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Onset of synchronization in networks of second-order Kuramoto oscillators with delayed coupling:
Exact results and application to phase-locked loops
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We consider the inertial Kuramoto model of N globally coupled oscillators characterized by both their phase
and angular velocity, in which there is a time delay in the interaction between the oscillators. Besides the
academic interest, we show that the model can be related to a network of phase-locked loops widely used in
electronic circuits for generating a stable frequency at multiples of an input frequency. We study the model for
a generic choice of the natural frequency distribution of the oscillators, to elucidate how a synchronized phase
bifurcates from an incoherent phase as the coupling constant between the oscillators is tuned. We show that,
in contrast to the case with no delay, here the system in the stationary state may exhibit either a subcritical or
a supercritical bifurcation between a synchronized and an incoherent phase, which is dictated by the value of
the delay present in the interaction and the precise value of inertia of the oscillators. Our theoretical analysis,
performed in the limit N → ∞, is based on an unstable manifold expansion in the vicinity of the bifurcation,
which we apply to the kinetic equation satisfied by the single-oscillator distribution function. We check our
results by performing direct numerical integration of the dynamics for large N , and highlight the subtleties
arising from having a finite number of oscillators.
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I. INTRODUCTION

A. The model

The Kuramoto model with inertia is representative of com-
plex many-body dynamics involving a set of rotors character-
ized by their phases and angular velocities that are coupled all-
to-all through the sine of their phase differences. Specifically,
the dynamics for a system of N rotors is given by a set of 2N
coupled first-order differential equations of the form [1–3]

θ̇i(t ) = vi(t ),

mv̇i(t ) = −γ vi(t ) + γωi + K

N

N∑
j=1

sin[θ j (t ) − θi(t )], (1)

where the overdot denotes derivative with respect to time, and
θi ∈ [0, 2π ) and vi are the phase and the angular velocity of
the ith rotor, respectively, whose moment of inertia is m > 0.
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Here, γ > 0 is the damping constant, K > 0 is the coupling
constant, while ωi ∈ [−∞,∞] is the natural frequency of
the ith rotor. The frequencies {ωi}1�i�N constitute a set of
independent and quenched disordered random variables dis-
tributed according to a given distribution G(ω), normalized
as

∫ ∞
−∞ dω G(ω) = 1 and with finite mean ω0. During the

analysis we will also use the centered distribution g(ω) ≡
G(ω + ω0). In the limit of overdamping, γ /m → ∞, the
rotors are effectively characterized by their phases alone and
are therefore quite rightly referred to as oscillators.1 In this
limit, the dynamics (1) becomes that of the Kuramoto model
[4–10], which over the years has emerged as a paradigmatic
minimal framework to study spontaneous collective synchro-
nization in a group of coupled limit-cycle oscillators, such
as that observed in groups of fireflies flashing on and off in
unison [11], in cardiac pacemaker cells [12], in Josephson
junction arrays [13], in electrochemical [14] and electronic
[15] oscillators, etc. The governing equations of the Kuramoto
model are N coupled first-order differential equations of the
form

γ θ̇i(t ) = γωi + K

N

N∑
j=1

sin[θ j (t ) − θi(t )]. (2)

1In this work, we use the terms “oscillators” and “rotors” inter-
changeably.
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The mean-field nature of either the dynamics (2) or the
dynamics (1) becomes evident on defining the so-called Ku-
ramoto order parameter R(t ) and the global phase �(t ), as [4]

R(t )ei�(t ) ≡
∑N

j=1 eiθ j (t )

N
; R,� ∈ R, 0 � R � 1,

� ∈ [0, 2π ), (3)

with 0 < R < 1 characterizing a synchronized phase and R =
0 an incoherent phase. In terms of R(t ), the dynamics (1) may
be rewritten as

θ̇i(t ) = vi(t ),

mv̇i(t ) = −γ vi(t ) + γωi + KR(t ) sin(�(t ) − θi(t )), (4)

which shows that the evolution of the dynamical variables at
time t is governed by the value of the mean field R(t )ei�(t ) set
up collectively at time t by all the oscillators.

