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Notation for chemical arrangements in alloys
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Since there is no proper method to classify arrangements of atoms of different elements—chemical
arrangements—the atomic structure of liquid and glassy alloys is hidden under a veil of mystery. Here we present
a method to represent chemical arrangements by unique number sequences, which can be readily classified. This
method paves the way for statistically studying chemical arrangements and thus provides further insight into
the physics of disordered materials. As a demonstration, we apply it to uncover possible chemical arrangements
responsible for preventing crystallization of a supercooled liquid alloy.
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Classification of objects is essential to all branches of
the humanities and sciences. In physics, the arrangements of
atoms in materials are classified to better understand them
and their relation to the materials’ properties. Group theory
provides a means of classifying the regular arrangements of
atoms, and physical properties of crystals are explained in
terms of their crystal structures [1]. By contrast, our knowl-
edge of the properties of disordered materials such as liquids
and glasses is much less than satisfactory. This is due to the
lack of a proper method to classify the random arrangements
of atoms.

The atomic arrangement can be represented as the tiling
of Voronoi polyhedra using Voronoi tessellation [2–5]. Each
polyhedron contains one atom and represents the geometry of
the local structure composed of the central atom and its neigh-
bors. Here the term “geometry” indicates that the positions
of the atoms are concerned, but which element is assigned to
each position is ignored. Recently, a method called the p3 code
has been proposed to classify the Voronoi polyhedra and their
corresponding local geometrical arrangements [6–8]. This
method has unveiled the universal geometrical short-range
order of monatomic simple liquids and glasses [9,10].

To understand the local structure of multicomponent disor-
dered materials, we need to know the chemical arrangement
in the local structure. Here the term “chemical” indicates
that, in addition to the positions of the atoms, which element
is assigned to each position is concerned. One approach
to characterize chemical short-range order is the chemical
composition [11–13]. However, knowing only the chemical
composition is not enough to establish the full picture of
the chemical arrangements. We illustrate this by a simple
example. The local structures shown in Figs. 1(a) and 1(b)
have the same topology (octahedral structure) and the same
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chemical composition (two red atoms and five blue atoms).
However, they have different chemical arrangements. In this
case, the two chemical arrangements can be distinguished by
noting that the red atoms are separate in Fig. 1(a) and the
red atoms are adjacent in Fig. 1(b). However, in the study of
disordered materials, a myriad of chemical arrangements need
to be examined, and it is practically impossible to classify
them by words.

In this paper, we present compact notation for chemical
arrangements so that myriad chemical arrangements can be
readily classified. This is achieved by coloring each Voronoi
polyhedron according to the corresponding chemical elements
and generalizing the p3 code to describe the colored Voronoi
polyhedron. Its usefulness is demonstrated for a liquid alloy.

We first explain the original p3 code in which the color
of polyhedra is not considered [6–8] and then generalize it
to deal with colored polyhedra. We regard a polyhedron as an
object made of polygons glued together side by side and focus
on its topology. In other words, the networks of the polygons
are concerned, but the lengths and angles in the polyhedron
are not. The polyhedron is considered to be identical to its
mirror image. As described later, the p3 code is a method
to encode the topology of a polyhedron as a unique number
sequence called a p3 codeword so that the original polyhedron
can be recovered from p3.

To encode a polyhedron, we first choose a polygon and
one of its sides as a seed. Different seeds yield differ-
ent codewords. The mirror-image polyhedron also yields
different codewords. As described later, each p3 has a
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FIG. 1. Local structures which have the same topology and the
same chemical composition but different arrangements of the red and
blue atoms.
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lexicographical order Lex(p3) and the one with the smallest
Lex(p3) is defined as the unique codeword. In general, p3

consists of ps2 and sp codewords and is expressed as p3 =
ps2; sp, where the semicolon is a separator. The ps2 codeword
is a number sequence p2(1)p2(2)p2(3) · · · p2(P), where p2(i)
is the number of sides of the polygon i and P is the number
of polygons of the polyhedron. Generating ps2 is assigning
identification numbers (IDs) to the polygons. For this purpose,
we also assign i j to the jth side of the polygon i. The side ID
i j represents an integer: i j = j + ∑i−1

