This approach leads to the Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy [31]. For our
problem, a nonequilibrium analog of this hierarchy is detailed
in Ref. [11]. In the equilibrium case, the fluxes vanish and
the distribution functions are found by imposing a closure
relation. By contrast, in a nonequilibrium case, for TA �= TB,
there might exist nonvanishing fluxes associated to dissipation
in the system.3 This complication makes it difficult to obtain
a systematic expansion at higher orders in densities.

A solvable example of Fokker-Planck equation (or the
Langevin dynamics) at higher order has been given for pair-
wise harmonic potential interactions. In this case, a steady-
state solution exists [54] for

∑
m ∂mJm = 0 while the fluxes

Jm �= 0 when TA �= TB. As a result, it is not possible to formu-
late a solution in Boltzmann form with a scalar temperature.

Other classical approaches such as the Kirkwood super-
position approximation would also fail. We refer the reader
to the probabilistic interpretation of the Kirkwood closure in
Ref. [55]. Nevertheless, in the following section, we demon-
strate an alternative approach based on the calculation of
depletion forces to obtain third-order density corrections for
pure hard-sphere interactions.

B. Hard spheres

In the case of mixtures with only hard-sphere interactions,
an appropriate approach to expand at least to the next order
considers the depletion interaction between two particles due
to a third particle [56]. This method has been used repeatedly
in colloid science [57] and recovers exactly the third virial
coefficients in hard-sphere mixtures with different radii. The
full details of the calculation are given in Appendix G. Here,
as an example, we briefly sketch the results obtained for equal-
sized hard spheres with different temperatures. The method is
also applicable to particles of differing size ratios as shown in
Appendix G. The resulting pressure is given by the standard
virial expansion

p0 =
∑

α

Tαcα + B

2

∑
α,β

Tαβcαcβ + C
∑
α,β,γ

Tγ cγ cαcβ, (42)

where B and C are the second and third virial coefficients,
respectively, which are identical for all types of pairs and
triplets of particles and α, β, γ = A or B.

3These fluxes are already present at the level of two particle with
different temperatures. As shown in Appendix A, the flux along
the relative coordinate vanishes while a nonvanishing current exists
along the center of friction coordinate.
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FIG. 4. Evolution of triangular phase diagrams by third-order contributions. The presentation on how to read the components in the phase
diagrams is given in caption of Fig. 2. In (a) we only show the resulting phase diagram obtained using third-order expansion where we display
binodal (purple) and spinodal (orange dashed) lines and the critical point (red) for equal-sized hard spheres with TA/TB = 20. In (b) we
compare the spinodal lines and the critical points (for clarity, not the binodals) obtained from second-order (orange) and third-order (light
blue) expansions for equal-sized hard spheres with TA/TB = 40.

In equilibrium systems, there is a direct route from pressure
to chemical potentials using the Gibbs-Duhem equation p0 =∑

α μ0
αcα − f 0, where the chemical potentials are given by

μ0
α = ∂ f 0/∂cα . Our analysis for systems with two temper-

atures has shown that this remains applicable in the dilute
limit approximation. However, without knowing explicitly the
effective free energy, this approach is not founded. Thus,
one should always start from the dynamic equations for the
concentrations. If we insist in rewriting the interaction part of
the chemical potentials defined in Eq. (8) as a series expansion
in densities �α = �(1)

α + �(2)
α , we only obtain the value of the

chemical potential gradient at second order in the densities:

∇�
(2)
A = C

[∇(
3
2 TAc2

A + 3
2 TBc2

B
) + (2TB + TA)cB∇cA

+ (2TA + TB )cA∇cB
]
, (43)

where C is the third virial coefficient between hard spheres of
the same size (see Appendix G), which is equal for all types
of interactions. At this order, ∇�

(2)
B = ∇�

(2)
A because the

mixture contains particles of equal sizes. The total chemical
potentials μ(2)

α = μα + �(2)
α are then obtained from Eqs. (9)

and (43). However, the gradient ∇�(2)
α given by Eq. (43)

is nonintegrable to a potential function due to the mismatch
between the cross terms. This incompatibility is related to the
nonequilibrium character of solutions of particles at different
temperatures and hence the mismatch vanishes for an equi-
librium solution, when TA = TB. As a result, the nonequi-
librium additional terms break down the routes to construct
an effective thermodynamic theory. A similar breakdown has
been previously observed in one-component active fluids with
density-dependent motilities [40] where the interfacial con-
tributions lead to terms not integrable to a free energy. That
issue has then been addressed in Ref. [49], by introducing
a functional transformation using an alternative scalar order
parameter. By contrast, here we are not able to define even
the local chemical potentials at third order in the dynamical
equations (6) and (7). This could as well indicate the existence
of bubbly phases [58] in which two steady-state phases exist
only locally and are separated by interfaces. A more detailed
study would require to extend the analysis in gradient terms

presented in the previous sections. We plan to address this
question in a further study.

