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We report on a dynamical mean-field theoretical analysis of emerging low-temperature phases in multicompo-
nent gases of fermionic alkaline-earth(-like) atoms in state-dependent optical lattices. Using the example of 1> Yb
atoms, we show that a two-orbital mixture with two nuclear spin components is a promising candidate for studies
of not only magnetic but also staggered orbital ordering peculiar to certain solid-state materials. We calculate
and study the phase diagram of the full Hamiltonian with parameters similar to existing experiments and reveal
an antiferro-orbital phase. This long-range-ordered phase is inherently stable, and we analyze the change of local
and global observables across the corresponding transition lines, paving the way for experimental observations.
Furthermore, we suggest a realistic extension of the system to include and probe a Jahn-Teller source field

playing one of the key roles in real crystals.
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I. INTRODUCTION

In solid-state materials, electrons can occupy different or-
bital states, which usually determine their directional mobility.
Besides spin and charge, this orbital degree of freedom plays
an important role in interacting electron systems and lies
at the heart of intriguing many-body phenomena such as
colossal magnetoresistance, heavy fermions, and the Kondo
effect [1-3].

In particular, orbital ordering is one of the key phenomena
in materials with multiorbital structure such as transition-
metal oxides. Similar to the ordered pattern of spins in the
ground state of an antiferromagnet, electrons from different
d-orbital manifolds can spatially arrange in these materi-
als [4]. While great advances have been made in both the
experimental observation and the theoretical description of
orbital ordering [5-8], the microscopic origin of the processes
is still not fully understood. Numerical calculations for these
systems are challenging due to the simultaneous presence
of electron-electron as well as electron-phonon interactions,
which both can effect orbital ordering [9,10]. Therefore, quan-
tum simulations of the corresponding model Hamiltonians
could shed light onto the competing mechanisms and the
nature of orbitally-ordered phases.
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Ultracold atoms have become a versatile and clean plat-
form for quantum simulations of solid-state systems in the
last decade [11]. In particular, ultracold fermionic atoms in
optical lattices have allowed us to study the single-orbital
Fermi-Hubbard model [12—15], which is believed to describe
certain high-temperature superconductors [16—18]. More re-
cently, a two-orbital Fermi-Hubbard system has been realized
with ultracold alkaline-earth(-like) atoms (AEAs) in a state-
dependent optical lattice (SDL) [19]. For atoms of this kind,
the availability of the long-lived metastable P, electronic
state (denoted as ¢) in addition to the 'Sy ground state (denoted
as g) allows populating two orbital states of the lattice with
distinct kinetic and interaction properties, which makes these
atoms attractive candidates for the study of orbital phenom-
ena [20-29].

In this work, we report on the possibility to approach and
simulate orbital ordering with AEAs in SDLs. Our study is
based on dynamical mean-field theory (DMFT) applied to
a two-orbital Fermi-Hubbard model with parameters closely
related to existing experimental implementations with '">Yb
atoms [19]. Nevertheless, our results are also applicable to
other fermionic AEAs due to the similarity of relevant interac-
tion properties [20]. We calculate the phase diagram for real-
istic orbital fillings and, in addition to multiple magnetically-
ordered phases, we find a particular stable orbitally-ordered
phase. The ordering instability in this system is driven by
the different intra- and interorbital onsite interaction of atoms
in the g and e state, corresponding to electron-electron
interactions in a solid state system. Transitions to this
long-range-ordered phase result in noticeable changes of
experimentally-accessible observables, which we determine
for the fraction of doubly-occupied lattice sites, the orbital
density distribution in a harmonic trap, and nearest-neighbor
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(a) (b) localizes e atoms,.i.'e., ty > t, as depicted in Fig. 1(b). This
U (4] v -OD U i-1 i i+1 ensures lossy collisions between e atoms are strongly sup-
2 99 f pressed [19,20,31]. We consider a combination of a square
vt 0 + /‘e\ state-dependent lattice and a sufficiently deep perpendicular

® state-independent lattice (see Appendix A), which ensures

y 0 cf o Of \/z‘\/\/ the system is quasi-two-dimensional (quasi-2D) and can be
L»x 4 V-V — X,y A described by the Hamiltonian in Eq. (1). We note that our

FIG. 1. (a) Schematic representation of an exemplary state from
the Hilbert space of Eq. (1) illustrating the interaction parameters.
The lattice bonds are shown as gray lines and the blue (yellow)
circles refer to g (¢) atoms in different spin states as indicated by the
arrows. (b) Illustration of the state-dependent lattice potential (solid
lines) which introduces distinct hopping amplitudes 7, > t, for g and
e atoms (blue and yellow circles).

correlations. We also show how the influence of electron-
phonon interactions in the form of the Jahn-Teller effect (JTE)
can be probed with a suitable superlattice potential or by
adjusting the density of atoms appropriately.

II. SYSTEM, MODEL, AND METHOD

We consider a two-orbital mixture of AEAs in the lowest-
energy band of a square optical lattice [see Fig. 1(a)], which is
state dependent, i.e., the lattice depth differs for the two orbital
states g and e. In addition to the orbital degree of freedom,
atoms can occupy one of two nuclear spin states (denoted by |,
and 1), which are equally populated. Within the tight-binding
approximation, this system can be described by the following
two-orbital Hubbard model [20,21]:

_ +
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where (i, j) denotes the set of nearest-neighbor lattice
. T . . . . g e .

sites, ¢;,,, (c,-ya)‘ls the fermlonlc creation '(anml'nlatlon) oper-

ator of an atom in the orbital y € {g, e} with spin o € {1, |},

and n;,, = cj'wciyg is the corresponding density operator. Im-
portantly, H preserves the atomic densities n,, = n,4 + n, | of
each orbital averaged over all lattice sites. Among the relevant
Hubbard parameters are the orbital hopping amplitudes £,
the intraorbital interactions U,, as well as the interorbital
direct interaction V and the exchange interaction V.. We
obtain these parameters from the experimentally determined
s-wave scattering lengths and a band-structure calculation. In
our theoretical approach, the average densities n, and n, of
atoms in the corresponding orbital state can be freely tuned
by adjusting the chemical potentials u, and .. However,
we restrict our study to the regimes of low lattice fillings,
n = (ng + n,) < 2, to avoid three-body losses [30].

In the following, we focus on parameters for a realistic
173Yb system with a state-dependent optical lattice, which

theoretical calculation can be directly extended to a three-
dimensional system [32], but the 2D geometry has advantages
for experimental realizations, especially for quantum gas mi-
croscopy [11]. In general, g and e atoms experience different
lattice potentials due to distinct polarizabilities ozg(1) # oo (1)
of the respective states at a given wavelength A. At fixed depth
of the SDL, the ratio of orbital mobility, #,/t., can be tuned
by adjusting this wavelength appropriately. The associated
polarizability ratio p = o, (1)/ag(A) increases monotonously
between certain atomic transition wavelengths, in particular
from 1 at the so-called magic wavelength (A = 759 nm) to
3.3 at A = 670 nm [19,33]. We consider this experimentally
accessible regime of p to tune the orbital-dependent mobility,
which enhances or suppresses ordered phases.