Both the models (1) and (2) have been extensively studied
in the past and a host of results have been derived with
regard to the parameter regimes allowing for the emergence
of a synchronized stationary state (see Ref. [10] for a recent
overview). For example, consider a G(ω) that is unimodal;
namely, it is symmetric about its mean ω0 and decreases
monotonically and continuously to zero with increasing
|ω − ω0|. In this case, it is known that in the stationary state
of the dynamics (2) the system for a given choice of G(ω)
may exist in either a synchronized or an incoherent phase
depending on whether the coupling K is respectively above or
below a critical value Kc = 2/[πG(ω0)]; on tuning K across
Kc from high to low values, one observes a continuous phase
transition in Rst, the stationary value of R(t ). Namely, Rst

decreases continuously from the value of unity, achieved as
K → ∞, to the value zero at K = Kc and remains zero at
smaller K values. One may interpret the transition as the
case of a supercritical bifurcation in which, on tuning K , a
synchronized phase bifurcates from the incoherent phase at
K = Kc. In particular, a small change of K across Kc results
in only a small change in the value of Rst ∝ √

K − Kc close
to and above Kc [4,16]. For the same choice of a unimodal
G(ω), the inertial dynamics (1) on the other hand show
a discontinuous phase transition between synchronized and
incoherent phase, where Rst exhibits an abrupt and big change
from zero to a nonzero value on changing K by a small amount
across the phase transition point [17,18]. Here, the bifurcation
of the synchronized from the incoherent phase is said to be
subcritical and leads to hysteresis [19]. Thus, the presence of
inertia is rather drastic in that it changes completely the nature
of the bifurcation and hence of the underlying stationary state.

In this work, we study the effect of a delay in the interaction
between the oscillators within the framework of dynamics (1).
The dynamical equations of this modified model are given by

θ̇i(t ) = vi(t ),

mv̇i(t ) = −γ vi(t ) + γωi

+ KR(t − τ ) sin(�(t − τ ) − θi(t ) − α), (5)

thereby modeling the time evolution which is governed by the
value of the mean field at an earlier instant t − τ , where τ > 0
is the time delay in the interaction between the oscillators.

FIG. 1. Schematic diagram of a phase-locked loop (PLL). The
arrows denote the direction of flow of signals in the loop.

Here, α ∈ (−π/2, π/2) is the so-called phase frustration pa-
rameter, an additional dynamical parameter that is known to
affect significantly the behavior of the Kuramoto model [20].
In the overdamped limit, the model (5) reduces to

γ θ̇i(t ) = γωi + KR(t − τ ) sin[�(t − τ ) − θi(t ) − α], (6)

which in presence of additional Gaussian, white noise has
been addressed in Ref. [21]. Note that for the dynamics in (6)
the parameter γ may be scaled out by a redefinition of time,
so that the relevant dynamical parameters are K , τ , and α.
In a recent work [22], two of the present authors investigated
the dynamics (6), deriving for generic G(ω) and as a function
of the delay exact results for the stability boundary Kc(τ )
between the incoherent and the synchronized phases and the
nature in which the latter bifurcates from the former at the
phase transition point. Note that unlike (1) the dynamics
(5) is not invariant under the transformation θ j (t ) → θ j (t ) −
ω0t, ω j → ω j − ω0 ∀ j that views the dynamics in a frame
rotating uniformly at frequency ω0 with respect to an inertial
frame. From Eq. (5), it is clear that viewing the dynamics in
such a frame is equivalent to replacing α with α′ ≡ α + ω0τ .
Our results imply that, for a given choice of G(ω), the nature
of transition (continuous versus discontinuous) between the
synchronized and incoherent phases depends explicitly on the
value of τ .

In view of the aforementioned developments, it is evidently
of interest to investigate the effects of inertia on the time-
delayed model and thus embark on a detailed analysis of the
dynamics (5). Since, even without delay, inertia is known to
have nontrivial and interesting consequences as mentioned
above, we may already anticipate that an interplay of the
influence of delay and inertia may result in an even richer
stationary state for the dynamics (5) vis-à-vis the dynamics
(6). Remarkably, the dynamics in Eq. (5), far from being just a
model of academic interest, emerge naturally in the context of
mutually coupled phase-locked loops, as we now demonstrate.