Since the term ∇�
(2)
A is not integrable to a chemical poten-

tial form, it is not straightforward to determine all uniformly
conserved quantities at the zero-flux steady state. At phase
equilibrium, we only find two conserved quantities since
∇p0 = 0 and ∇(μ0

A − μ0
B ) = 0. The latter condition exists

specifically for equal-sized hard spheres because ∇�
(2)
B =

∇�
(2)
A . A third condition, however, can be obtained by lin-

earization of one of the concentration fluxes around the critical
point. Then, the calculated phase diagrams are shown in
Fig. 4 in comparison to the phase diagram obtained from
the previous expansion using second-order virial coefficients
(dilute limit) for the same set of parameters αv = 1, αT = 40.
Curiously, the contribution from the third-order terms delays
the onset of demixing. We also observe that the instability
occurs in physical region of the phase diagram for temperature
ratios αT > 6.171, not very far from the value obtained using
second-order analysis, i.e., αT > 4 (see Footnote 2).

VII. CONCLUSION

To summarize, in this work, we have outlined the general
framework to study the characteristics of phase equilibria in
active mixtures of diffusive type where the temperatures of
the constituents are different. We obtain the phase diagrams
and phase growth properties using two methods in parallel
which cover both the equilibrium thermodynamic description
through functional analysis and a more general approach
considering steady-state solutions of the Fokker-Planck equa-
tions. For each observable and method, we compare and con-
trast the nonequilibrium TA �= TB scenarios to the equilibrium
ones TA = TB. This allows us to reexplore landmark methods
and concepts developed to establish the foundational princi-
ples of equilibrium solution theory. Resemblances appear in
the steady-state solutions while the nonequilibrium state when
TA �= TB is only maintained with a net power dissipation.
Even though these systems have a nonequilibrium character,
it turns out that they recover a direct analog of the equilibrium
construction in the dilute limit. Within this approximation,
the direct connection with the equilibrium thermodynamics
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is linked to the closure of the hierarchy of correlation func-
tions, which imposes a vanishing flux along the coordinate of
interactions (the separation vector) for all two-body clusters
(while this is no longer true for higher-order clusters). In this
dilute limit, we were able to construct a Cahn-Hilliard theory
generalized to two temperature mixtures. This also validates a
reasonable ground for phenomenological studies considering
active systems as a perturbation around an equivalent equilib-
rium dynamics.

The analog of the equilibrium picture provides a rich
palette to explore various aspects of active and passive (or less
active) particle mixtures. In this case, the activity differences
between the particles introduce another level of control on the
phase-separation properties. As we demonstrate by examples,
the theory has broad applications in diverse physical systems
at different length scales. We have also introduced a transfor-
mation to normal coordinates around the critical state where
the phase dynamics can be described by a single critical order
parameter. We obtain counterparts of mean-field exponents of
profile parameter ψ to express interfacial properties, while
η becomes a measure of normal distance from the critical
point [similar to the temperature direction in regular solutions
[27,28], but not exactly the same since η ≡ η(z) is a slightly
varying function of z along the interface]. In this simplified
formalism, we capture interesting scaling laws for interfa-
cial properties, droplet growth dynamics, and for the phase
segregation condition. We observe that the surface tension
is always positive at the interface of two phases for binary
mixtures of equal-sized hard spheres. Some of our results are
in agreement with existing numerical simulations (detailed
in Sec. V). Our results also suggest a means to calibrate the
composition of coexisting phases (liquid-liquid vs gaslike and
solidlike) by controlling the ratio αT /αv which could motivate
experimental applications.