The onsite interaction energies of !>Yb atoms in the pro-
posed setup demonstrate the hierarchy U,y < U, ~ Vex <V
due to the relatively large scattering length of the orbitally-
symmetric state, which contributes both to V and Vi [20,34—
37]. This contrasts with the well-known Slater-Kanamori
parametrization of the Coulomb interaction in correlated
electron systems [38], where the largest quantity is the
Coulomb parameter U = Uy, = U,,, and the Hund’s coupling
is bounded from above, V.x < U/3, which ensures repulsive
interactions for all spin and orbital components. In the case
of cubic symmetry in the orbital space, the direct interaction
amplitude is given as V = U — 2V, such that a different
hierarchy is observed, Vox <V < U. Nevertheless, the rela-
tively small Ug, and U,, amplitudes do not have any strong
implications on magnetic phases that can be approached with
cold '*Yb atoms [39]. Moreover, as we show below, the
difference between Ug and (V — Vi) as well as U, makes
the system more susceptible to an orbital ordering instability,
which also appears in transition metal compounds [4].

For studying low-temperature phases, we employ DMFT,
which is approximative and only exact in the limit of an
infinite-dimensional system [40]. Nevertheless, it has become
a well-accepted method successfully applied to strongly-
correlated electron systems and has also found applica-
tions in the description of ultracold atoms in optical lat-
tices [41-43]. The calculations are performed with an exact-
diagonalization impurity solver [44], which preserves the
SU(2) spin-rotational symmetry of the two-orbital Hub-
bard model in Eq. (1) [45]. To measure observables in the
symmetry-broken phases, we perform doubling of the unit
cell, i.e., allow two different DMFT solutions on neighboring
lattice sites.

III. RESULTS

For the central case in our DMFT analysis, we choose
a fixed set of Hubbard parameters, #, = 0.26tg, Uge = 6.81,,
U, = 17t,, V = 32t,, and Vi, = 23t,, corresponding to a typ-
ical quasi-2D SDL with the polarizability ratio p = 2.1 (see
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FIG. 2. (a) Phase diagram obtained from DMFT (see Ap-
pendix C) for different densities n, and n, of 3Yb in a SDL with
the polarizability ratio p = 2.1. The filled contours indicate the
critical temperatures 7, of the ordered phases, which are antiferro-
orbital (AFO), antiferromagnetic (AFM), ferromagnetic (FM), and
antiferromagnetic in g (g-AFM). The gray-shaded regions at 7, = 0
correspond either to a normal phase without long-range order or a
regime with phase-separation and the dotted lines indicate constant
total filling. (b) Illustration of the local orbital and magnetic order in
the different phases. Blue and yellow circles correspond to g and e
atoms, arrows indicate the spin state, and lattice bonds are shown as
gray lines. In the AFM and FM phases, the g and e spins are parallel
on doubly-occupied lattice sites.

Appendix B). The exact choice of parameters is not crucial but
motivated by the experimental accessibility and the signatures
of orbital ordering considered in our study. We briefly note
that the interaction energies V and V. are comparable to the
band gap of the SDL and need to be renormalized accordingly.
Renormalizing these parameters is particularly nontrivial in
our regime of quasi-2D geometry and mixed confinement.
Instead, we perform the renormalization on the basis of an
approximative scheme and verify independently that our main
results are not sensitive to the precise magnitude of V and Vi
(see Appendix B).

The low-temperature phase diagram derived from the
DMEFT calculation is shown in Fig. 2(a). For certain orbital
fillings (ng, n.) and at sufficiently low temperature 7;./t, < 1
(kg = 1 is used below), we distinguish ferromagnetic (FM),
antiferromagnetic (AFM), and antiferro-orbital (AFO) long-
range-ordered phases as illustrated in Fig. 2(b).

Since magnetically-ordered phases are not the main focus
of the current study, we only briefly comment on the key
observations. According to the diagram shown in Fig. 2(a),
the g-AFM and AFM instabilities appear along diagonal lines
in the ng-n, plane, where the total density n is ~1 or A2,
respectively. These are the Mott-insulating regimes with one
exception at n, = 2, where the system becomes an insula-
tor with vanishing local magnetic moments. At n, ~ 1 and
variable n,, the Hamiltonian in Eq. (1) can be mapped to
the double-exchange model (FM Kondo-lattice model) with
both FM and AFM terms [46]. We note that away from the
polarizability ratio p = 1, FM ordering becomes stabilized
with increasing p due to the larger exchange interaction Ve

and the stronger localization of e atoms. In contrast, the AFM
phases involving the e orbital become suppressed due to the
strong localization of e atoms and an increase of the local
interaction amplitudes.

The AFO phase is characterized by the alternating oc-
cupation of neighboring lattice sites with atoms in different
orbitals. In analogy to the Néel order of spins, the lattice
can be viewed as a set of two sublattices: One is dominantly
occupied by pairs of g atoms, while the other is dominantly
occupied by single atoms in the e state. This configuration
is similar to orbital ordering in solid-state materials, where
sublattices are formed by electrons occupying different orbital
angular-momentum states of the lattice ions [4]. In contrast to
real crystals, our proposed implementation does not introduce
directional or interorbital hopping, which makes it more fea-
sible for direct experimental realizations.

A peculiar feature of the system under study is that the
AFO phase is stabilized in a wide region around n, = 1
and n, = 0.5 as can be seen in Fig. 2(a). In most regions,
this phase is accompanied by charge order, i.e., the periodic
modulation of the total density n. The transition to the long-
range-ordered state close to n, = 1 and n, = 0.5 is mainly
driven by an interplay between the direct and superexchange
interaction amplitudes. This can be intuitively understood in
the strong coupling limit, 7, < t, K Uetr = (V — Vex — Ug,).
In this case, the dominant superexchange amplitude ~ tg2 [Ueg
reduces the total energy in an arrangement of pairs of g
atoms next to e atoms on neighboring lattice sites, which
yields the antiferro-orbital order illustrated in Fig. 2(b). We
note that the system is actually in a slightly different regime
with intermediate coupling (z, < Uesr), for which there is
no exact analytical formula of the corresponding amplitude,
but the intuitive picture remains valid. Furthermore, it is
worth mentioning that the AFO phase is not limited to the
chosen 2D geometry. Supporting calculations performed for
both a three-dimensional [47] and a one-dimensional sys-
tem (matrix product state algorithm [48]), reveal qualita-
tively similar correlations in the orbital domain at comparable
densities.

