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Dynamical spin-to-charge conversion on the edge of quantum spin Hall insulator
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We theoretically show that the edge of a quantum spin Hall insulator (QSHI), attached to an insulating
ferromagnet (FM), can realize a highly efficient spin-to-charge conversion. Based on a one-dimensional QSHI-
FM junction, the electron dynamics on the QSHI edge is analyzed, driven by a magnetization dynamics in the
FM. Under a large gap opening on the edge from the magnetic exchange coupling, we find that the spin injection
into the QSHI edge gets suppressed while the charge current driven on the edge gets maximized, demanded by
the band topology of the one-dimensional helical edge states.
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I. INTRODUCTION

Interconversion between spin- and charge-related quan-
tities in materials plays an important role in manipulating
spins and magnetism, especially in the context of spintronics
[1–3]. In particular, the spin-charge conversion at interfaces of
heterostructures has recently been studied with great interest
since it can make use of various novel spin-dependent proper-
ties of the electrons emergent at the interfaces [4]. The conver-
sion phenomena at the Rashba interfaces of oxides, the spin-
momentum-locked surfaces states of topological insulators
(TIs), etc., have been experimentally investigated [5–11]. The
spin-to-charge conversion efficiency λsc ≡ −J (2D)

C /eJ (3D)
S , de-

fined as the ratio of the charge current J (2D)
C induced along the

interface to the spin current J (3D)
S injected from the magnet

via the interface, has been reported to reach up to a few
nanometers in those systems [12].

In order to improve the efficiency of the spin-to-charge
conversion, we need to reduce the spin injection JS and
enhance the output current JC simultaneously. In the present
work, we propose that a quantum spin Hall insulator (QSHI),
namely, a two-dimensional (2D) TI characterized by the Z2

topology, can realize a high spin-to-charge conversion effi-
ciency λsc on its edge. QSHI is advantageous in spin transport
in that it exhibits spin-resolved helical edge states, which are
free from backscattering by time-reversal-symmetric disor-
ders [13–15]. The spin Hall conductivity of QSHI is quantized
to e2/h, which generates a quantized spin current out of an
applied electric field. This effect can be regarded as an ideal
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charge-to-spin conversion since it does not suffer from energy
loss from the Joule heating. We can thus assume that QSHI
can realize the ideal spin-to-charge conversion as well.

So far it has been theoretically seen that magnetization
dynamics in a ferromagnet coupled with a QSHI induces a
charge current flowing along the junction [16–21]. From the
viewpoint of the spin-to-charge conversion, we need to under-
stand how much spin should be injected to induce this edge
current by including the effect of spin and energy dissipation
from the edge.

In the present work, we consider a hypothetical lateral
junction of a ferromagnet and a QSHI (see Fig. 1) to evaluate
the spin-to-charge conversion efficiency of the QSHI. Under a
magnetization dynamics in the ferromagnet, we compare the
charge current I induced on the edge of the QSHI, namely,
the one-dimensional (1D) counterpart of J (2D)

C , to the spin
injection rate Jz

S from the ferromagnet via the QSHI edge,
namely, the 2D counterpart of J (3D)

S . We evaluate these quan-
tities in terms of the Floquet-Keldysh formalism [22–25],
in which many-body dynamics of the electrons, driven by
the cyclic dynamics of the magnetization, is imprinted in
nonequilibrium Green’s functions.

The main finding in this article is that the QSHI edge
is capable of realizing a highly efficient interfacial spin-to-
charge conversion, even in comparison with 2D interfaces,
including Rashba interfaces [9] and TI surfaces [10]. Such
an enhancement of λsc on the QSHI edge stems from the
insulating nature of the edge spectrum when it is coupled
to an in-plane component of the magnetization. Under this
exchange gap, the spin injection into the QSHI edge is reduced
due to the suppression of interband transition, whereas the
current along the edge reaches its maximum value, required
by the topological pumping theory. Under an exchange gap
of ∼10 meV and a relaxation time typical of Dirac electron
systems (e.g., graphene, TIs, etc.), we show that λsc scales
around two orders larger than those observed in Rashba
interfaces and TI surfaces.
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FIG. 1. Schematic picture of the setup of our analysis. A fer-
romagnet (FM) and a quantum spin Hall insulator (QSHI) are
coupled at their 1D boundaries. Phenomenologically, magnetization
dynamics in the ferromagnet injects spin into the QSHI JS, which is
converted into a transverse charge current on the edge of the QSHI
I . We introduce a hypothetical metallic reservoir so that the system
may maintain a periodic steady state, which corresponds to metallic
terminals attached to the edge of the sample in experimental setups.

This article is organized as follows. In Sec. II, we define a
simplified model describing a 1D edge state of QSHI coupled
with a ferromagnet and introduce the Floquet-Keldysh for-
malism to treat dynamical physical quantities. In Sec. III, we
show our calculation results of the edge current, spin injection
rate, and their ratio as the conversion efficiency λsc and discuss
when and how λsc gets enhanced on this 1D edge. Based on
these results, we give some concluding remarks in Sec. IV.
The details of our calculations are shown in the Appendixes.