Higher-order corrections (though not available for the gen-
eral case) break down the direct analogy with the equilibrium
construction in the case of pure hard-core interactions. How-
ever, the results do not indicate significant qualitative differ-
ences with the equilibrium behavior, and hence in general, the
qualitative behavior of the system should be obtained from
the simpler theory describing the dilute limit (Secs. II–IV)
that gives an intuitive understanding of demixing in diffusive
systems. On the other hand, the existence of nonlocal terms in
the chemical potentials at the third order in a power expansion
in densities might indicate the emergence of new phenomena.
It would be interesting to study these cases further, including
inhomogeneous terms, in order to bridge the gap between
microscopic and coarse-grained models [49,58].
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APPENDIX A: SOLUTION OF THE TWO-PARTICLE
FOKKER-PLANCK EQUATION

By evaluating Eq. (2) for only two particles α and β at
positions r1 and r2, and introducing a pairwise potential which

depends only on the distance between these particles uαβ ≡
uαβ (|r1 − r2|) such that ∂r1 uαβ = −∂r2 uαβ , we can derive
the steady-state solution using separation of variables where
α, β = A or B. Accordingly, we set the two-particle proba-
bility function Pαβ ≡ Gαβ (R)gαβ (r) where r = r2 − r1 is the
separation vector and R = ταr1 + τβr2 is the center of motion
with τα = ζαTβ/(ζαTβ + ζβTα ) such that the diffusions along
r and R are statistically independent [11]. As a result, we
obtain

∂Pαβ

∂t
= −∂rJαβ

r − ∂RJαβ
R (A1)

with flux components

Jαβ
r = −

(
ζα + ζβ

ζαζβ

)
∂uαβ

∂r
Pαβ −

(
ζαTβ + ζβTα

ζαζβ

)
∂Pαβ

∂r
,

(A2)

Jαβ
R = −

(
Tα − Tβ

ζαTβ + ζβTα

)
∂uαβ

∂r
Pαβ −

(
TαTβ

ζαTβ + ζβTα

)
∂Pαβ

∂R
.

(A3)

Setting the flux Jr = 0 for the steady-state solution results
[Eq. (4)] in the main text. The remaining part only requires a
uniform G(R) which satisfies the steady-state solution though
Jαβ

R does not necessarily vanish for Tα �= Tβ .

APPENDIX B: IRVING-KIRKWOOD METHOD FOR
CALCULATION OF INTERNAL STRESS

Following the stress equation for the interaction part,
Eq. (18) in the main text up to second order in separation
vector r while using Eq. (4) and keeping only nonvanishing
terms upon integration, we rewrite the internal stress σ

(v)
i j

given by Eq. (17) as

σ
(v)
i j = − p0δi j +

∑
α,β

Tαβ

2

∫ [
rir j

r
∂

∂r
(1 − e−uαβ (r)/Tαβ )

×
(

1

6
(r · ∇)2cα (r1)cβ (r1)

− 1

2
[r · ∇cα (r1)][r · ∇cβ (r1)]

)]
dr,

(B1)

where p0 = (μ0
AcA + μ0

BcB − f 0) is the locally uniform
pressure. Integrating by parts gives

σ
(v)
i j = −p0δi j +

∑
α,β

Tαβ

2
Ii jkl

[
1

12
(∂kcα∂l cβ + ∂kcβ∂l cα )

− 1

6
(cα∂k∂l cβ + cβ∂k∂l cα )

]
, (B2)

where a summation on the k, l indices is performed using an
Einstein summation convention, and the integral Ii jkl is given
by

Ii jkl =
∫

rir jrkrl

r2
(1 − e−uαβ (r)/Tαβ )dr. (B3)

Considering the symmetries and performing the sum, we
finally reach an expression for the difference between stress
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obtained by two different methods:

σ
(v)
i j − σi j =

∑
α,β

Lαβ

[
− 1

3
∇2(cαcβ )δi j + 1

3
∂i∂ j (cαcβ )

]
,

(B4)

where σi j is the result obtained by free-energy deforma-
tion given in Eq. (15). Summing over α, β suggests that
the addition of the gauge term discussed in Sec. II B, i.e.,
− 1

3∇2[LAc2
A + 2LABcAcB + LBc2

B] to the original free en-
ergy f , leads back to the Irving-Kirkwood formula.