For our chosen set of Hubbard parameters, the AFO phase
is enhanced compared to most magnetically-ordered phases
and the DMFT analysis yields a transition point at the critical
temperature 7; /t, = 0.31. We also obtain characteristic values
for the entropy per particle required for orbital ordering,
which are calculated from the Maxwell relation for the local
density of atoms (see Appendix C). We estimate the maximal
entropy per particle in the bulk for the AFO phase to be
s ~ (.8, which is related to approximately a tenth of the Fermi
temperature in a harmonic trap under the assumption that
loading into the optical lattice is adiabatic [49-51]. Degen-
erate Fermi gases of '7>Yb atoms in the g state have been
reported in a similar entropy and temperature regime [30], but
the preparation of two-orbital mixtures is more challenging,
since g atoms need to be partly excited into the e state for the
desired orbital population (see Appendix A).

In Fig. 3, we explore the influence of the polarizability ratio
p on the critical temperature and entropy of the AFO phase.
While the orbitally-ordered phase vanishes completely in
the vicinity of p =1, it is stabilized with increasing p and
the critical temperature only changes negligibly for p > 2.
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ticle of the AFO phase for variable polarizability ratio p at fixed
densities n, = 1 and n, = 0.5. The yellow star indicates p = 2.1,
which is the central value of our study. Green circles refer to values
obtained from DMFT and lines serve as a guide to the eye.

Similarly, the critical entropy increases at small p, reaches its
maximal value at moderate coupling (p ~ 2), and then slowly
decreases due to a stronger suppression of particle-number
fluctuations at larger values of the interaction strengths. This
critical behavior is analogous to the one observed in the
proximity of AFM phases [45] and motivates the choice of
p = 2.1 for our study.

In particular, the AFO phase can be probed experimen-
tally since it covers a sizable fraction of the ng-n, phase
diagram, as can be seen in Fig. 2(a). Due to its rela-
tive stability against particle-number fluctuations (thermally-
induced metal-insulator crossover region at n = 1.5) and al-
most equidistant separation from other insulating regimes
(n=1,n=2, and n, = 1), it should only require relatively
coarse tuning of the respective densities.

First, we analyze how the AFO ordering can be detected
by measuring the fraction of lattice sites occupied by pairs
of g atoms, Dy, = (njg1n;e, ). This observable can be probed
experimentally by measuring the g atom number upon re-
moval of atoms on doubly-occupied lattice sites with a reso-
nant photoassociation pulse, a well-established measurement
technique, which has been successfully applied to ultracold
173Yb atoms in optical lattices [52]. As shown in Fig. 4(a), we
first keep the atomic densities fixed, ng = 1.0 and n, = 0.5,
and vary the temperature. In addition, we also study the Dg,
dependencies at fixed temperature but variable n, or n, to
quantify the sensitivity on the density in each orbital [see
Figs. 4(b) and 4(c)]. The temperature and density dependen-
cies of D,, clearly indicate the enhancement of local pairing
of g atoms in the AFO phase. Below the critical temperature,
this effect increases but approaches a saturated regime for
temperatures T /t, < 0.2. The site-averaged D,, signal in the
AFO phase at T /t, = 0.2 differs from the one obtained in
an artificially-restricted normal phase at the same tempera-
ture by ~8%. Additional calculations with variable Hubbard
parameters show that this value can be slightly increased by
a reduction of the lattice depth in any of the three spatial
directions.

In comparison to the global observable D,,, the AFO phase
shows much stronger signatures in local quantities such as the
in-trap density distribution, which can be measured directly
with high resolution in situ imaging. Ultracold atoms trapped

Temperature T/t, Ne

FIG. 4. Site-averaged double occupancy D,, (a) as a function
of temperature at n, = 1, n, = 0.5 and as a function of the orbital
density (b) n, and (c) n, at fixed T'/t, = 0.2. We show the result for
the AFO phase in green and for an artificially-restricted normal phase
in dark gray. Green circles refer to values obtained from DMFT and
lines serve as a guide to the eye.

in an attractive optical lattice potential usually experience
harmonic confinement due to the curvature of the Gaussian
laser beams. The resulting smooth change of the chemical
potential can then lead to the coexistence of multiple phases in
a single trap, such as the well-known shell structure consisting
of spatially-alternating Mott-insulating and metallic regions.
We explore the density profiles in a harmonic trap across the
thermally-induced AFO phase transition in Figs. 5(a)-5(c).
Below the critical temperature, in parallel with the develop-
ment of AFO correlations across the trap, we observe the
formation of a Mott-insulating plateau at n = 1.5, which is
clearly visible in Fig. 5(a). Interestingly, the phase separation
of g and e atoms, as well as another Mott-insulating plateau at
n = 1, can already be observed above the critical temperature
due to a decoupling from the superexchange energy scales
[see Fig. 5(c)]. This could allow detecting this signature as
a precursor of the AFO phase in an experiment, even above
the actual transition point (7' /¢, < 0.8).

Next, we focus on density correlations between individual
lattice sites, which could be directly probed with single-site
resolved imaging of g and e atoms [11]. In Figs. 5(d) and 5(e),
we show temperature dependencies of the densities n, and
n. on two neighboring lattice sites across the AFO phase
transition. In general, these show strong signals from pair
formation and redistribution of atoms in different orbitals
on a checkerboardlike pattern in the lattice [see Fig. 2(b)].
Already slightly below T, the density n, (n.) reaches 1.5
(0.25) on the first site and 0.5 (0.75) on the neighboring site.
We also expect the buildup of spatial correlations beyond
nearest-neighbor sites, whose amplitudes cannot be accu-
rately calculated within DMFT but could be probed in the
experiment. With recent advances in quantum gas microscopy
of AEAs [53,54], local density correlations could provide a
direct detection method of the AFO phase and its properties.
Moreover, local control in these experiments could allow
one to precisely engineer and study excitations in the AFO
regime [4].

Finally, we discuss a potential extension of our proposal
to host not only the superexchange-driven mechanism for
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FIG. 5. (a)—(c) Radial density profiles in a harmonic trap with
the potential Vi, /f, = 2.3 x 1072(r /@iy )*, which corresponds to the
trapping frequency w = 2w x 60 Hz. Here, aj,, = A/2 is the lattice
constant. We show the profiles for fixed atom number N ~ 1.7 x 10°
and temperatures (a) T/t, = 0.1, (b) 0.3 (slightly below T.), as well
as (c) 0.6. Solid lines refer to the total density n = n, + n, while
dotted lines show n,. The amplitude of the charge-density wave,
(n; — ni+1)/(n; + nisy), indicates the orbitally-ordered region of the
trap and is shown as thick green line in the background. (d),(e) Local
density of the two orbitals on neighboring lattice sites, j =i (red
squares) and j = i + 1 (blue circles), as a function of temperature at
mean density n, = 1 and n, = 0.5. The solid lines serve as a guide
to the eye.