x=1 p2(x). In the course
of encoding, IDs are assigned to sides step by step. When
a side to which an ID is already assigned is glued to a side
to which an ID is not assigned yet, the former is called a
dangling side. For a given seed, ps2 is obtained as follows. (1)
The seed polygon is polygon 1 and IDs (11, 12, 13, . . . , 1p2(1))
are assigned to its sides in the clockwise direction from the
seed side. (2) The polygon glued to the dangling side with the
smallest ID is the next polygon i and IDs (i1, i2, i3, . . . , ip2(i))
are assigned to its sides in the clockwise direction from
the side glued to the smallest-ID dangling side. (3) Repeat
procedure 2 until IDs are assigned to all the polygons and their
sides.

In most cases, p3 does not contain sp and the original
polyhedron can be recovered from p3 = ps2 using the decod-
ing algorithm described later. When the original polyhedron
cannot be recovered from ps2, p3 contains sp and the original
polyhedron can be recovered from p3 = ps2; sp. Here sp is
a number sequence y(1)x(1)y(2)x(2)y(3)x(3) · · · y(N )x(N ).
The pair y(i)x(i) indicates that the side y(i) is glued to the
side x(i). N is the number of yx pairs. See Refs. [6–8] for how
to generate sp.

In the decoding process, we glue the polygons side by
side. In this process, a side that is not glued to other side
is also called a dangling side. The p3 codeword instructs
how to assemble the polygons as follows. (1) The polygon α

is a p2(α)-gon (1 � α � P) and IDs (α1, α2, α3, . . . , αp2(α))
are assigned to its sides in the clockwise direction. (2) The
polygon 1 is the partial polyhedron 1. (3) Make the next partial
polyhedron i as follows. Glue the side i1 of the polygon i
to the smallest-ID dangling side of the partial polyhedron
i − 1. When the side y(β ) (1 � β � N) is a side of the
polygon i, glue the sides y(β ) and x(β ) together. When three
corners meet at a junction of two dangling sides, glue the
dangling sides together. Note that each corner of a polyhedron
is assumed to meet exactly two other corners. The Voronoi
polyhedra of disordered structures satisfy this assumption. (4)
Repeat procedure 3 until all the polygons are assembled.

The lexicographical order Lex(p3) is the concatenation
of Lex(ps2) and Lex(sp). Here Lex(ps2) is a P-digit base-
W number (ps2)W = (p2(1)p2(2)p2(3) · · · p2(P))W , where W
is any sufficiently large number, e.g., W = 6P. Similarly,
Lex(sp) = (sp)W is a 2N-digit base-W number.

A polyhedron represented by p3 is called a p3 polyhedron.
The local structure corresponding to a p3 Voronoi polyhedron
is represented by @p3. The topology of a local structure is
encoded as @p3. However, it does not contain information on
the chemical arrangement in the local structure.

Next we generalize the original p3 code to describe the
chemical arrangements. To encode the chemical arrangement

FIG. 2. Circled Schlegel diagram of the colored Voronoi polyhe-
dron of the local structure shown in Fig. 1(a). The color of the circle,
blue, represents the color of the interior of the Voronoi polyhedron.
The polygon corresponding to the red (blue) neighbor is colored
in red (blue). The number in each polygon indicates the polygon
ID which is assigned when the polygon f ehg and the side f e are
chosen as a seed. Note that the outside of the polygon abcd of the
Schlegel diagram corresponds to the inside of the polygon abcd
of the polyhedron. The clockwise direction around the polygon
abcd of the Schlegel diagram corresponds to the clockwise direction
around the corresponding polygon of the polyhedron. For the other
polygons, the counterclockwise direction of the Schlegel diagram
corresponds to clockwise direction of the polyhedron.

in a local structure, we first assign color to each atom in that
local structure according to its atomic elements. We then color
the interior of the Voronoi polyhedron according to the color
of the central atom. We also color each polygon of the Voronoi
polyhedron according to the color of the corresponding atom.
As an example, the colored Voronoi polyhedron of the local
structure shown in Fig. 1(a) is illustrated in Fig. 2 using a
Schlegel diagram.