APPENDIX C: TRANSFORMATION OF ORDER
PARAMETERS TO NORMAL COORDINATES AROUND

THE CRITICAL POINT

Close to the critical point {φ∗
A, φ∗

B}, the effective ther-
modynamic description becomes simpler if instead of using
the volume fractions measured with respect to the volume
fractions at the critical point δφα = φα − φ∗

α as variables,
we make a linear transformation to the eigenvectors of the
inverse compressibility matrix κ−1

p at the critical point. The
inverse compressibility matrix is a symmetric matrix given by
Eq. (24) and it can be written as

κ−1
p =

(
c + a b

b c − a

)
. (C1)

The values of the coefficients are given by Eq. (24)
c = 1

2 [αT ( 1+εAφA
φA

) + αv ( 1+εBφB
φB

)], a = 1
2 [αT ( 1+εAφA

φA
) −

αv ( 1+εBφB
φB

)], and b = αT +αζ

1+αζ
βB. We denote the two

eigenvalues of the matrix by ε and λ. The coefficients of
the matrix are real and related to the eigenvalues by c = λ+ε

2
and (a2 + b2)1/2 = λ−ε

2 . In the vicinity of the critical point, ε

is small and vanishes as one approaches the critical point and
the other eigenvalue λ remains finite at the critical point. The
eigenvector associated with ε = 0 at the critical point gives
the direction in which the fluctuations diverge. We also define
an angle θ such that a = − λ−ε

2 cos 2θ and b = λ−ε
2 sin 2θ .

The diagonalization appears then as a rotation of angle
θ and the eigenvalue matrix Dε,λ with diagonal entries ε

and λ is obtained by rotation to the basis of eigenvectors
Dε,λ = R(θ )κ−1

p RT (θ ) using the standard rotation matrix
R(θ ).

In the volume fraction space, the eigenvectors are obtained
using a rotation of the natural coordinates by an angle θ .
The normal coordinates that we use are the coordinates along
the eigenvectors of the inverse compressibility matrix at the
critical point. At the critical point, the rotation angle of the
eigenvectors is θ∗ that satisfies

tan θ∗ = b∗

c∗ − a∗ = (αT + αζ )βBφ∗
B

αv (1 + αζ )(1 + εBφ∗
B )

(C2)

which can also be expressed in conjugate form in terms of φ∗
A

using tan θ∗ = c∗+a∗
b∗ . This angle gives the orientation of the

tie lines close to the critical point. As a result, it provides an
indication on the asymmetry of composition between the two
phases. Thus, when tan θ∗ ≈ 1, we would have two liquidlike
phases, whereas for tan θ∗ � 1, the critical point is toward

B-rich side of the phase diagram with a solidlike and a gaslike
phase coexisting and vice versa for tan θ∗  1.

In the eigenbasis of the inverse compressibility matrix at
the critical point, there is a coordinate ψ along the eigenvector
associated to the vanishing eigenvalue and a coordinate η

along the eigenvector associated to the finite eigenvalue λ.
These two normal coordinates are related to the original
volume fractions by the rotation matrix R(θ∗). Accordingly,
we define (

ψ

η

)
= R(θ∗)

(
δφA
δφB

)
. (C3)

The coordinate ψ is the critical variable that we call the
order parameter. Along these new coordinates, differentiation
is performed as (

∂
∂ψ

∂
∂η

)
= R(θ∗)

(
∂

∂φA

∂
∂φB

)
. (C4)

Using these relations, we expand the free energy around the
critical point and obtain

f̂0 = f̂ ∗
0 + μ̂∗

ηη + μ̂∗
ψψ + k2

2
ψ2η + k4

4
ψ4 + λ∗

2
η2, (C5)

where the coefficients of the expansion are the derivatives
of the free energy f̂0 evaluated at the critical point: k2 =
∂3 f̂0

∂ψ2∂η
|∗, k4 = 1

3!
∂4 f̂0

∂ψ4 |∗, λ∗ = ∂2 f̂0

∂η2 |∗ and we used the fact that
η is a slowly changing variable. The Hessian matrix of the
second derivatives of the free energy is equal to the inverse
compressibility matrix. In the coordinates ψ, η the inverse
compressibility matrix is Dε,λ evaluated at the critical point

where ε = 0. The two derivatives ∂2 f̂0

∂ψ∂η
|∗ and ∂2 f̂0

∂ψ2 |∗ therefore

vanish. The third derivative of the free energy ∂3 f̂0

∂ψ3 |∗ also
vanishes because ψ is the tangent direction to the spinodal
line at the critical point. The two chemical potentials along
the new coordinates are obtained again by differentiation of
the free energy f̂0:

μ̂η = μ̂∗
η + λ∗η + k2

ψ2

2
, (C6)

μ̂ψ = μ̂∗
ψ + k2ηψ + k4ψ

3. (C7)