orbital ordering but also include a source field comparable
to the Jahn-Teller effect in transition metal oxides [4]. For
the analog of the antiferrodistortive JTE (as in K,CuFy) [55],
we consider adding a superlattice structure for the e orbital
as shown in Fig. 6(a). For the proposed '"*Yb system, an
additional optical lattice with the wavelength A ~ 1380 nm
and |p| > 1 would produce a suitable superlattice potential,
which acts predominantly on e atoms and lowers their energy
at every second site of the original SDL. In our limit of a
weak superlattice potential, Eq. (1) acquires only an additional
onsite term for e atoms, H' = — 3., A#Dn, ;. The DMFT
analysis for this staggered potential confirms that the AFO
phase can be substantially extended to higher temperatures
with a transformation of the second-order transition point to
a crossover regime due to the explicit symmetry breaking by
the superlattice. In Fig. 6(c), we show the g atom density on
neighboring lattice sites at 7 = 0.367, > T;, where a signal
of the AFO phase [analogous to Fig. 5(c)] emerges with
increasing A}f‘rf). In contrast, the analog of the ferrodistortive
JTE (as in La,CuQy) [55] could be probed without additional
potentials. Its destructive impact on staggered orbital ordering
can be analyzed by varying n,/n, along a line of constant
total density, in particular, n = 1.5, shown as dotted line
in Fig. 2(a). This effect can be intuitively understood for
strongly-bound pairs of g atoms and single e atoms (n, = 1
and n, = 0.5). In this limit, we can attribute the renormalized
chemical potentials, fi, and fi., to the (compound) particles as

(a) (b) f, fo A fe—iig
 \ NN\ S .U 1]

AG) & 0 A®

JT }_ [ V S NI V A () _T JT

(c)
1.5
S 1.0
0.5
0.00 0.25 0.50 0.5 1.0 15
250t "o

FIG. 6. (a) Schematic representation of the lattice potentials for
e (yellow lines) and g atoms (blue lines) in the presence (solid) and
absence (dotted) of the additional superlattice potential producing an
offset A% in analogy to the antiferrodistortive JTE. (b) Ilustration
of changing the orbital densities at constant n = 1.5 in the AFO
phase and the resulting ferrodistortive JTE analog quantified by A?T)
We show the limit of strongly-bound g atoms (blue circles) and
single e (yellow circles) atoms, and their renormalized chemical
potentials fi, and fi.. (c),(d) Local (normalized) density of g atoms
on neighboring lattice sites, j = 2i (red squares) and j = 2i + 1
(blue circles), for (c) probing the antiferrodistortive JTE with a
variable superlattice potential at n, = 1, n, = 0.5, and T /t, = 0.36
and (d) probing the ferrodistortive JTE at constant n = n, +n, = 1.5
and variable n,/n, at T /t, = 0.2. The solid lines serve as a guide to
the eye.

illustrated in Fig. 6(b). Adjusting the average orbital densities
such that ng/n, # 2 corresponds then to lifting the degeneracy
of fi, and fi., which introduces an effective site-independent

and thus ferrodistortive offset AﬁfT) In Fig. 6(d), we plot the
normalized density n, on neighboring lattices sites at 7 =
0.21, < T, which reveals how the signatures of the AFO
phase are suppressed by the change of n,/n.. In general, the
local observables for exploring the JTE analogues shown in
Fig. 6 could be directly probed in the experiment by mea-
suring correlations on neighboring lattice sites for variable
superlattice depth or atomic densities. Furthermore, we expect
the global fraction of doubly-occupied sites D,, to also show
similar but less pronounced signatures.

IV. SUMMARY AND OUTLOOK

We show that AEAs in SDLs are promising candidates for
the experimental observations of orbital ordering phenomena
and potentially could improve the understanding of related
mechanisms in solid-state materials. In particular, by means
of changing the lattice depth and polarizability ratio between
different orbital states, a capability to enhance or suppress the
superexchange contributions to the AFO ordering instability
is demonstrated. At the same time, in a well-controlled and
independent manner, contributions analogous to the JTE in
crystals could be explored by adjusting the orbital densities
or by introducing a superlattice potential. The rich structure
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of the phase diagram revealed in this study also makes AEAs
in SDLs suitable for studies of open questions on the critical
behavior and excitations in transition-metal oxides hosting
orbitally-ordered as well as various magnetic and supercon-
ducting phases [3-6,56].

Our analysis oriented towards experimental implementa-
tions with '3Yb atoms reveals that the SDL substantially
increases the difference between the intraorbital interactions,
(Uee — Ug) 2 Ugg. Therefore, the AFO instability crucially
depends on the energy gap to the closest interorbital excitation
[(V — Viex — Uyg) for Vex > 0]. This small gap gives the largest
contribution to the corresponding AFO superexchange ampli-
tude, which depends less on U,, and the energy of the other
interorbital excitation [(V + Ve — Ugg) for Vi > 0]. There-
fore, similar calculations and experiments could be realized
with related species, such as ¥’Sr or !"'Yb. While the former
and '*Yb have comparable ordering of the interaction pa-
rameters [57], the latter features antiferromagnetic exchange
interaction Ve, < 0 [58] and almost vanishing |U,,| < t, [59],
which could provide an interesting extension of the phase
diagram discussed in our study.

At higher spin symmetry, the AFO phases may demon-
strate unconventional space modulations involving more than
two sublattices. These could naturally be studied with '"*Yb
when the large SU(N < 6) symmetry in the g and e orbital
is utilized [20]. Another related effect concerns the potential
magnetic order of the SU(2)-symmetric mixture in the AFO
phase at very low temperatures, which requires a comprehen-
sive analysis of potential sublattice structures and remains an
interesting task for future theoretical research.
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APPENDIX A: EXPERIMENTAL IMPLEMENTATION

Realization of the orbitally-ordered phase discussed in the
main text requires the preparation of g and e atoms at variable
density in a 2D SDL at low enough temperatures. We first
focus on the optical lattice implementation and briefly outline
possible state preparation techniques.

For '*Yb, a monochromatic SDL at a wavelength of
670 nm (polarizability ratio p = 3.3) has been implemented
in one dimension [19] and can be realized similarly in 2D.

For our choice of p = 2.1, theoretical calculations of the
polarizability [33] yield a wavelength of 690 nm, which is
accessible with commercial laser systems. We note that the
precise value of this wavelength has only negligible influence
on the results discussed in the main text. For the SDL, we con-
sider a fixed lattice depth of V, , = SESPL (g atoms) to ensure
strong suppression of next-nearest-neighbor tunneling and the
validity of the tight-binding approximation. For the strong
confinement along z, we consider a deep magic-wavelength
(A =759 nm) lattice, V; = 18 E[’ , such that the system is in
the quasi-2D regime. Here, ESPY = h x 2.4 kHz and E", =
h x 2.0 kHz refer to the recoil energy from a photon of the
SDL or magic-wavelength lattice, respectively.