B. Relation to a network of phase-locked loops

A phase-locked loop (PLL) is an electronic component
designed to generate an output signal that has a constant
phase relation (and is thus locked) to the phase of its in-
put reference. Figure 1 shows a schematic PLL architecture
consisting of a phase detector (PD), a loop filter (LF), and
a voltage-controlled oscillator (VCO) acting as a variable-
frequency oscillator, all connected in a feedback loop. The
phase-detector output xPD(t ) represents the phase relations
of the periodic output signal xout (t ), generated by the VCO,
with the phase of the periodic input signal xin(t ). The loop-
filtered phase-detector output yields the control signal xC(t )
that controls the instantaneous frequency of the VCO so that
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its corresponding output approaches the phase and frequency
of the input signal. The latter property enables a PLL to
track an input frequency or to generate a frequency that is
a multiple of the input frequency. PLLs find wide use in
electronic applications as an effective device to, e.g., recover a
signal from a noisy communication channel, generate a stable
frequency at multiples of an input frequency, and to distribute
a quartz reference clock signal via a clock-tree architecture.

Let us now consider the setup of N � 2 mutually delay-
coupled PLLs occupying the nodes of a network, in which the
input signals for a given PLL are constituted by the delayed
output received from other PLLs [23–25]. The delay could be
due to transmission signaling times, and is accounted for in the
following by a discrete delay time τ . We consider the LF to
ideally damp the high-frequency components of the PD signal.
Consider the output signal of the ith PLL, i = 1, 2, . . . , N , in
the network:

xi(t ) = sig(θi(t )), (7)

where θi(t ) denotes the phase, and sig(θi(t )) is a 2π -periodic
function with amplitude one. Depending on the type of PLL,
i.e., analog or digital, the output signal may be sinusoidal or a
rectangular function, respectively. The VCO is operated such
that its output frequency θ̇i(t ) depends linearly on the control
signal xC

i (t ):

θ̇i(t ) = ωVCO
i,0 + KVCO

i xC
i (t ), (8)

where ωVCO
i,0 denotes the natural frequency and KVCO

i the VCO
input sensitivity. The control signal is the output of the loop
filter:

xC
i (t ) =

∫ ∞

0
du p(u) xPD

i (t − u), (9)

where xPD
i (t ) denotes the phase-detector signal and p(u) is the

impulse response of the filter. Considering first-order loop fil-
ters, i.e., p(u; 1, b) being the 	 distribution with shape param-
eter a = 1 and scale parameter b, the above integral equation
can be rewritten by using Laplace transforms [24,26], yielding

ẋC
i (t ) = ωc

[
xPD

i (t ) − xC
i (t )

]
, (10)

where ωc denotes the cutoff frequency of the first-order low-
pass filter. The initial state of the filter is given by xC

i (0) =
[θ̇i(0) − ωVCO

i,0 ]/KVCO
i . The phase-detector signal depends on

the type of PLL:

xPD
i (t ) = C + 1

2 n(i)

N∑
j=1

ci jh[θ j (t − τ ) − θi(t )], (11)

where C is a PLL type specific offset (C = 1/2 for XOR PDs
while C = 0 for multiplier PDs), ci j = {0, 1} are the compo-
nents of the adjacency matrix, with the value 1 (respectively,
0) denoting whether PLL units i and j are coupled (respec-
tively, uncoupled), n(i) ≡ ∑

j ci j is the total number of units
coupled with unit i, h(x) is a 2π -periodic coupling function,
and we assumed the high-frequency components to be filtered
ideally by the LF [23]. Equations (8)–(11) combined together

0 1 2 3 4-6

-4

-2

0

2

4

ω0τ/(2π)