The coordinates of the equilibrium phases a and b (the bin-
odal line) are obtained by equating the chemical potentials
μ̂ψ and μ̂η and the pressure in the two phases. This leads
to ηa = ηb and ψ2

a = ψ2
b = − k2

k4
ηa. By construction of the

normal coordinates, the tie lines, which are the straight lines
joining the two phases at equilibrium correspond to lines of
constant values of η. The binodal line has therefore a parabolic
shape with ψa ≈ −ψb. Each value of ηa ≈ ηb > 0 defines the
coexisting phases ψa and ψb. It is convenient in the following
to consider a symmetrized version of the order parameter
�ψab = ψb − ψa, which satisfies �ψ2

ab = − 4k2
k4

ηa.
The total free-energy density is obtained by including the

gradient terms which also can be transformed to the normal
coordinates. In the vicinity of the critical point, as the non-
critical variable η is much smaller than the order parameter ψ

we only need to retain terms in (∇ψ )2. The total free-energy
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density reads as then

f̂ = f̂0 + L̂ψ

2
(∇ψ )2, (C8)

where the coefficient L̂ψ is given by L̂ψ = L̂A cos2 θ∗ −
2L̂AB cos θ∗ sin θ∗ + L̂B sin2 θ∗.

In order to calculate the interfacial tension, we must define
the two phases at equilibrium, i.e., fix the values ηa in the
two phases in equilibrium. This also fixes the order parameter
�ψab. We must then calculate what we called the tilted free
energy around the critical point

� f̂ [ψ, η] = f̂ [ψ, η] − f̂ 0(ψa, ηa) − μ̂
†
ψ (ψ − ψa)

− μ̂†
η(η − ηa). (C9)

The constants μ̂
†
ψ and μ̂†

η are the chemical potentials calcu-
lated in the two phases at equilibrium. Note that the tilted
free energy has a minimum and vanishes in the two phases
in equilibrium. The profiles of ψ and η as a function of the
coordinate z perpendicular to the interface are obtained by
minimization of the tilted free energy. We first minimize the
tilted free energy with respect to η. This leads to

η = ηa − k2

2λ∗
(
ψ2 − ψa

2
)
. (C10)

Inserting this result into the tilted free energy, we obtain the
tilted free energy as a function of the order parameter ψ only,
which we write as

� f̂ (ψ ) = kψ

4
(ψ − ψa)2(ψ − ψb)2 + L̂ψ

2
(∇ψ )2, (C11)

where kψ = k4 − k2
2

2λ∗ . This free energy is minimal and van-
ishes at ψ = ψa and ψb. Finally, minimization with respect to
ψ yields

� f̂ 0(ψ ) = kψ

4
(ψ − ψa)2(ψ − ψb)2 = L̂ψ

2
(∇ψ )2 (C12)

which shows that along the order-parameter profile between
the two phases � f̂ (ψ ) = 2� f̂ 0(ψ ).

APPENDIX D: POSITIVITY OF THE SURFACE TENSION

As mentioned in the main text, since γ̂ = Lψ

∫
(∇ψ )2

integrated from one phase to the other, the sign of Lψ deter-
mines the sign of the surface tension. We can determine the
sign of Lψ using our results in Sec. II. From the definition
L̂ψ = L̂A cos2 θ∗ − 2L̂AB cos θ∗ sin θ∗ + L̂B sin2 θ∗, the posi-
tivity of surface tension requires

2 tan θ∗ − L̂A

L̂AB
− L̂B

L̂AB
tan2 θ∗ > 0. (D1)

We have previously defined rescaled parameters
L̂αβ = T −1

B LαβvA/(vαvβ ) on Sec. III A (then L̂A/L̂AB =
(LA/LAB )α−1

v and L̂B/L̂AB = (LB/LAB )αv) whereas
Lαβ = −Tαβ�αβ and the coefficients �αβ = 1

6

∫
r2(1 −

e−uαβ (r)/Tαβ )dr = σ̃DB5/3
αβ with σ̃D = 1

10 (3/4π )2/3 for hard
spheres. Bringing these together and using εA = εB = 8

suggests the positivity condition for the surface tension to be

2αv tan θ∗ − 1 + αζ

αT + αζ

(
8

βB

)5/3(
αT α5/3

v + α2
v tan2 θ∗) > 0.