The two-orbital mixture can be prepared in the optical
lattice by optically exciting part of the g atoms with an
appropriate laser pulse [19]. Besides the orbital degree of
freedom, '">Yb atoms feature six nuclear spin states in g
and e, with mp € {—5/2,-3/2,...,+5/2}. Due to SU(N)-
symmetric collisions, a stable subset of these states can be
prepared and used in the experiment [20,34]. For the real-
ization of the Hamiltonian in Eq. (1), we only consider two
spin states, mp= —5/2 and +5/2 (denoted by | and 1),
as discussed in the main text. For the state prepara-
tion, we suggest utilizing two additional spin states, mp =
—3/2 and +3/2 (denoted by , and /). Optical pump-
ing on the intercombination line allows preparing g atoms
in an imbalanced mixture of all four spin states such that
(ny +n)/(n, + ny) equals the desired ratio of n,/ng. Sub-
sequent transfer of the ancillary states (/" and /') into the
e orbital with circularly-polarized light yields the desired
densities n, and n, with spin states | and 1 (see Ref. [60]
for a similar technique).

APPENDIX B: HUBBARD PARAMETERS

We calculate the Hubbard parameters from the numerical
solution of the band structure of a separable three-dimensional
optical lattice in the tight-binding approximation and with the
corresponding lattice depths discussed in Appendix A. Since
g and e atoms experience different lattice depths in the (x, y)
plane and along z, we use independent band structures for
each orbital and spatial direction. We list all relevant parame-
ters in Table I for a range of polarizability ratios considered in
the main text.

The onsite interaction strength U, is typically calculated
from the corresponding s-wave scattering length a,,,/,

2

Uy = %aw/ / d*r wl (0w’ (r). (B1)
Here, m is the atomic mass and w, (r) is the Wannier func-
tion of the corresponding orbital y € {g, e} derived from the
band-structure calculation. In the limit of large scattering
lengths comparable to the lattice spacing, a ~ ay,, contribu-
tions from higher bands of the optical lattice become sizable.
Nevertheless, such a system can still be described within the
lowest-band approximation by absorbing these contributions
into renormalized Hubbard parameters [61,62]. In our case,
e & 6 x 103ag is the (smallest) lattice constant with aq
the Bohr radius. For the intraorbital scattering lengths a,, =
199a¢ [59], a.. = 306ay [34], and the interorbital singlet
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TABLE 1. Hubbard parameters for three different polarizabil-
ity ratios and SDL wavelengths [19,33] at fixed lattice depths
(Viy, Vo) = (SESPL, 18 E™ ). The column in bold font indicates the
central values of our study (p = 2.1, A = 690 nm). All parameters
are given in units of the tunneling amplitude #, unless noted oth-
erwise. The quantities UL;, V, and V., are renormalized, while the

values in brackets are directly obtained from Eq. (B1).

Polarizability ratio p 33 2.1 1.2
SDL wavelength A (nm) 670 690 730
t, (h x Hz) 170 160 143
t, 0.07 0.26 0.77
Uy 6.78 6.78 6.78
U, 22.3 17.0 11.8
Ug 10.3 9.33 7.95
Ut 60.1[88.0] 55.0[79.6] 49.7[67.9]
V=Ugf+Ug)/2 3521[49.2] 32.2[44.5] 28.8[37.9]
Vex = U —Ug)/2 2491[38.8] 22.9([35.1] 20.9[30.0]

scattering length Ay = 220ay [34,36], the corrections are
small and neglected. However, the large orbitally-symmetric
scattering length ajg ~ 2 x 10%ay [36] leads to a significant
correction of the corresponding amplitude U;gr, which would
otherwise exceed the band gap.

The system discussed in the main text features anisotropic
and mixed confinement due to the SDL and the quasi-2D
geometry, which prevents us from directly applying existing
results for the renormalization of Ue;f [61]. Instead, we use the
geometric mean of both orbitals as the effective lattice depth
and approximate each lattice site with a harmonic oscillator
potential [19,63]. In addition, we apply first-order perturba-
tion theory to account for the anharmonic cosine potential
of the optical lattice. Finally, we assume spatial separability
of the problem and calculate two independent solutions for
the (x,y) as well z direction, which we combine into the
single interaction amplitude U = U2/*U?. When applied to
an isotropic system with comparable lattice depths, our results
reasonably agree with Ref. [61]. We find an onsite interaction
energy U:g' in excess of the band gap of g atoms along x and
y by up to 60% (p = 3.3), which suggests that our approxi-
mate approach fails to correctly predict the renormalized Hub-
bard parameter. Although the effective U;gr in the experiment
will be different, we verify that the phases discussed in the

main text are robust against variation of this parameter on a
similar scale.

The large scattering length ajg also causes an increased rel-
evance of non-Hubbard terms in the Hamiltonian, specifically,
direct off-site interactions and density-assisted tunneling [62].
While we expect the former to be negligible in our regime,
the latter could become comparable to t, for the orbitally-
symmetric interaction channel. We cannot directly incorporate
this term into our DMFT calculation, but the main effect
will be a renormalization of the hopping amplitudes for sites
occupied simultaneously by g and e atoms. In principle, these
excitations should mainly occur virtually in the AFO phase
at ng < 1.0 and n, < 0.5. At higher densities, we assume
the effects can be absorbed into a modified U, e;, respectively,
V and Vi, which again should not alter the phase diagram
significantly.

APPENDIX C: DMFT CALCULATION

In the DMFT analysis, we employ an exact diagonalization
solver for the Anderson impurity problem with up to four
bath orbitals per each spin and orbital component. The DMFT
self-consistency conditions for two sublattices are applied in
the analysis of the AFO and AFM phases, while the normal
and FM phases are analyzed within the single-site lattice
projection [39].

We obtain the inhomogeneous distributions in the har-
monic trap and entropy dependencies within the local den-
sity approximation. The entropy is calculated by numerical
integration of the Maxwell relation, S = [du (dn/dT) on the
interval from the vacuum state, S(uJ, 119) = 0, to the chemical
potential values u, and ft., which yield the desired densities
of atoms, n, = 1 and n, = 0.5, in particular.

For the phase diagram in Fig. 2, we fit the parameters 6,
ny = (74,0, Ne,0), and p;; of the polynomial function,

N=2

Jr.(n) = Z Pij[R(0)(m — o) I, [R(O)(n — np)]]

i, j=0

(ChH

to a dense enough mesh of DMFT data points (n, 7.) =
[(ng, n.), T.] for each phase individually and evaluate this
function in an appropriate region. Here, R(0) is the matrix,
which rotates points through the azimuth angle 6.

[1] Y. Moritomo, A. Asamitsu, H. Kuwahara, and Y. Tokura, Nature
(London) 380, 141 (1996).

[2] A. C. Hewson, The Kondo Problem to Heavy Fermions (Cam-
bridge University Press, Cambridge, UK, 1997).

[3] Y. Tokura and N. Nagaosa, Science 288, 462 (2000).