Kc (radHz), m = 0.1 s/rad

s (s/rad), m = 0.1 s/rad

Kc (radHz), m = 3 s/rad

s (s/rad), m = 3 s/rad

FIG. 2. Stability region of the incoherent state for Lorent-
zian GL (ω) = σ/[π ((ω − ω0)2 + σ 2)] with σ = 0.1 rad Hz, ω0 =
3 rad Hz, γ = 1 and α = 0. We show here as a function of τ the
quantities Kc(τ ) and s(τ ) for m = 0.1 s/rad and m = 3 s/rad. The
sign of s(τ ), satisfying sign(Re(c3)(τ )) = sign(s(τ )), determines
the super- or subcritical nature of the bifurcation.

yield a second-order phase model with delayed coupling:

1

ωc
θ̈i(t ) + θ̇i(t ) = ωi + K̃i

n(i)

N∑
j=1

ci jh(θ j (t − τ ) − θi(t )).

(12)

where we have defined ωi ≡ ωVCO
i,0 + C KVCO

i and K̃i ≡
KVCO

i /2. The 2π -periodic coupling function h depends on
the type of the PD and the corresponding input signals. Here
we consider the case of a cosine coupling function, h(x) =
cos(x), for analog PLLs and multiplier phase detectors and
a triangular coupling function, and h(x) = �(x) for digital
PLL’s with XOR phase detectors. In the latter case the cou-
pling function can be approximated as h(x) = −8/π2 cos(x).
The case of a D flip-flop2 phase detector for digital PLLs,
which has a linear coupling function, will not be considered
in this work. Given these cases, we will use a sinusoidal
coupling function with a phase frustration parameter α ∈
[−π/2, π/2], that is, with h(x) = sin(x − α), which rep-
resents both of the cases mentioned above. We will also
specialize to the case when every PLL unit is coupled to
every other, implying ci j = 1 ∀ i, j = 1, 2, . . . , N and n(i) =
N . Comparing Eqs. (12) and (5) leads to the correspondence
m = ω−1

c = b, γ = 1, as well as K = K̃i, α = −π/2 for the
analog PLL case, and α = π/2, K = 8K̃i/π

2 for the digital
PLL approximation.

Before moving on to an analysis of the dynamics (5), it is
pertinent that we give here a summary of our results obtained
in this paper and the techniques employed in achieving them.

2Note that, in most state-of-the-art electronic systems where syn-
chronization is achieved through entrainment by a reference clock,
the phase detector is a flip-flip phase-frequency detector, in contrast
to the XOR component used for the phase detector of the digital PLLs
discussed in this work.
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We here obtain exact analytical relations for the critical point
Kc(τ ) beyond which the incoherent phase of the dynamics (5)
becomes unstable and, furthermore, the nature in which the
synchronized phase bifurcates from the incoherent phase as K
is increased beyond Kc(τ ). An illustration of our results for a
unimodal Lorentzian distribution is shown in Fig. 2 for two
representative values of the inertia, which displays both Kc(τ )
and s(τ ) whose sign determines the nature of the bifurcation
of the order parameter R, Eq. (3): a positive (respectively, a
negative) sign implies a subcritical bifurcation and hence a
discontinuous transition (respectively, a supercritical bifurca-
tion and hence a continuous transition). As may be seen from
Fig. 2, Kc and s both have an essential dependence on τ and
m, while our analysis [see Eq. (61)] suggests that the effects
of changing τ at a fixed α are the same as those from changing
τ at a fixed α keeping α + ω0τ constant.