II. METHODS

A. Model

We start with the model of the electrons residing on the
QSHI-ferromagnet junction. The electrons on the helical edge
of the QSHI, whose spins are coupled with the magnetization
n by the proximity exchange coupling J , is described by the
Hamiltonian

H (k) = vFkσz + Jn · σ (1)

in momentum space [16,19,21]. Here vF is the electron Fermi
velocity, k is the electron momentum along the edge, and σ is
the Pauli matrix for the electron spin. If the precession of the
magnetization is kept periodic around the z axis, it is written
as

n(t ) = (sin α cos �t, sin α sin �t, cos α), (2)

with α being the tilting angle from the z axis and � being
the frequency of the precession. Such a steady precession
can be maintained, for instance, by tuning an external mag-
netic field Bext along the z axis and an alternating magnetic
field Balt (t ) like a microwave, although we shall not go into
the details of its mechanism. If there is no magnetization
dynamics (i.e., � = 0), the edge spectrum obtains a gap
2J sin α (≡2J ′) corresponding to the in-plane component of
the magnetization, with the band dispersion E (k) = ±[(vFk +
J cos α)2 + J ′2]1/2. The out-of-plane component J cos α shifts
the momentum homogeneously and gives rise to a steady
current in equilibrium, which we shall omit in the present
work.

B. Floquet-Keldysh formalism

In order to evaluate the dynamically induced quantities
carried by the electrons, we analyze the time-periodic dy-
namics of the electron ensemble in terms of the nonequilib-
rium Green’s functions folded within a frequency domain �,
namely, the Floquet-Keldysh formalism [22–25]. The details
of the analysis are left for the Appendix A 1 and A 2. We
assume that the electron dynamics reaches a so-called peri-
odic steady state after a long time of driving [26,27], where
the retarded, advanced, and lesser Green’s functions for the
electrons become time periodic, GR/A/<(t, t ′) = GR/A/<(t +
T, t ′ + T ), with T = 2π/� being the precession cycle. Using
the Fourier transform within the frequency domain �,

Gmn(ω) =
∫ T

0

dt̄

T

∫ ∞

−∞
dδt eiωδt+i(m−n)�t̄ G(t+, t−), (3)

with t± ≡ t̄ ± δt/2, the expectation value of the (time-
independent) operator O is evaluated as

〈O(t )〉 = −i
∫ �

0

dω

2π

∑
mn

Tr[OG<
mn(ω)]ei(m−n)�t , (4)

where the trace runs over both the momentum space and
the spin space. As the present Hamiltonian can be exactly
diagonalized in the Floquet formalism, this analysis does
not require any approximations, such as the high-frequency
expansion (Floquet-Magnus expansion) or truncation of the
Floquet space, which are commonly seen in the analyses of
Floquet systems [28,29]. We thus evaluate the physical quan-
tities on the edge of the QSHI, within the whole frequency
regime of the magnetization dynamics.

In order to reach a periodic steady state, the information of
the initial condition should be wiped out through dissipation
to the environment. Here we set up a hypothetical metallic
reservoir coupled with the junction [30], as shown in Fig. 1,
which corresponds to metallic terminals in a realistic experi-
mental setup. Once the system reaches a periodic steady state,
the Green’s functions satisfy the relation

G<(k, ω) = GR(k, ω)Σ<(ω)GA(k, ω), (5)

where the lesser self-energy Σ< contains the information
of electron distribution in the periodic steady state [24,25].
While the electron distribution in driven systems in general
depends on microscopic structures of the system Hamiltonian
and the dissipation mechanism [26,27,31–33], here we take
a simple assumption that the lesser self-energy inherits the
electron distribution in the reservoir [24,25],

Σ<
mn(ω) = i
 f (ω + n�)δmn. (6)

The parameter 
 is related to the coupling between the system
and the reservoir, which is derived by integrating out the
electron degrees of freedom in the reservoir [34–36]. It arises
as the imaginary part of the electrons’ self-energy, which
is encoded in the Green’s functions GR/A and results in the
broadening of the Floquet spectrum. The information of the
electron Fermi energy μ is also included in these Green’s
functions. Here we require the temperature of the reservoir
to be lower than any other energy scales in the system, so that
it can be treated as zero temperature.
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III. RESULTS

A. Edge current

Let us first see the electric current driven on the 1D
boundary, which emerges as the outcome of the spin-to-charge
conversion. With the current operator

I = −e
∂H (k)

∂k
= −evFσz (7)

on the edge, the edge current can be evaluated by Eq. (4),
whose behavior is shown in Fig. 2(a). Here we parametrize
our result by J ′ = J sin α, corresponding to the exchange gap
from the in-plane component of the magnetization, and make
the physical quantities dimensionless by using the precession
frequency �. The current I is rescaled as −I (2π/e�) =
−IT/e, which corresponds to the number of electrons carried
per one cycle T . We compare the behavior of this current by
varying the dissipation parameter 
 and the Fermi energy μ

of the electrons.
We can immediately see from this calculation result that

the edge current I reaches a maximum value

Ic = −e/T (8)

under a large exchange energy J ′. This behavior is obvi-
ous in the dissipationless limit 
 = 0, where Ic is reached
once the exchange gap 2J ′ exceeds the precession frequency
�. The electron dynamics in this regime can be regarded
“adiabatic,” in that an edge electron cannot be excited be-
yond the exchange gap. In this regime, the induced current
Ic can be well described by the adiabatic pumping theory
[37], which claims that the Berry phase accumulated by the
time evolution of the electron pumps a single electron −e
per one cycle of precession T (see Appendix B). Within
the adiabatic regime, this quantized pumping behavior was
demonstrated by various numerical and analytical schemes in
previous studies [16–18,38]. In the opposite regime � > 2J ′,
the magnetization dynamics can resonantly excite an edge

FIG. 2. (a) The edge current I and (b) the spin injection rate (z
component) Jz

S driven by the magnetization dynamics, parametrized
by the in-plane component J ′ = J sin α of the exchange energy at the
junction. All the physical quantities here are rescaled by the preces-
sion frequency � (or the cycle T = 2π/�) of the magnetization. The
solid lines show the values obtained at charge neutrality μ = 0, while
the dashed lines are obtained with μ lifted from charge neutrality.