[4] D. I. Khomskii, Transition Metal Compounds (Cambridge Uni-
versity Press, Cambridge, UK, 2014).

[5] P. Khalifah, R. Osborn, Q. Huang, H. W. Zandbergen, R. Jin, Y.
Liu, D. Mandrus, and R. J. Cava, Science 297, 2237 (2002).

[6] B. Keimer, Nat. Mater. 5, 933 (2006).

[71 T. A. Miller, R. W. Chhajlany, L. Tagliacozzo, B. Green, S.
Kovalev, D. Prabhakaran, M. Lewenstein, M. Gensch, and S.
Wall, Nat. Commun. 6, 8175 (2015).

[8] K. Ishigaki, J. Nasu, A. Koga, S. Hoshino, and P. Werner, Phys.
Rev. B 99, 085131 (2019).

[9] A. Flesch, G. Zhang, E. Koch, and E. Pavarini, Phys. Rev. B 85,
035124 (2012).

[10] J. Musshoff, G. Zhang, E. Koch, and E. Pavarini, Phys. Rev. B
100, 045116 (2019).

[11] C. Gross and 1. Bloch, Science 357, 995 (2017).

[12] R. A. Hart, P. M. Duarte, T.-L. Yang, X. Liu, T. Paiva, E.
Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G.
Hulet, Nature (London) 519, 211 (2015).

[13] L. W. Cheuk, M. A. Nichols, K. R. Lawrence, M. Okan, H.
Zhang, E. Khatami, N. Trivedi, T. Paiva, M. Rigol, and M. W.
Zwierlein, Science 353, 1260 (2016).

023188-7


https://doi.org/10.1038/380141a0
https://doi.org/10.1038/380141a0
https://doi.org/10.1038/380141a0
https://doi.org/10.1038/380141a0
https://doi.org/10.1126/science.288.5465.462
https://doi.org/10.1126/science.288.5465.462
https://doi.org/10.1126/science.288.5465.462
https://doi.org/10.1126/science.288.5465.462
https://doi.org/10.1126/science.1075556
https://doi.org/10.1126/science.1075556
https://doi.org/10.1126/science.1075556
https://doi.org/10.1126/science.1075556
https://doi.org/10.1038/nmat1783
https://doi.org/10.1038/nmat1783
https://doi.org/10.1038/nmat1783
https://doi.org/10.1038/nmat1783
https://doi.org/10.1038/ncomms9175
https://doi.org/10.1038/ncomms9175
https://doi.org/10.1038/ncomms9175
https://doi.org/10.1038/ncomms9175
https://doi.org/10.1103/PhysRevB.99.085131
https://doi.org/10.1103/PhysRevB.99.085131
https://doi.org/10.1103/PhysRevB.99.085131
https://doi.org/10.1103/PhysRevB.99.085131
https://doi.org/10.1103/PhysRevB.85.035124
https://doi.org/10.1103/PhysRevB.85.035124
https://doi.org/10.1103/PhysRevB.85.035124
https://doi.org/10.1103/PhysRevB.85.035124
https://doi.org/10.1103/PhysRevB.100.045116
https://doi.org/10.1103/PhysRevB.100.045116
https://doi.org/10.1103/PhysRevB.100.045116
https://doi.org/10.1103/PhysRevB.100.045116
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1038/nature14223
https://doi.org/10.1038/nature14223
https://doi.org/10.1038/nature14223
https://doi.org/10.1038/nature14223
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag3349

ANDRII SOTNIKOV et al.

PHYSICAL REVIEW RESEARCH 2, 023188 (2020)

[14] M. Boll, T. A. Hilker, G. Salomon, A. Omran, J. Nespolo,
L. Pollet, I. Bloch, and C. Gross, Science 353, 1257
(2016).

[15] M. F. Parsons, A. Mazurenko, C. S. Chiu, G. Ji, D. Greif, and
M. Greiner, Science 353, 1253 (2016).

[16] R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod.
Phys. 62, 113 (1990).

[17] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J.
Zaanen, Nature (London) 518, 179 (2015).

[18] E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Rev. Mod.
Phys. 87, 457 (2015).

[19] L. Riegger, N. Darkwah Oppong, M. Hofer, D. R. Fernandes, 1.
Bloch, and S. Folling, Phys. Rev. Lett. 120, 143601 (2018).

[20] A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne,
J. Ye, P. Zoller, E. Demler, M. D. Lukin, and A. M. Rey, Nat.
Phys. 6, 289 (2010).

[21] M. Foss-Feig, M. Hermele, and A. M. Rey, Phys. Rev. A 81,
051603(R) (2010).

[22] M. Foss-Feig, M. Hermele, V. Gurarie, and A. M. Rey, Phys.
Rev. A 82, 053624 (2010).

[23] H. Nonne, E. Boulat, E. Capponi, and P. Lecheminant, Mod.
Phys. Lett. B 25, 955 (2011).

[24] J. Silva-Valencia and A. M. C. Souza, Eur. Phys. J. B 85, 5
(2012).

[25] I. Kuzmenko, T. Kuzmenko, Y. Avishai, and G.-B. Jo, Phys.
Rev. B 93, 115143 (2016).

[26] M. Kandsz-Nagy, Y. Ashida, T. Shi, C. P. Moca, T. N. Ikeda, S.
Folling, J. I. Cirac, G. Zaradnd, and E. A. Demler, Phys. Rev. B
97, 155156 (2018).

[27] M. Nakagawa, N. Kawakami, and M. Ueda, Phys. Rev. Lett.
121, 203001 (2018).

[28] S. Goto and I. Danshita, Phys. Rev. Lett. 123, 143002 (2019).

[29] R. Zhang and P. Zhang, Phys. Rev. A 101, 013636 (2020).

[30] C. Hofrichter, L. Riegger, F. Scazza, M. Hofer, D. R. Fernandes,
I. Bloch, and S. Folling, Phys. Rev. X 6, 021030 (2016).

[31] K. Sponselee, L. Freystatzky, B. Abeln, M. Diem, B. Hundt, A.
Kochanke, T. Ponath, B. Santra, L. Mathey, K. Sengstock, and
C. Becker, Quantum Sci. Technol. 4, 014002 (2018).

[32] A. Golubeva, A. Sotnikov, and W. Hofstetter, Phys. Rev. A 92,
043623 (2015).

[33] V. A. Dzuba, V. V. Flambaum, and S. Schiller, Phys. Rev. A 98,
022501 (2018).

[34] F. Scazza, C. Hofrichter, M. Hofer, P. C. De Groot, 1. Bloch,
and S. Folling, Nat. Phys. 10, 779 (2014).

[35] G. Cappellini, M. Mancini, G. Pagano, P. Lombardi, L. Livi,
M. Siciliani de Cumis, P. Cancio, M. Pizzocaro, D. Calonico, F.
Levi, C. Sias, J. Catani, M. Inguscio, and L. Fallani, Phys. Rev.
Lett. 113, 120402 (2014).