The chemical arrangement is now represented as the cor-
responding colored Voronoi polyhedron. To encode it, we
introduce color IDs. Let us assume that the color IDs of red
and blue are r and b, respectively, and that 0 � r < b < W .
Note that, although the definition of the color IDs is arbitrary,
a unique codeword is assigned to each chemical arrangement
for a given definition. We then define the color sequence
codeword cs as follows:

cs = c(0)c(1)c(2) · · · c(P).

Here c(0) is the color ID of the interior. If the interior is red
(blue), then c(0) = r [c(0) = b]. For 1 � i � P, c(i) is the
color ID of the polygon i. If the polygon i is red (blue), then
c(i) = r [c(i) = b]. We then generalize p3 as

p3 = ps2; sp; cs.

When p3 does not contain sp, we express p3 as

p3 = ps2; cs,

where “; ;” is contracted to “;”. We also generalize Lex(p3)
as the concatenation of Lex(ps2), Lex(sp), and Lex(cs).
Here, Lex(cs) = (cs)W is a (P + 1)-digit base-W number. The
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@46;brb4r = @4444
FIG. 3. Brief representation of @p3 by using color. The color of

the symbol @ represents the color of the central atom. The color of
each p2(i) represents the color of the ith neighbor of the central atom.

codeword with the smallest Lex(ps2; sp; cs) is defined as the
unique codeword of the colored polyhedron.

For a given seed, the colored polyhedron is encoded as
follows. We first ignore the color of the polyhedron and
generate the original ps2; sp codeword. As a result, IDs are
assigned to all the polygons. We then determine c(i) (1 � i �
P) from the color of the polygon i. We also determine c(0)
from the color of the interior. The colored polyhedron can
be recovered from its ps2; sp; cs as follows. We first make a
plain polyhedron from ps2; sp and then color the polyhedron
according to cs.

We explain how to encode the colored Voronoi polyhedron
shown in Fig. 2 as an example. Since the central atom of
the polyhedron is blue, c(0) = b. When we generate ps2 with
choosing the polygon f ehg and the side f e as a seed, IDs 1,
2, 3, 4, 5, and 6 are assigned to the polygons f ehg (red), e f ba
(blue), head (blue), ghdc (blue), f gcb (blue), and abcd (red),
respectively. Thus, ps2 = 444444 and cs = brbbbbr. We ab-
breviate these as ps2 = 46 and cs = brb4r, respectively. If we
ignore color, the polyhedron can be recovered from ps2 =
46. Therefore, p3 does not contain sp, and p3 = 46; brb4r.
By choosing different seeds, two additional different p3s,
46; b2(rb)2b and 46; b3(rb)2, are obtained. The lexicograph-
ically smallest 46; brb4r is the unique codeword. Since its
Voronoi polyhedron is 46; brb4r, the local structure shown in
Fig. 1(a) is represented by @46; brb4r. This codeword differs
from @46; br2b4 of the local structure shown in Fig. 1(b),
exemplifying that the generalized p3 code can distinguish
different chemical arrangements. By coloring the codeword,
the chemical arrangement can be expressed more briefly as
illustrated in Fig. 3.

Note that the present method can be generalized to classify
chemical arrangements in complexes of local structures in a
similar way that the original p3 code is generalized to the p4

code [6–8].
To demonstrate the usefulness of our notation, we inves-

tigate chemical arrangements in a popular model of super-
cooled liquid alloy proposed by Wahnström [14,15]. This

(a) (b) (c)

FIG. 4. Chemically different S-centered icosahedral structures
found in the Wahnström liquid. Here S and L atoms are colored
red and blue, respectively. (a) Most favored chemical arrangements.
(b) and (c) Crystalline chemical arrangements.