electron from the valence band to the conduction band, which
reduces the Berry phase contribution from the valence band
and suppresses the edge current I below Ic. In particular, in
the dissipationless limit 
 = 0, the edge current is given as

I = −e�

2π
[1 − θ (1 − δ)(

√
1 − δ2 − δ arctan

√
δ−2 − 1)],

(9)

with δ = 2J ′/�, which is shown by the gray line in Fig. 2(a).
The pumping current I gets suppressed once the edge spec-

trum becomes metallic. In case the Fermi level μ reaches the
valence band, the band becomes partially vacant, leading to
a reduction of the Berry-phase contribution from the valence
band. If μ comes up to the conduction band, on the other hand,
it becomes partially occupied and yields the Berry-phase
contribution, which has a sign opposite to the valence-band
contribution and thus partially cancels that. Thus, the current
gets suppressed once the Fermi level μ is lifted from zero
energy, irrespective of its sign. The dissipation effect 
 of the
reservoir also reduces the pumping current since the spectral
broadening mixes up the Berry-phase contributions from the
valence and conduction bands. Such a dissipative correction
to the edge current was analytically seen in the context of
photoinduced current in QSHI as well [38,39]. From the above
calculation results, we can understand that the edge state
needs to be insulating, with the exchange gap 2J ′, to maximize
the edge current, reaching the adiabatic pumping regime.

B. Spin injection rate

We next investigate the process of angular momentum
transfer from the ferromagnet into the QSHI edge. Whereas
the spin current driven inside the electron system is gen-
erally dependent on the spin-mixing conductance under
spin-orbit coupling and requires further microscopic cal-
culations [40,41], we here focus on the rate of angular
momentum transfer, namely, the loss of angular momen-
tum, from the precessing ferromagnet, which is straightfor-
wardly evaluated as the counteraction of the dampinglike
torque from the QSHI on the ferromagnet. We assume that
the ferromagnet is in a thin strip geometry, in which the
constituent spins will feel a uniform effective magnetic field
from the electron spins on the QSHI edge. If the ferromagnetic
strip consists of N sites per unit length, with spin S for each
site, the Landau-Lifshitz-Gilbert equation for a single spin
S = −Sn reads

Ṡ = γ Beff × S − αdS × Ṡ/S, (10)

where γ = gμB denotes the gyromagnetic ratio and αd is
the Gilbert damping parameter intrinsic to the ferromagnet.
The effective magnetic field Beff for a single spin is given
as Beff = Bext + Balt + Bel, where Bel ≡ −J〈σ〉/γ NS is the
contribution from the electron spin accumulation 〈σ〉 on the
QSHI edge. The torque from the effective field Bel is

tel = γ Bel × S = (J/N )〈σ〉 × n, (11)

which arises as the feedback effect from the edge electrons
onto the ferromagnet.

Let us here consider the net feedback torque on the spins
within a unit length of the strip, given by T el = Ntel = J〈σ〉 ×
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n. This torque can be separated into the fieldlike component
T f ∝ ez × n and the dampinglike component T d ∝ ṅ × n.
Whereas the fieldlike component T f gives a correction to the
external magnetic field Bext ‖ z that maintains the spin preces-
sion around the z axis, the dampinglike component T d yields
a correction to the Gilbert damping parameter αd. T d gives
a negative angular momentum transfer from the conduction
electrons to the ferromagnet, which is the counteraction of
the spin injection from the ferromagnet into the conduction
electrons [40,42]. Therefore, in order to understand the spin
injection behavior, we need to evaluate the dampinglike torque
T d.

Among the three components of the electron spin accumu-
lation 〈σx,y,z(t )〉, the dampinglike torque T d ∝ ṅ × n comes
from the component parallel to ṅ(t ) = � sin α(−ex sin �t +
ey cos �t ). By denoting this component in 〈σ(t )〉 as σd(t ) =
σd(−ex sin �t + ey cos �t ), the time average of T d is given as

T
d =

∫ T

0

dt

T
[Jσd(t ) × n(t )] = −Jσd sin α ez, (12)

from which we obtain the spin angular momentum

JS = −T
d = J ′σdez (13)

transferred from the ferromagnet to the QSHI edge, per unit
time and unit length on average. We can thus straightfor-
wardly calculate the spin injection rate JS by evaluating
the spin accumulation 〈σ(t )〉 based on the Floquet-Keldysh
formalism (see the Appendix A 4 for details).

The behavior of Jz
S parametrized by J ′ = J sin α is

shown in Fig. 2(b). Here Jz
S, having the dimensions of

[time]−1[length]−1, is rescaled by multiplying the timescale
T and the length scale vFT . If the system is isolated from
the environment, corresponding to the dissipationless limit

 → 0, Jz

S vanishes: since the edge electrons do not lose
spin angular momentum in this limit, the periodic steady state
is maintained without injecting spin continuously. The spin
injection Jz

S arises due to the loss of spin in the reservoir. We
should note here that the spin injection is suppressed in the
adiabatic regime J ′ � �/2, μ, 
, with its asymptotic behavior

Jz
S

J ′→∞≈ �
2

8πvFJ ′ . (14)

Since the edge electron can hardly be excited beyond the
exchange gap in this regime, we can understand that the spin
injection process, accompanied with a spin flip of the edge
electron, is suppressed. On the other hand, in case the Fermi
energy μ or the spectral broadening 
 exceeds the exchange
energy J ′, the system becomes metallic and thus admits a large
spin injection.