We now summarize our method of analysis in obtaining
the aforementioned results. We start off with considering the
dynamics (5) in the limit N → ∞, when it may be effec-
tively characterized by a single-oscillator probability density
F (θ, v, ω, t ), which gives at time t and for each ω the fraction
of oscillators with phase θ and angular velocity v. The time
evolution of F (θ, v, ω, t ) follows a kinetic equation, of which
the incoherent state f 0(θ, v, ω) (associated with Rst = 0) rep-
resents a stationary solution. We rewrite the kinetic equation
in the form of a delay differential equation (DDE) [27,28] for
perturbations ft (ϕ) ≡ F (θ, v, ω, t + φ); −τ � φ < 0 around
f 0(θ, v, ω). The DDE involves a linear evolution operator D
and a nonlinear one F . We obtain the eigenvalues and the
eigenvectors of D and of the corresponding adjoint operator
D†. As is well known [19], knowledge of the eigenvalues
allows one to locate the critical value Kc of the coupling K
above which the incoherent state f 0(θ, v, ω) becomes linearly
unstable. We then build for K > Kc the unstable manifold
expansion of the perturbation ft (φ) along the two complex
conjugated eigenvectors associated with the instability. Using
a convenient Fourier expansion of the relevant quantities and
working at K slightly greater than Kc, we thus obtain the
amplitude dynamics describing the evolution of perturbations
ft (ϕ) in the regime of weak linear instability, K → K+

c . The
nature of the amplitude dynamics at once dictates the nature
of bifurcation occurring as soon as K is increased beyond
Kc: The amplitude dynamics has a leading linear term and a
nonlinear (cubic) term, and, as is well known from the theory
of bifurcation [19], the sign of the real part of this cubic term
(denoted s in Fig. 2) dictates the nature of the bifurcation, with
positive and negative signs leading respectively to subcritical
and supercritical bifurcation.

The paper is organized as follows. Section II forms the
core of the paper, in which we derive our main results,
Eqs. (35) and (61). We illustrate our analytical results with the
representative example of a unimodal Lorentzian distribution.
In Sec. III, we make a detailed comparison of our analytical
results obtained in the limit N → ∞ with numerical results
for finite N obtained by performing numerical integration
of the equations of motion. Here, in particular, we discuss
the subtleties involved in making such a comparison, whose
origin may be traced to finite-size effects prevalent for finite
N . The paper ends with conclusions.

II. EXACT ANALYSIS IN THE LIMIT N → ∞
We now turn to a derivation of our results for the sys-

tem (5). To simplify matters, we work in the rotating frame
θ j (t ) → θ j (t ) − ω0t, ω j → ω j − ω0 ∀ j, so that the distribu-
tion G(ω) → g(ω) is now centered in 0. Moreover, consider
the system in the limit N → ∞, when the dynamics may
be effectively characterized in terms of the single-oscillator
probability density F (θ, v, ω, t ) defined above. This density
is 2π periodic in θ , and obeys the normalization∫ 2π

0
dθ

∫ ∞

−∞
dv F (θ, v, ω, t ) = g(ω) ∀ω, t . (13)

The time evolution of F (t ) ≡ F (θ, v, ω, t ) may be derived by
following the procedure given in Ref. [7]. One obtains the
evolution equation

∂F

∂t
(t )+v

∂F

∂ω
(t )+ K

2im
(R1[F ](t − τ )e−i(θ+α+ω0τ )−R−1[F ]

× (t − τ )ei(θ+α+ω0τ ) )
∂F

∂v
(t ) − γ

m

∂

∂v
[(v − ω)F (t )] = 0,

(14)

where we have defined as functionals of F the quantity

Rk[F ] ≡
∫ 2π

0
dθ

∫ ∞

−∞
dv

∫
dω eikθ F (θ, v, ω, t ),

k = 0,±1,±2, . . . . (15)

In particular, R1 coincides with the N → ∞ limit of the
Kuramoto complex order parameter R(t )ei�(t ) in Eq. (3), and
hence |R−1| = |R1| = R.

From Eq. (14), one may check that the incoherent state

f 0(θ, v, ω) = g(ω)
δ(v − ω)

2π
(16)

solves the equation in the stationary state and thus repre-
sents an incoherent stationary state. To examine how in the
stationary state the incoherent stable becomes unstable as K
is tuned above a critical value Kc, we employ an unstable
manifold expansion of perturbations about the incoherent state
in the vicinity of the bifurcation. To perform the analysis,
we write F = f 0 + f , with f being the perturbation. Next,
we note that the time evolution of the function F (t ) according
to a nonlinear operator with delay M[F (t )] [obtained from
Eq. (14)] can be rewritten in term of a delay variable ϕ such
that the time-evolution operator is given by