(D2)

We can then use the definition of tan θ∗ from Eq. (C2), and
αζ = α

1/3
v , βB = (1 + α

1/3
v )3. For the specific cases αv = 1

and αv = αT , it is easy to prove the positivity of Lψ . For
varying size ratios, a numerical evaluation shows that Lψ is
positive in the region where demixing occurs except when
αv  1 or αv � αT . In these two extreme limits, the surface
tension can result a negative value, although it is not clear
whether this is a true behavior since for extreme size ratios,
the flat interface assumption would also fail.

APPENDIX E: SCALING RELATIONS FOR EQUAL-SIZED
HARD SPHERES WHEN αT � 1

As shown in the main text for equal-sized hard spheres
where αv = 1 (and hence αζ = 1), and εA = εB = βB = 8,
the volume fractions at the critical point are φ∗

A = α−1
T ,

φ∗
B = 1/8 + (5/4)α−1

T when αT � 1. Using these relations,
the rotation angle at the critical point given by Eq. (C2)
reads as

tan θ∗ ≈ αT

4
. (E1)

We consider a mixture with average particle volume fractions
φ0
A and φ0

B defined by φ0
α = V −1

∫
V φα (r)dr. We determine

the normal distance η(φ0
A, φ0

B ) from the critical point. Then,
as discussed in Appendix C, this fixes the order parameter
�ψ2

ab = − 4k2
k4

η(φ0
A, φ0

B ), and hence the compositions of the
coexisting phases. In the limit where αT � 1, the order pa-
rameter is �ψ2

ab ≈ αT (φ0
A − φ∗

A)/4 + (φ0
B − φ∗

B ) which be-
comes

�ψ2
ab ≈ φ0

A
4

αT (E2)

at (reasonably) finite volume fractions in the vicinity of the
critical point.

In order to discuss the scaling of the surface tension, we
also need the expressions of the coefficients kψ and L̂αβ as
functions of αT . For equal-size hard spheres, we have

L̂A = −σDαT v
2/3
0 , L̂B = −σDv

2/3
0 ,

L̂AB = −σD
(1 + αT )

2
v

2/3
0 , (E3)

where σD = 4
5 (6/π )2/3 and v0 is the molecular volume.

We can then use these results to obtain L̂ψ = L̂A cos2 θ∗ −
2L̂AB cos θ∗ sin θ∗ + L̂B sin2 θ∗. The other coefficient kψ =
k4 − k2

2
2λ∗ can be calculated by taking into account the def-

initions below Eq. (C5) and differentiating Eq. (C4). For
αT � 1, k4 ≈ 256 sin4 θ∗, k2 ≈ −16αT sin3 θ∗, and λ∗ ≈
α2

T sin2 θ∗. Accordingly, kψ ≈ 128 in this limit which is in-
dependent of the temperature ratio similarly to L̂ψ . These
relations using (33) lead to Eq. (34) in the main text.
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APPENDIX F: CALCULATION OF Dψ AND THE DROPLET
GROWTH RATE

In order to determine the diffusion coefficient of the rel-
evant order parameter ψ given in Sec. IV B, we need first
to linearize time-evolution equations (7) around one of the
phases (say phase a). This suggests

∂

∂t

(
δφA
δφB

)
= a∇2

(
δφA
δφB

)
, (F1)

in which we define δφα = φα − φ∗
α and obtain a by evaluat-

ing (23) at phase a. Then, following Appendix B, we obtain

∂

∂t

(
ψ

η

)
= ′a∇2

(
ψ

η

)
, (F2)

where ′a = R(θ∗)aRT (θ∗). Using ∂η/∂t ≈ 0, we have
Dψ = |′a|/′a

22 with |′a| = |a| being the determinant of
matrix ′a and ′a

22 is the second diagonal component. Around
the critical point, using Eqs. (C4), (C7), and (C10), the diffu-
sion coefficient is

Dψ ≈ TBφ∗
Aφ∗

B
ζBαv

(
φ∗
A sin2 θ∗ + φ∗

B cos2 θ∗α−1
v αζ

)2kψψ2
a , (F3)

where φa
A and φa

A are the values of volume fractions at phase
a. At high-temperature ratios αT � 1, we see that sin θ∗ ≈ 1
and, hence,

Dψ ≈ TB
4ζ

kψψ2
a , (F4)

where we consider equal-size hard spheres αv = αζ = 1 and
ζA = ζB = ζ .