Spin torque is accompanied by energy transfer as well. The
dampinglike torque by the effective field Beff exerts a negative
work on the spins, with its power −p = −γ Beff · Ṡ on a single
spin [3,41]; for spins within a unit length, its power is given
as

−P = −N p = −J〈σ〉 · ṅ = −�Jσd sin α. (15)

Therefore, we can see that energy P = �J ′σd is injected from
the ferromagnet to the edge electrons of the QSHI per unit
time and unit length. The spin injection rate Jz

S and the energy
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FIG. 3. The spin-to-charge conversion efficiency λsc ≡ −I/eJz
S

parametrized by the Fermi level μ. All the physical quantities here
are rescaled by fixing the exchange gap parameter J ′ = J sin α.
(a) shows λsc by varying the precession frequency � of the mag-
netization, while (b) is the logarithmic plot of λsc by varying the
dissipation parameter 
 of the reservoir. From these calculation
results, one can see that λsc is highly enhanced when J ′ is dominant
over the other energy scales, μ, �, and 
.

injection rate P satisfy the simple relation P = �Jz
S. This

relation can be attributed to the magnon exchange picture:
if we consider the constituent spins in the ferromagnet as
quantum spins, their precession modes can be quantized as
magnons, where the uniform (Kittel) mode carries spin 1 and
energy �. In this picture, the spin injection can be regarded
as the flow of magnons from the ferromagnet into the QSHI
edge, which requires the proportionality between the injected
spin Jz

S and energy P. Once we attach a reservoir, or terminals,
to the system to extract the transport properties, there arises a
loss of spin and energy in the reservoir, leading to a continuous
injection of spin Jz

S and energy P that maintains the periodic
steady state.

C. Spin-to-charge conversion efficiency

Finally, we evaluate the efficiency of the spin-to-charge
conversion on the 1D edge. The conversion efficiency λsc is
defined as the ratio of the induced edge current I to the spin
injection rate Jz

S, namely, the loss of spin angular momentum
from the ferromagnet,

λsc ≡ − I/e

Jz
S

, (16)

which characterizes how much charge current the system
can generate by consuming spin angular momentum in the
ferromagnet. This ratio has the dimension of length, which
is the same as that defined at 2D interfaces. It works for the
energy efficiency for inducing the edge current, namely, I/P,
as well due to the proportionality P = �Jz

S stated above. By
fixing the exchange energy J ′ and varying the Fermi energy
μ of the electrons, the spin-to-charge conversion rate λsc

on the QSHI edge is obtained as shown in Fig. 3. We can
see from this calculation result that the conversion on the
edge becomes highly efficient if the Fermi level μ is deeply
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inside the exchange gap, i.e., |μ| � J ′, since the current I
reaches the constant value −e/T demanded by the adiabatic
pumping theory, whereas the spin injection Jz

S gets suppressed
by the exchange gap. This behavior becomes significant if the
magnetization dynamics is adiabatic, i.e., � < 2J ′, as shown
in Fig. 3(a), so that it may not excite an electron beyond
the exchange gap. We also need a low dissipation effect 


by the reservoir (terminals) to achieve the highly efficient
spin-to-charge conversion, as seen from Fig. 3(b).

As we can see from Fig. 2, the edge current I is not directly
proportional to the spin injection rate Jz

S; in particular, in
the dissipationless limit 
 = 0, the current I is driven even
though the spin injection rate Jz

S = 0. This relation implies
that the spin-to-charge conversion behavior here cannot be
interpreted as the inverse spin Hall effect, where the injected
spin current is converted to a charge current either intrinsically
or extrinsically [43–46]. We can rather understand that this
effect is similar to the inverse Edelstein effect (IEE) observed
at 2D interfaces, where the spin accumulation at the interface
induced by the magnetization dynamics is the origin of the
interfacial charge current [8,47,48]. This mechanism is jus-
tified by the operator relation (7) between the current I and
the electron spin σz. Under a finite-dissipation effect 
, the
spin accumulation 〈σz〉 is subject to relaxation. By denoting
the spin relaxation time as τs, the spin relaxation is balanced
with the spin injection Jz

S in the steady state as

Jz
S − 〈σz〉

τs
= 0. (17)

We can therefore relate Jz
S and I phenomenologically as

I = −evF〈σz〉 = −evFτsJ
z
S, (18)

yielding λsc = vFτs, which is quite similar to the case of IEE
at the 2D surface of TI (see Refs. [6,7] and their Supplemental
Materials).

The main difference between the present spin-to-charge
conversion effect on the 1D edge of QSHI and the IEE at 2D
interfaces is the emergence of an exchange gap in the electron
system. While the electrons are inevitably subject to spin
relaxation and Joule heating due to the scattering by impurities
at metallic interfaces, the current driven on the edge of QSHI
is nearly free from dissipation as long as the Fermi level is
inside the exchange gap. This implies that the spin relaxation
time τs is largely dependent on the system parameters J ′, μ, 
,
and �, leading to the variation in the conversion efficiency λsc

shown in Fig. 3.
Under a large exchange gap J ′, the spin relaxation gets

strongly suppressed, which enables us to drive the electric
current without consuming spin angular momentum from the
ferromagnet, i.e., Jz

S → 0. Using the asymptotic behavior of
Jz

S shown by Eq. (14), the asymptotic behavior of λsc in this
regime is given as

λsc
J ′→∞≈ 4vFJ ′
−2. (19)

By using the typical scales calculated and observed in
graphene, vF ≈ 105 m/s [49,50], 
 ≈ 10 meV (from the
single-particle level broadening estimated in Refs. [51,52]),
and J ′ ≈ 10 meV [53,54], we can roughly estimate
λsc≈102 nm. For instance, if we desire an output current

I = −1 nA, the precession frequency � = 39 GHz is
required from Eq. (8), which gives the spin injection rate
Jz

S = 6 mA/(e m) from the asymptotic form (14). In this
case, the conversion efficiency λsc reaches around 170 nm.
Compared to λsc � 6 nm at the 2D Rashba interfaces of
complex oxides [9] and λsc � 0.04 nm at the surfaces of
TIs [10] observed in the experiments, we expect that the
1D edge of QSHI can realize a spin-to-charge conversion
efficiency around two orders greater than those reported for
2D interfaces.