[36] M. Hofer, L. Riegger, F. Scazza, C. Hofrichter, D. R. Fernandes,
M. M. Parish, J. Levinsen, 1. Bloch, and S. Folling, Phys. Rev.
Lett. 115, 265302 (2015).

[37] G. Pagano, M. Mancini, G. Cappellini, L. Livi, C. Sias, J.
Catani, M. Inguscio, and L. Fallani, Phys. Rev. Lett. 115,
265301 (2015).

[38] J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).

[39] A. Cichy and A. Sotnikov, Phys. Rev. A 93, 053624 (2016).

[40] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).

[41] B. Schmidt, M. R. Bakhtiari, I. Titvinidze, U. Schneider, M.
Snoek, and W. Hofstetter, Phys. Rev. Lett. 110, 075302 (2013).

[42] T. Qin, A. Schnell, K. Sengstock, C. Weitenberg, A. Eckardt,
and W. Hofstetter, Phys. Rev. A 98, 033601 (2018).

[43] K. Sandholzer, Y. Murakami, F. Gorg, J. Minguzzi, M. Messer,
R. Desbuquois, M. Eckstein, P. Werner, and T. Esslinger, Phys.
Rev. Lett. 123, 193602 (2019).

[44] M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).

[45] A. Golubeva, A. Sotnikov, A. Cichy, J. Kune§, and W.
Hofstetter, Phys. Rev. B 95, 125108 (2017).

[46] A. Sotnikov, A. Cichy, and J. Kunes, Phys. Rev. B 97, 235157
(2018).

[47] A. Sotnikov, Y. Zambrano, and A. Cichy (unpublished).

[48] P. Schmoll, S. Singh, M. Rizzi, and R. Orus, arXiv:1809.08180.

[49] L. D. Carr, G. V. Shlyapnikov, and Y. Castin, Phys. Rev. Lett.
92, 150404 (2004).

[50] M. Kohl, Phys. Rev. A 73, 031601(R) (2006).

[51] A. Sotnikov, Phys. Lett. A 380, 1184 (2016).

[52] S. Taie, R. Yamazaki, S. Sugawa, and Y. Takahashi, Nat. Phys.
8, 825 (2012).

[53] R. Yamamoto, J. Kobayashi, T. Kuno, K. Kato, and Y.
Takahashi, New J. Phys. 18, 023016 (2016).

[54] M. Miranda, R. Inoue, N. Tambo, and M. Kozuma, Phys. Rev.
A 96, 043626 (2017).

[55] P. Fazekas, Lecture Notes on Electron Correlation and Mag-
netism (World Scientific, Singapore, 1999).

[56] U. R. Singh, S. C. White, S. Schmaus, V. Tsurkan, A. Loidl, J.
Deisenhofer, and P. Wahl, Sci. Adv. 1, e1500206 (2015).

[57] A. Goban, R. B. Hutson, G. E. Marti, S. L. Campbell, M. A.
Perlin, P. S. Julienne, J. P. D’Incao, A. M. Rey, and J. Ye, Nature
(London) 563, 369 (2018).

[58] K. Ono, J. Kobayashi, Y. Amano, K. Sato, and Y. Takahashi,
Phys. Rev. A 99, 032707 (2019).

[59] M. Kitagawa, K. Enomoto, K. Kasa, Y. Takahashi, R. Ciuryto,
P. Naidon, and P. S. Julienne, Phys. Rev. A 77, 012719
(2008).

[60] N. Darkwah Oppong, L. Riegger, O. Bettermann, M. Hofer, J.
Levinsen, M. M. Parish, 1. Bloch, and S. Folling, Phys. Rev.
Lett. 122, 193604 (2019).

[61] H. P. Biichler, Phys. Rev. Lett. 104, 090402 (2010).

[62] D.-S. Lithmann, O. Jiirgensen, and K. Sengstock, New J. Phys.
14, 033021 (2012).

[63] T. Busch, B.-G. Englert, K. Rzazewski, and M. Wilkens, Found.
Phys. 28, 549 (1998).