Next, we estimate the growth rate of average droplet size rG

such that R ∼ (rGt )1/3. Near saturation � ∼ d0/R and hence
rG ∼ Dψd0. Using the above relation and the value of d0 from
the main text, we obtain rG ∼ TB�ψabv

1/3
0 /ζ . Finally, since

�ψab ∼ (φ0
AαT )1/2/2 from (E2), we have

rG ∼ (
φ0
AαT

)1/2
v

1/3
0 TB/ζ . (F5)

APPENDIX G: THIRD-ORDER EXPANSION FOR PURE
HARD SPHERES

1. Virial expansion to third order

The strategy that we follow in this Appendix is to define
a potential of mean force at a finite concentration utot

αβ (r) for
an αβ pair and to insert it into the Fokker-Planck equation
(A1), (A2) by replacing uαβ → utot

αβ . This results in the steady-
state value of the pair distribution function written in the
Boltzmann form gss

αβ (r) = exp (−utot
αβ (r)/Tαβ ) where gαβ is

the pair distribution function, utot
αβ (r) is the potential of mean

force, and Tαβ is the pairwise temperature between the two
particles under consideration. In general, we can separate the
potential of mean force into two parts, utot

αβ (r) = uαβ (r) +
Wαβ (r) where uαβ (r) is the bare pair interaction potential
for two particles while Wαβ (r) [59] is due to the existence
of other surrounding particles. The potential of mean force
can be derived by geometrical considerations for hard-sphere
mixtures.

When the excluded volumes between the two particles
overlap such that a third particle γ cannot enter in the space
between the two particles, there is a net attractive force
between the two particles known as the depletion force [56].
The mean force between an αβ pair due to a third particle is
given as Fαβ = −ptot

0 S where ptot
0 is the total pressure of third-

body particles and S(r) is the cross-sectional area loss at the
overlapping region, which depends on the distance r between
the two particles of an αβ pair. For equal-size particles with
diameter d , this surface is given by

S(r) =
{
π (d2 − r2/4), d � r � 2d
0, r � 2d.

(G1)

The integration of this force Fαβ yields the potential of mean
force and the interaction Wαβ (r) between the αβ pair mediated
by a third particle within the region d � r � 2d . By imposing
continuity of the interaction potential, we obtain

Wαβ (r) = −ptot
0 w(r),

w(r) = π

12
(16d3 − 12d2r + r3)�(2d − r), (G2)

where w(r) is the overlap volume and �(x) is Heaviside
step function. Note that since ptot

0 is a function of the third
particle only, the mean force and the corresponding potential
are independent of the αβ pair, i.e., Wαβ (r) = W (r). In a more
formal manner, this potential can be expressed as

Wαβ = −
∑

γ

∫
Tγ cγ (rγ )�(d − rαγ )�(d − rβγ )drγ . (G3)

Then, by using the piecewise definition of the hard-sphere
potential we write, up to first order in concentrations,

gαβ (r) ≈ e−uαβ (r)/Tαβ

[
1 − Wαβ (r)

Tαβ

]
, (G4)

where the pairwise hard-sphere potential uαβ (r) = ∞ for r <

d and uαβ (r) = 0 elsewhere.
We now use this pair distribution function to obtain ther-

modynamic properties. The pressure is obtained from the
virial equation which becomes in the case of hard spheres of
equal sizes

p =
∑

α

Tαcα + 2

3
πd3

∑
α,β

cαcβgαβ (d )Tαβ. (G5)

Inserting the expression of the pair distribution function (G4),
we obtain the pressure as

p =
∑

α

Tαcα + 2

3
πd3

∑
α,β

cαcβ

[
Tαβ + w(d )

∑
γ

cγ Tγ

]
.

(G6)

The second and third virial coefficients are therefore B =
4π
3 d3 and C = 2π

3 d3w(d ) with w(d ) = 5π
12 d3 from Eq. (G2).

Rewriting in terms of the virial coefficients gives Eq. (42) in
the main text. Note that the third-order terms in the expansion
are weighted by the temperature of the third particle. Thus,
introducing different mobilities will not alter the form of this
equation.