IV. CONCLUSION

In this article, we have theoretically investigated the dy-
namical spin-to-charge conversion phenomenon on the edge
of a 2D QSHI. By taking a hypothetical lateral junction of a
2D ferromagnet and a QSHI, we have evaluated the spin-to-
charge conversion efficiency on the edge of the QSHI, driven
by magnetization dynamics in the ferromagnet. The main
finding in this article is that the conversion efficiency is highly
enhanced under a large exchange gap on the edge spectrum
induced by the in-plane component of the magnetization.
In contrast to the conventional spin pumping phenomena in
metals, the edge state should be insulating to idealize the spin-
to-charge conversion since the converted charge current is
based on the topological origin, namely, the adiabatic charge
pumping. The electrons on the 1D helical edge states are
completely free from scattering by charged disorders, which
minimizes the leakage of spin and energy in this spin-to-
charge conversion process as long as the coupling to the
terminals or environment is weak enough.

In order to make the best of the topological characteristics
of the QSHI edge for realizing the ideal spin-to-charge con-
version, we find the following criteria from our calculations:
(i) the Fermi level μ should lie inside the exchange gap (|μ| <

J ′), (ii) the precession frequency � of the magnetization
should not exceed the exchange gap (� < 2J ′), and (iii) the
exchange gap should be well resolved against the spectral
broadening (
 < J ′).

Our findings imply that a 2D QSHI can serve as an efficient
detector of a spin current, nearly free from the leakage of
spin and energy. Using layered QSHI materials, such as
the transition-metal dichalcogenide 1T ′-WTe2 [55–57] and
monolayer germanene or stanene [58–61] reported in recent
studies, one can expect a flexible design of highly inte-
grated spin-charge devices. Thin films of topological Dirac
semimetals (e.g., Cd3As2, Na3Bi), characterized by the Z2

topology, are also seen to exhibit the QSHI phase [62,63]. It
has been shown by numerical simulation that the topological
Dirac semimetals also exhibit the dynamical spin-to-charge
conversion, carried by the spin-resolved Fermi-arc surface
states [64].

In the present analysis, we have taken into account the
fermionic reservoir, corresponding to the metallic leads at-
tached to the system, as the main source of the dissipation. In
realistic dynamical systems, phonons contribute to relaxation
as well, and their effect on electron distribution has been
intensely studied in the context of the Floquet dynamics
[26,31–33]. We can qualitatively expect that, even if the reser-
voir is bosonic, the spin injection is suppressed, and the edge
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current is quantized under a sufficiently large exchange gap
since the interband excitation by magnon absorption is almost
forbidden by the exchange gap. Under a small exchange
gap, the conduction band of the edge may exhibit a finite
occupation probability, leading to reduction of the conversion
efficiency λsc. The detailed behavior of the reduction of λsc

within such a nonadiabatic regime requires one to solve the
time evolution of the electron distribution explicitly under the
system-reservoir coupling, which is left for further analysis.

Since the induced current circulates along the edge of the
QSHI, the present spin-to-charge conversion phenomenon can
also be regarded as the conversion from the injected spin into
an orbital magnetization of the QSHI, although the orbital
magnetization is not directly evaluated in this work. While it is
known that QSHIs and topological semimetals in equilibrium
show a crossed correlation between spin and orbital magneti-
zations [65,66], the present result implies its nonequilibrium
counterpart, which is also left for our theoretical interest.
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APPENDIX A: KELDYSH-FLOQUET TREATMENT
OF NONEQUILIBRIUM PHYSICAL QUANTITIES

In this Appendix, we give a detailed explanation of our
analytical treatment of the dynamics of the ensemble of edge
electrons based on the Keldysh-Floquet formalism.

1. One-particle states in the Floquet picture

Let us first start with the dynamics of a one-particle state.
Since the edge Hamiltonian under this precession is time pe-
riodic, i.e., H (k, t ) = H (k, t + T ) (with the periodicity T =
2π/�), the electron dynamics can be treated in terms of
the Floquet theory. The time dependence in the solution of
the Schrödinger equation H (k, t )|�α (k, t )〉 = i∂t |�α (k, t )〉 is
expanded as

|�α (k, t )〉 = e−iEα (k)t
∑
n∈Z

e−in�t
∣∣φn

α (k)
〉
, (A1)

where its quasienergy Eα (k) and the expanded components
|φn

α (k)〉 are related by the Floquet equation∑
n

Hmn(k)
∣∣φn

α (k)
〉 = Eα (k)

∣∣φm
α (k)

〉
, (A2)

with the “Floquet Hamiltonian”

Hmn(k) = 1

T

∫ T

0
dt ei(m−n)�t H (k, t ) − n�δmn. (A3)

H(k) = 

ε0(k) + Ω
-ε0(k) + Ω

ε0(k)
-ε0(k)

Δ
Δ

ε0(k) - Ω
-ε0(k) - Ω

Δ

Δ

Δ

Δ

Δ
Δ

n = -1 n = 0 n = 1

FIG. 4. Matrix structure of the Floquet Hamiltonian H(k). The
matrix becomes block diagonal, with each block spanned by {|ν −
1
2 , ↓〉, |ν + 1

2 , ↑〉}ν∈Z+1/2.