023188-8


https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1103/RevModPhys.62.113
https://doi.org/10.1103/RevModPhys.62.113
https://doi.org/10.1103/RevModPhys.62.113
https://doi.org/10.1103/RevModPhys.62.113
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1103/RevModPhys.87.457
https://doi.org/10.1103/RevModPhys.87.457
https://doi.org/10.1103/RevModPhys.87.457
https://doi.org/10.1103/RevModPhys.87.457
https://doi.org/10.1103/PhysRevLett.120.143601
https://doi.org/10.1103/PhysRevLett.120.143601
https://doi.org/10.1103/PhysRevLett.120.143601
https://doi.org/10.1103/PhysRevLett.120.143601
https://doi.org/10.1038/nphys1535
https://doi.org/10.1038/nphys1535
https://doi.org/10.1038/nphys1535
https://doi.org/10.1038/nphys1535
https://doi.org/10.1103/PhysRevA.81.051603
https://doi.org/10.1103/PhysRevA.81.051603
https://doi.org/10.1103/PhysRevA.81.051603
https://doi.org/10.1103/PhysRevA.81.051603
https://doi.org/10.1103/PhysRevA.82.053624
https://doi.org/10.1103/PhysRevA.82.053624
https://doi.org/10.1103/PhysRevA.82.053624
https://doi.org/10.1103/PhysRevA.82.053624
https://doi.org/10.1142/S0217984911026668
https://doi.org/10.1142/S0217984911026668
https://doi.org/10.1142/S0217984911026668
https://doi.org/10.1142/S0217984911026668
https://doi.org/10.1140/epjb/e2011-20671-2
https://doi.org/10.1140/epjb/e2011-20671-2
https://doi.org/10.1140/epjb/e2011-20671-2
https://doi.org/10.1140/epjb/e2011-20671-2
https://doi.org/10.1103/PhysRevB.93.115143
https://doi.org/10.1103/PhysRevB.93.115143
https://doi.org/10.1103/PhysRevB.93.115143
https://doi.org/10.1103/PhysRevB.93.115143
https://doi.org/10.1103/PhysRevB.97.155156
https://doi.org/10.1103/PhysRevB.97.155156
https://doi.org/10.1103/PhysRevB.97.155156
https://doi.org/10.1103/PhysRevB.97.155156
https://doi.org/10.1103/PhysRevLett.121.203001
https://doi.org/10.1103/PhysRevLett.121.203001
https://doi.org/10.1103/PhysRevLett.121.203001
https://doi.org/10.1103/PhysRevLett.121.203001
https://doi.org/10.1103/PhysRevLett.123.143002
https://doi.org/10.1103/PhysRevLett.123.143002
https://doi.org/10.1103/PhysRevLett.123.143002
https://doi.org/10.1103/PhysRevLett.123.143002
https://doi.org/10.1103/PhysRevA.101.013636
https://doi.org/10.1103/PhysRevA.101.013636
https://doi.org/10.1103/PhysRevA.101.013636
https://doi.org/10.1103/PhysRevA.101.013636
https://doi.org/10.1103/PhysRevX.6.021030
https://doi.org/10.1103/PhysRevX.6.021030
https://doi.org/10.1103/PhysRevX.6.021030
https://doi.org/10.1103/PhysRevX.6.021030
https://doi.org/10.1088/2058-9565/aadccd
https://doi.org/10.1088/2058-9565/aadccd
https://doi.org/10.1088/2058-9565/aadccd
https://doi.org/10.1088/2058-9565/aadccd
https://doi.org/10.1103/PhysRevA.92.043623
https://doi.org/10.1103/PhysRevA.92.043623
https://doi.org/10.1103/PhysRevA.92.043623
https://doi.org/10.1103/PhysRevA.92.043623
https://doi.org/10.1103/PhysRevA.98.022501
https://doi.org/10.1103/PhysRevA.98.022501
https://doi.org/10.1103/PhysRevA.98.022501
https://doi.org/10.1103/PhysRevA.98.022501
https://doi.org/10.1038/nphys3061
https://doi.org/10.1038/nphys3061
https://doi.org/10.1038/nphys3061
https://doi.org/10.1038/nphys3061
https://doi.org/10.1103/PhysRevLett.113.120402
https://doi.org/10.1103/PhysRevLett.113.120402
https://doi.org/10.1103/PhysRevLett.113.120402
https://doi.org/10.1103/PhysRevLett.113.120402
https://doi.org/10.1103/PhysRevLett.115.265302
https://doi.org/10.1103/PhysRevLett.115.265302
https://doi.org/10.1103/PhysRevLett.115.265302
https://doi.org/10.1103/PhysRevLett.115.265302
https://doi.org/10.1103/PhysRevLett.115.265301
https://doi.org/10.1103/PhysRevLett.115.265301
https://doi.org/10.1103/PhysRevLett.115.265301
https://doi.org/10.1103/PhysRevLett.115.265301
https://doi.org/10.1143/PTP.30.275
https://doi.org/10.1143/PTP.30.275
https://doi.org/10.1143/PTP.30.275
https://doi.org/10.1143/PTP.30.275
https://doi.org/10.1103/PhysRevA.93.053624
https://doi.org/10.1103/PhysRevA.93.053624
https://doi.org/10.1103/PhysRevA.93.053624
https://doi.org/10.1103/PhysRevA.93.053624
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevLett.110.075302
https://doi.org/10.1103/PhysRevLett.110.075302
https://doi.org/10.1103/PhysRevLett.110.075302
https://doi.org/10.1103/PhysRevLett.110.075302
https://doi.org/10.1103/PhysRevA.98.033601
https://doi.org/10.1103/PhysRevA.98.033601
https://doi.org/10.1103/PhysRevA.98.033601
https://doi.org/10.1103/PhysRevA.98.033601
https://doi.org/10.1103/PhysRevLett.123.193602
https://doi.org/10.1103/PhysRevLett.123.193602
https://doi.org/10.1103/PhysRevLett.123.193602
https://doi.org/10.1103/PhysRevLett.123.193602
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevB.95.125108
https://doi.org/10.1103/PhysRevB.95.125108
https://doi.org/10.1103/PhysRevB.95.125108
https://doi.org/10.1103/PhysRevB.95.125108
https://doi.org/10.1103/PhysRevB.97.235157
https://doi.org/10.1103/PhysRevB.97.235157
https://doi.org/10.1103/PhysRevB.97.235157
https://doi.org/10.1103/PhysRevB.97.235157
http://arxiv.org/abs/arXiv:1809.08180
https://doi.org/10.1103/PhysRevLett.92.150404
https://doi.org/10.1103/PhysRevLett.92.150404
https://doi.org/10.1103/PhysRevLett.92.150404
https://doi.org/10.1103/PhysRevLett.92.150404
https://doi.org/10.1103/PhysRevA.73.031601
https://doi.org/10.1103/PhysRevA.73.031601
https://doi.org/10.1103/PhysRevA.73.031601
https://doi.org/10.1103/PhysRevA.73.031601
https://doi.org/10.1016/j.physleta.2016.01.044
https://doi.org/10.1016/j.physleta.2016.01.044
https://doi.org/10.1016/j.physleta.2016.01.044
https://doi.org/10.1016/j.physleta.2016.01.044
https://doi.org/10.1038/nphys2430
https://doi.org/10.1038/nphys2430
https://doi.org/10.1038/nphys2430
https://doi.org/10.1038/nphys2430
https://doi.org/10.1088/1367-2630/18/2/023016
https://doi.org/10.1088/1367-2630/18/2/023016
https://doi.org/10.1088/1367-2630/18/2/023016
https://doi.org/10.1088/1367-2630/18/2/023016
https://doi.org/10.1103/PhysRevA.96.043626
https://doi.org/10.1103/PhysRevA.96.043626
https://doi.org/10.1103/PhysRevA.96.043626
https://doi.org/10.1103/PhysRevA.96.043626
https://doi.org/10.1126/sciadv.1500206
https://doi.org/10.1126/sciadv.1500206
https://doi.org/10.1126/sciadv.1500206
https://doi.org/10.1126/sciadv.1500206
https://doi.org/10.1038/s41586-018-0661-6
https://doi.org/10.1038/s41586-018-0661-6
https://doi.org/10.1038/s41586-018-0661-6
https://doi.org/10.1038/s41586-018-0661-6
https://doi.org/10.1103/PhysRevA.99.032707
https://doi.org/10.1103/PhysRevA.99.032707
https://doi.org/10.1103/PhysRevA.99.032707
https://doi.org/10.1103/PhysRevA.99.032707
https://doi.org/10.1103/PhysRevA.77.012719
https://doi.org/10.1103/PhysRevA.77.012719
https://doi.org/10.1103/PhysRevA.77.012719
https://doi.org/10.1103/PhysRevA.77.012719
https://doi.org/10.1103/PhysRevLett.122.193604
https://doi.org/10.1103/PhysRevLett.122.193604
https://doi.org/10.1103/PhysRevLett.122.193604
https://doi.org/10.1103/PhysRevLett.122.193604
https://doi.org/10.1103/PhysRevLett.104.090402
https://doi.org/10.1103/PhysRevLett.104.090402
https://doi.org/10.1103/PhysRevLett.104.090402
https://doi.org/10.1103/PhysRevLett.104.090402
https://doi.org/10.1088/1367-2630/14/3/033021
https://doi.org/10.1088/1367-2630/14/3/033021
https://doi.org/10.1088/1367-2630/14/3/033021
https://doi.org/10.1088/1367-2630/14/3/033021
https://doi.org/10.1023/A:1018705520999
https://doi.org/10.1023/A:1018705520999
https://doi.org/10.1023/A:1018705520999
https://doi.org/10.1023/A:1018705520999