FIG. 5. Noncrystalline S-centered icosahedra that are energeti-
cally less favored but occur more frequently than the crystalline ones.
The frequency of occurrence and the average energy of each structure
are also given.

model consists of 5000 small (S) and 5000 large (L) atoms
interacting via Lennard-Jones (LJ) potentials. The interac-
tion parameters are σSS = σSL/1.1 = σL/1.2, εSS = εSL = εL,
and mS = mL/2. Hereafter, the L-atom LJ reduced units are
used. We perform isothermal-isobaric molecular dynamics
simulations at a temperature of 0.6853 and a pressure of 10
[9,16–20]. A trajectory of 6.0 × 105 LJ time units is sam-
pled and divided into three parts to evaluate the statistical
uncertainty. The local structures in the inherent structure is
analyzed every 100 LJ time units. The local structures are
defined by radical Voronoi tessellation [21]. The Wahnström
liquid is characterized by the predominance of S-centered
@512 (icosahedral structure) [15]. Our original p3 analysis
confirms it and shows that (24.3 ± 0.4)% of the S-centered
local structures adopt this topology. We therefore focus on the
chemical arrangements in the S-centered icosahedra. Atomic
coordinates and generalized p3 codewords of inherent struc-
tures at 2.0 × 105, 4.0 × 105, and 6.0 × 105 LJ time units are
provided in the Supplemental Material [22].
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By using the generalized p3 analysis, we uncover a total
of 82 chemically different types of S-centered icosahedra. In
particular, the most favored chemical arrangement is found
to be @512; s6lsl4s [Fig. 4(a)] and (3.5 ± 0.1)% of the S-
centered icosahedra adopt this chemical arrangement. Here
we assume that the color IDs of S and L atoms are s and l ,
respectively, and that 0 � s < l < W . The chemical arrange-
ments found in the crystalline phase of the Wahnström system
[23,24], @512; s5l6s2 [Fig. 4(b)] and @512; s4l6s3 [Fig. 4(c)],
are less favored. Their proportions are (2.2 ± 0.2)% and
(0.8 ± 0.1)%, respectively.

To elucidate why the noncrystalline local structure is
more favored than the crystalline ones, we calculate the
average energy per atom of the @p3 local structures [9].
The average energy for the most favored noncrystalline
@512; s6lsl4s is −6.89 ± 0.01, which is higher than those for
the crystalline @512; s5l6s2 (−7.07 ± 0.03) and @512; s4l6s3

(−7.06 ± 0.02). Thus, the noncrystalline local structure is
found to be entropically more favored than the crystalline
ones. In addition, it is found that a total of 12 chemical
arrangements, @512; s6lsl4s, @512; s4lsl4sls, @512; s6lsl5,
@512; s5(l2sl )2, @512; s4(ls)2l2sl2, @512; s4lsl4sl2,
@512; s4l6s2l , @512; s6l6s, @512; s6(lsl )2l , @512; s5l6sl ,
@512; s3(lsl )2sl3, and @512; s3lsl6s2, are energetically less

favored but occur more frequently than the crystalline ones
(Fig. 5).

In the past, it was believed that icosahedral local struc-
tures prevented supercooled liquids from crystallization [25].
However, it was shown that the Wahnström liquid crystal-
lizes into a Laves phase which contains S-centered icosa-
hedra [23,24]. Since S-centered icosahedra can be regarded
as fragments of the crystal, supercooling of the liquid can-
not be explained if the chemical arrangements are ignored.
Our analysis reveals the predominance of the entropy-driven
noncrystalline chemical arrangements in S-centered icosa-
hedra. This explains why the supercooled liquid alloy is
stable despite the fact that it contains many S-centered
icosahedra.

In conclusion, we have presented compact notation for
chemical arrangements. This method paves the way for statis-
tically studying chemical arrangements. As a demonstration,
we have applied it to uncover possible chemical arrangements
responsible for preventing crystallization of a supercooled
liquid alloy. Our compact notation for chemical arrangements
will be indispensable for advancing the physics of disordered
materials as the compact notation for numbers, which allows
us to handle numbers efficiently, is indispensable for the
progress of science and technology [26].
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