(It should be noted that some studies use the terminology
“Floquet Hamiltonian” for H̃mn = Hmn + n�δmn.) Thus, the
time-dependent solution |�α (k, t )〉 based on the original
Hilbert space H is mapped to the time-independent wave
function |�α (k)〉〉 ≡ {|φn

α (k)〉}n∈Z based on the “extended”
Hilbert space H × Z, which is required to satisfy the infinite-
dimensional eigenvalue equation H|�α〉〉 = Eα|�α〉〉. The Flo-
quet Hamiltonian H here reads

Hmn(k) =
(

[ε0(k) − m�]δmn J ′δm,n+1

J ′δm,n−1 −[ε0(k) + m�]δmn

)
, (A4)

with ε0(k) = vFk + J cos α, J ′ = J sin α.
The Floquet index n, related to the phase factor e−in�t

in the time-dependent solution, accounts for the number of
“energy quanta” of � arising from the time-periodic dynamics
in the system; here the energy quantum is a magnon (with
spin 1) arising from the precession of magnetization. The off-
diagonal components in the Floquet Hamiltonian [Eq. (A4)]
couples the neighboring magnon number sectors. The top
right component in Eq. (A4) adds one magnon and flips the
electron spin from ↓ to ↑ and vice versa for the bottom
left component. Thus, the Floquet matrix H becomes block
diagonal: each subspace Hν (ν ∈ Z + 1

2 ) spanned by the ba-
sis {|n = ν − 1

2 ; σz =↓〉, |n = ν + 1
2 ; σz =↑〉} gets decoupled

from the others (see Fig. 4). The block in this subspace Hν

reads

Hν (k) = −ν� +
(

−ε0(k) + �
2 J ′

J ′ ε0(k) − �
2

)
, (A5)

where the upper and lower components correspond to |ν −
1
2 ,↓〉 and |ν + 1

2 ,↑〉, respectively. Omitting the constant shift
of the energy, Hν (k) is exactly the same as the equilibrium
edge Hamiltonian under a Zeeman 8field,

H̄(k) =
(

−ε0(k) + �
2 J ′

J ′ ε0(k) − �
2

)
. (A6)

Therefore, the Floquet Hamiltonian H(k) can be exactly diag-
onalized, yielding the quasienergies

Eν±(k) = −ν� ±
√[

ε0(k) − �

2

]2

+ J ′2. (A7)

We denote the corresponding eigenstates as |�±
ν (k)〉〉, which

are based on the subspace H. Due to the redundancy of the
extended Hilbert space, it is just enough to focus on one of
the subspaces {Hν}. The helical edge states with |−1,↓〉 and
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|0,↑〉 get hybridized by the magnon exchange, leading to gap
opening 2J ′ at ε0(k) = �

2 , i.e., k = k0 ≡ v−1
F ( �

2 − J cos α). It
should be noted that the present Floquet Hamiltonian can be
thus exactly diagonalized regardless of the precession period-
icity, in contrast to the adiabaticity (low frequency) needed for
the Thouless pumping theory or the Magnus expansion (high
frequency expansion) applied to ordinary Floquet systems.

2. Keldysh-Floquet treatment

We now move on to the many-body dynamics. The many-
body dynamics in the periodic steady state is described by
the nonequilibirum Green’s functions based on the extended
Hilbert space H × Z, defined by Eq. (3). If the periodic steady
state is ensured by the dissipation into the metallic reservoir
(fermionic heat bath), the system inherits the electron distribu-
tion in the reservoir, and the lesser Green’s function satisfies
Eq. (5),

G<(k, ω) = GR(k, ω)Σ<(ω)GA(k, ω), (A8)

with Σ<
mn(ω) = i
 f (ω + n�)δmn. The retarded and advanced

Green’s functions for the dissipative time evolution are given
by

GR/A(k, ω) =
[
ω + μ − H(k) ± i




2

]−1

, (A9)

with the chemical potential μ. Here the parameter 
 can
be microscopically obtained by integrating out the electron
degrees of freedom in the reservoir; we regard 
 as a phe-
nomenological parameter in our analysis here.

In the present case, since the Floquet Hamiltonian H(k)
is block diagonal within each subspace Hν spanned by {|ν −
1
2↓〉, |ν + 1

2 ,↑〉}, the Green’s functions GR/A/< are also block
diagonal. The Green’s functions in the subspace Hν read

GR/A
ν (k, ω) =

[
ω + μ + ν� − H̄(k) ± i




2

]−1

, (A10)

G<
ν (k, ω) = i
GR

ν (k, ω)Fν (ω)GA
ν (k, ω), (A11)

with

Fν (ω) ≡ diag
{

f
[
ω + (

ν − 1
2

)
�

]
, f

[
ω + (

ν + 1
2

)
�

]}
.

(A12)

We should note here that, similar to the Floquet quasienergies
E (k), these Green’s functions also show redundancy in en-
ergy: they can be written with the 2 × 2 matrices ḠR/A/<(k, ω̄)
as

GR/A/<
ν (k, ω) = ḠR/A/<(k, ω + ν�), (A13)

where

ḠR/A(k, ω̄) =
[
ω̄ + μ − H̄(k) ± i




2

]−1

, (A14)

Ḡ<(k, ω̄) = i
ḠR(k, ω̄)F̄ (ω̄)ḠA(k, ω̄), (A15)

F̄ (ω̄) = diag

{
f

(
ω̄ − �

2

)
, f

(
ω̄ + �

2

)}
. (A16)

In particular, each component in these Green’s functions is
given as

ḠR/A = 1

DR/A
↓ DR/A

↑ − J ′2

(
DR/A

↑ J ′

J ′ DR/A
↓

)
, (A17)

Ḡ< = i


[DR
↓DR

↑ − J ′2][DA
↓ DA

↑ − J ′2]