The next task is to implement the same strategy to the time-
evolution equations for the concentrations cA and cB, given
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by Eqs. (6) and (7). In a similar way, we define the total mean
force f̄α on particles m, as the gradient of a potential f̄α =
−∇�α . Using Eq. (G4), the interaction part of the chemical
potentials is expanded in powers of concentrations as �A =
�

(1)
A + �

(2)
A . The lowest-order term �

(1)
A has been obtained in

terms of the second virial coefficients in Eq. (9). We obtain
the next-order contribution using Eqs. (G3) and (G4):

∇r1�
(2)
α =

∑
β,γ

[ ∫
∂

∂r1
(1 − e−uαβ (r)/Tαβ )cβ (r2)

∫
Tγ cγ (r3)

× �(d − r13)�(d − r23)dr3dr2

]
. (G7)

By coordinate transformation, we get

∇r1�
(2)
α =

∑
β,γ

[ ∫
r̂ δ(r − d )cβ (r1 + r)

∫
Tγ cγ (r1 + r′)

× �(d − r′)�(d − |r − r′|)dr′dr
]

(G8)

with r = r2 − r1 and r′ = r3 − r1 where x̂ denotes the unit
vector along the direction of a vector x. The second integral is
constrained over the overlap volume V∩. Taking into account
the Dirac delta function δ(r − d ), it can be expressed as∫

V∩
Tγ cγ (r1 + r′)dr′

=
∫ 2π

0
dφ′

∫ d

0
dr′r′2

∫ 1

r′
2d

dy′Tγ cγ (r1 + r′), (G9)

where y′ = cos θ ′. Finally, by Taylor expanding the concentra-
tions around r1 up to first order in displacement vectors, we
obtain

∇r1�
(2)
α =

∑
β,γ

[
Tγ

∫
r̂ δ(r − d )

×
∫

V∩

[
cβ (r1)cγ (r1) + cγ (r1) r · ∇r1 cβ (r1)

+ cβ (r1) r′ · ∇r1 cγ (r1)
]
dr′dr

]
. (G10)

Clearly, the first term, i.e., cβ (r1)cγ (r1), vanishes upon in-
tegration. The second term can be integrated by writing
∇r1 cγ (r1) ≡ ẑ|∇r1 cγ (r1)|. A similar implementation on the
third term (using product rules) gives

∇r1�
(2)
α = C

∑
β,γ

Tγ [2cγ (r1)∇r1 cβ (r1) + cβ (r1)∇r1 cγ (r1)].

(G11)

For equilibrium systems with TA = TB, this result gives
back the third-virial coefficients between hard spheres. In
the general case, for mixtures of particles with two different
temperatures, we obtain Eq. (43) of the main text and ∇�

(2)
B =

∇�
(2)
A . Hence, it appears that this field is not integrable to

obtain �
(2)
B . On the other hand, we observe that cA∇μA +

cB∇μB = ∇p consistent with the result obtained from virial
equation (G6).

This method could as well be implemented for mixtures
of hard spheres with different diameters dA �= dB as well
as different temperatures TA �= TB. This would require to
solve the general form of Eq. (G8) with varying contact
distances,

∇r1�
(2)
α =

∑
β,γ

∫
r̂ δ(r − d12)cβ (r1 + r)

∫
Tγ cγ (r1 + r′)

× �(d13 − r′)�(d23 − |r − r′|)dr′dr. (G12)

2. Phase separation and coexistence conditions

Following the procedure described in Sec. III, we deter-
mine the phase diagrams at third order in concentration. A
first remark is that we find an instability when TA/TB �
6.171 for equal-sized spherical particles. Hence, the third-
order terms delay the onset of phase separation compared to
the second-order expansion which leads to phase separation
when TA/TB > 4 (see Footnote 2). The phase coexistence
conditions can be calculated by imposing that the particle
fluxes to zero as well as the momentum flux. This last con-
dition is obtained from cA∇μA + cB∇μB = ∇p = 0, which
gives mechanical equilibrium, and therefore imposes that
pressure is constant. The other conditions require that ∇μA =
0 and ∇μB = 0. However, the chemical potential gradients
are not integrable. Nevertheless, since ∇�

(2)
A = ∇�

(2)
B , we

can use the condition that ∇(μA − μB ) = 0 which would
lead to two gradient free equations. Therefore, to summa-
rize, we find two conditions for the the a and b phases to
coexist:

μ
(1)
A

(
ca
A, ca

B
) − μ

(1)
B

(
ca
A, ca

B
) = μ

(1)
A

(
cb
A, cb

B
) − μ

(1)
B

(
cb
A, cb

B
)
,

(G13)

p
(
ca
A, ca

B
) = p

(
cb
A, cb

B
)
, (G14)

where we defined with μ(1)
α = μid

α + �(1)
α , α = A,B.

The third condition required to construct the phase dia-
grams is not directly accessible in a general form due to the
lack of well-defined chemical potentials. Yet, it is possible
to derive an approximate condition in the vicinity of the
critical point by linearizing the time-evolution equations in
concentrations.
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