×
(

f↓DR
↑DA

↑ + f↑J ′2 f↓J ′DR
↑ + f↑J ′DA

↓
f↓J ′DA

↑ + f↑J ′DR
↓ f↓J ′2 + f↑DR

↓DA
↓

)
, (A18)

where we use the notations

DR/A
↓ (k, ω̄) = ω̄ + μ − �

2
+ ε0(k) ± i




2
, (A19)

DR/A
↑ (k, ω̄) = ω̄ + μ + �

2
− ε0(k) ± i




2
, (A20)

f↓(ω̄) = f

(
ω̄ − �

2

)
, f↑(ω̄) = f

(
ω̄ + �

2

)
. (A21)

3. Edge current

We are now ready to evaluate the physical quantities car-
ried by the electrons on the edge of a QSHI. The current along
the edge is given by

I = ievF

∫ �

0

dω

2π

1

L

∑
k

Tr′[σzG<(k, ω)], (A22)

where Tr′ denotes the trace over the extended Hilbert space
H × Z. By evaluating the trace, we can transform the zone of
the ω integral from a folded zone into an infinite zone,

I = ievF

∫ �

0

dω

2π

1

L

∑
k

×
∑

ν∈Z+1/2

[G<
↑↑(k, ω + ν�) − G<

↓↓(k, ω + ν�)] (A23)

= ievF

∑
ν

∫ (ν+1)�

ν�

dω̄

2π

1

L

∑
k

[G<
↑↑(k, ω̄) − G<

↓↓(k, ω̄)]

(A24)

= ievF

∫ ∞

−∞

dω̄

2π

1

L

∑
k

[G<
↑↑(k, ω̄) − G<

↓↓(k, ω̄)] (A25)

= ievF

∫ ∞

−∞

dω̄

2π

1

L

∑
k

i


× f↓[J ′2 − DR
↑DA

↑ ] + f↑[DR
↓DA

↓ − J ′2]

[DR
↓DR

↑ − J ′2][DA
↓ DA

↑ − J ′2]
. (A26)

In order to evaluate this integral, we decompose the inte-
grand into partial fractions. Here we define the single-band
Green’s functions

gR
±(k, ω̄) =

[
ω̄ + μ ∓ ξ (k) + i




2

]−1

, gA
± = [gR

±]∗,

(A27)
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with

ε(k) = vFk + J cos α − �

2
, (A28)

ξ (k) =
√

ε2(k) + J ′2. (A29)

In terms of these single-band Green’s functions, the integrand
can be decomposed as

|DR
↑ |2 − J ′2

|DR
↓DR

↑ − J ′2|2 = i

2


∑
±

[
1 ∓ ε

ξ
− J ′2

ξ
(
ξ ∓ i 


2

)
]

gR
± + c.c.,

(A30)

|DR
↓ |2 − J ′2

|DR
↓DR

↑ − J ′2|2 = i

2


∑
±

[
1 ± ε

ξ
− J ′2

ξ
(
ξ ∓ i 


2

)
]

gR
± + c.c.

(A31)

By using the indefinite integrals∫
dω̄ gR

± = ln

[
ω̄ + μ ∓ ξ + i




2

]
, (A32)

∫
dω̄ gR

±gA
± = 2



arctan

ω̄ + μ ∓ ξ


/2
, (A33)

the ω̄ integrals in Eq. (A26) can be exactly evaluated as

I = − evF

2πL

∑
ν,ν ′=±

{
−J ′2


4ξ
(
ξ 2 + 
2

4

) ln

[(
ξ−ν

�

2
−ν ′μ

)2

+ 
2

4

]

+
[

1 − νε

ξ
− J ′2

ξ 2 + 
2

4

]
arctan

ξ − ν �
2 − ν ′μ


/2

}
ν.

(A34)

By evaluating the k integral numerically, we obtain the current
I in the presence of the dissipation effect 
, as shown in
Fig. 2(a) in the main text.

In the dissipationless limit 
 → 0 with charge neutrality
μ = 0, Eq. (A34) can be further reduced as

I = evF

L

∑
k

[
ε

ξ
θ

(
ξ − �

2

)
+ ε2

ξ 2
θ

(
�

2
− ξ

)]
, (A35)

where we have used arctan(x/
)

→+0→ π

2 [θ (x) − θ (−x)] and
2ξ + � > 0. By evaluating the k integral over k ∈ [−kc, kc]
with the cutoff kc, we obtain

I = e

2π

[√
E2

R + J ′2 −
√
E2

L + J ′2] + e

π

[
E0 − J ′ arctan

E0

J ′

]
,

(A36)

with

−EL = −vFkc + J cos α − �/2, (A37)

ER = vFkc + J cos α − �/2, (A38)

E0 = θ

(
�

2
− J ′

)√
�2

4
− J ′2. (A39)

Taking the limit vFkc � J,�, we obtain the form

I = −e�

2π
[1 − θ (1 − δ)(

√
1 − δ2 − δ arctan

√
δ−2 − 1)].

(A40)

This is the result shown by the gray solid line in Fig. 2(a).

4. Spin injection rate

In order to estimate the spin injection rate from the ferro-
magnet into the QSHI edge, we need to evaluate the in-plane
components of the electron spin accumulation on the edge, as
discussed in the main text. By using Eq. (4), each component
can be given in the time-dependent form,

〈σx(t )〉 = −i
∫ �

0

dω

2πL

∑
k,ν

[G<
ν,↑↓e−i�t + G<

ν,↓↑ei�t ] (A41)

= −i
∫ ∞

−∞

dω̄

2πL

∑
k

[Ḡ<
↑↓e−i�t + Ḡ<

↓↑ei�t ] (A42)

=
∫ ∞

−∞

dω̄

πL

∑
k

[ReḠ<
↓↑ sin �t + ImḠ<

↓↑ cos �t],

(A43)

〈σy(t )〉 = −i
∫ �

0

dω

2πL

∑
k,ν

i[G<
ν,↑↓e−i�t − G<

ν,↓↑ei�t ] (A44)

=
∫ ∞

−∞

dω̄

2πL

∑
k

[Ḡ<
↑↓e−i�t − Ḡ<

↓↑ei�t ] (A45)

=
∫ ∞

−∞

dω̄

πL

∑
k

[−ReḠ<
↓↑ cos �t + ImḠ<

↓↑ sin �t],

(A46)

where we have used the relation [Ḡ<
↓↑]∗ = −Ḡ<

↑↓. There-
fore, the component parallel to ṅ(t )/|ṅ(t )| = −ex sin �t +
ey cos �t is given as

σd = −
∫ ∞

−∞

dω̄

πL

∑
k

ReḠ<
↓↑(k, ω̄). (A47)

Here the integrand reads

ReḠ<
↓↑ = J ′
2[ f↑ − f↓]

2[DR
↓DR

↑ − J ′2][DA
↓ DA

↑ − J ′2]
, (A48)

obtained from Eq. (A18). By using the decomposition by
partial fractions

1

|DR
↓DR

↑ − J ′2|2 = i

4ξ


∑
±

ξ ± i 

2

ξ 2 + 
2

4

gR
± + c.c., (A49)

the ω̄ integral in Eq. (A47) can be evaluated at zero tempera-
ture as

σd = − J ′

4πL

∑
k

∑
ν,ν ′=±

{



4ξ
ln

[(
ξ − ν

�

2
− ν ′μ

)2

+ 
2

4

]

+ arctan
ξ − ν �

2 − ν ′μ

/2

}
ν

ξ 2 + 
2

4

. (A50)
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In the regime J ′ � �,
, this quantity gets suppressed. In
particular, this quantity completely vanishes in the limits

 → 0, where the heat reservoir is detached from the system,
or � → 0, where the magnetization is fixed. Therefore, we
should take finite orders in � and 
 to evaluate the asymptotic
behavior of σd in the limit J ′ → ∞. At charge neutrality
μ = 0, the asymptotic behavior becomes

σd ≈ − J ′

2πL

∑
k,ν

ν

ξ 2

[



2ξ
ln

(
ξ − ν

�

2

)
+ arctan

ξ − ν�/2


/2

]

(A51)

≈ − J ′

2πL

∑
k,ν

ν

ξ 2

[



2ξ

(
ln ξ − ν

�/2

ξ

)
+ arctan

ξ


/2

− ν
�/


1 + (2ξ/
)2

]
, (A52)

= J ′�
2

2πL

∑
k

1

ξ 4(k)
(A53)

= J ′�
2

(2π )2

∫ kc

−kc

dk[(
vFk + J cos α − �

2

)2 + J ′2]2 . (A54)

Since this k integral is free from the ultraviolet divergence,
we can safely extend its zone to (−∞,∞) to evaluate its
asymptotic behavior. As a result, the integral reads

σd ≈ J ′�
2

(2π )2vF

∫ ∞

−∞
dζ

1

(ζ 2 + J ′2)2
= �
2

8πvFJ ′2 . (A55)

The spin injection rate can be evaluated by using σd.
The net dampinglike torque on the constituent spins in the
ferromagnet, per unit length of the junction, is given by

T d(t ) = Jσd(t ) × n(t ) (A56)

= Jσd(−ex sin �t + ey cos �t )

× (ex sin α cos �t + ey sin α sin �t + ez cos α)

(A57)

= Jσd[−ez sin α + cos α(ex cos �t + ey sin �t )].

(A58)

By taking a time average over a cycle, the averaged damping-
like torque, corresponding to the spin injection rate, reads

−JS = T d =
∫ T

0

dt

T
T d(t ) = −Jσd sin α ez. (A59)

By substituting Eq. (A55), its asymptotic behavior for J ′ → 0
is given as

JS ≈ �
2

8πvFJ ′ ez. (A60)

Thus, the asymptotic behavior of the spin-to-charge conver-
sion rate λsc reaches

λsc = I

−e

/
Jz

S (A61)

≈ �

2π

/ �
2

8πvFJ ′ (A62)

= 4vFJ ′


2
, (A63)

as mentioned in the main text.

APPENDIX B: ADIABATIC PUMPING PICTURE

The maximum current Ic = −e/T , which implies that a
single electron is pumped along the edge during one cycle
of precession, can be described as the adiabatic (Thouless)
pumping. If the magnetization is static and pointing in the
direction

n = (sin α cos β, sin α sin β, cos α), (B1)

the edge mode opens a gap 2J sin α. The eigenstate wave
function in the valence band reads

u(k) =
(

sin θ (k)
2 e−iβ/2

− cos θ (k)
2 eiβ/2

)
, (B2)

where θ (k) is the polar angle of the eigenstate spin, defined by

cos θ (k) = vFk + J cos α√
(vFk + J cos α)2 + (J sin α)2

. (B3)

If β precesses slowly from 0 to 2π , we can define the Berry
curvature in (k, t ) space,

�kt = 2Im

〈
∂u

∂t

∣∣∣∣∂u

∂k

〉
= 1

2
sin θ

dθ

dk

dβ

dt
. (B4)

The number of the electrons pumped per one cycle is given by
integrating this Berry curvature over the (k, t ) plane, yielding

npump = −
∫ T

0
dt

∫
dk

2π
�kt = 1. (B5)

This discussion applies as long as an electron cannot be
excited by a single magnon with the energy �, from the hole
band to the electron band separated by the gap 2J ′.
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