(A Ft )(ϕ) =
⎧⎨⎩

d

dϕ
Ft (ϕ), −τ � ϕ � 0,

M[Ft ], ϕ = 0,

(17)

with Ft (φ) ≡ F (t + φ). Employing the expansion F = f 0 +
f , we define the linear and nonlinear operators D and F ,
according to

(A ft )(ϕ) = (D ft + F [ ft ])(ϕ)

=
⎧⎨⎩

d

dϕ
ft (ϕ)

L ft (ϕ)
+

{
0, −τ � ϕ < 0,

N [ ft ], ϕ = 0.
(18)
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We decompose the linear operator into two parts, L =
L +R, namely, a part L that does not contain any delay term
and a part R that has all the delay terms. Rewriting Eq. (14)
according to the above formalism yields

∂ ft

∂t
= D ft + F [ ft ], (19)

with

L f = −v∂θ f + 1

m̃
∂v[(v − ω) f ], (20)

R f = − K̃

2im̃
(R1[ f ]e−iθ e−i(α+ω0τ )

− R−1[ f ]eiθei(α+ω0τ ) )∂v f 0, (21)

N [ ft ] = − K̃

2im̃
(R1[ ft ](−τ )e−iθ e−i(α+ω0τ )

− R−1[ ft ](−τ )eiθ ei(α+ω0τ ) )∂v f (0), (22)

where we use the shorthand ∂v ≡ ∂/∂v for derivatives and use
from now on the transformation m̃ = m/γ and K̃ = K/γ .

In the functional space of delayed functions, there is no L2

canonical inner product. However, Ref. [27] defines a bilinear
form acting as the inner product on this space. In our problem
with a discrete delay, the scalar product is

(q, p)τ ≡ (q(0), p(0)) +
∫ 0

−τ

dξ (q(ξ + τ ),R p(ξ )), (23)

where (q(0), p(0)) denotes the usual scalar product on
L2(T × R × R) (phase, angular velocity, and natural fre-
quency)

(h, f ) =
∫
T×R×R

h∗(θ, v, ω) f (θ, v, ω) dω dv dθ,

with q(0) = h(θ, v, ω), p(0) = f (θ, v, ω) (24)

and the integral term contains the delay contribution. The
adjoint of the linear operator D , obtained by using the equality
(q(ϕ),D p(ϕ))τ = (D†q(ϕ), p(ϕ))τ , is defined in the dual
space, and is given by

(D†qt )(ϑ ) =
{

− d

dϑ
qt (ϑ ), 0 < ϑ � τ,

L †qt (ϑ ), ϑ = 0.
(25)

We also decompose L † = L† +R†, with

L† q = v∂θq − 1

m̃
(v − ω)∂vq, (26)

R† q = K̃

2im̃
(ei(α+ω0τ )e−iθ R1[q∂v f 0]

− e−i(α+ω0τ )eiθ R−1[q∂v f 0]). (27)

Starting with Eq. (19), the unstable manifold expansion
involves a linear and a weakly nonlinear analysis, and requires
combining two formalisms: (i) the one developed in Ref. [18]
for the case of the Kuramoto model with inertia but with no
delay, (ii) the delay formalism [27–29], as done in Ref. [22]. In
the following subsections, we go over one by one the various
steps, which culminate in our main equation, Eq. (60).

A. Linear stability analysis of f 0

The linear stability analysis of the stationary state f 0

consists of solving the eigenvalue problem

(DP)(ϕ) = λP(ϕ) (28)

for −τ � ϕ < 0; we get for ϕ �= 0, P(ϕ) = �eλϕ

for arbitrary �. We expand in a Fourier series in θ ,
as P(ϕ) = (2π )−1 ∑∞

k=−∞ pk (ϕ)eikθ and �(θ, ω) =
(2π )−1 ∑∞

k=−∞ ψk (ω)eikθ . Using Eq. (28) for ϕ = 0 and
k = ±1 in the Fourier expansion, we get

p1(ϕ) = ψ1(ω, v)eλϕ. (29)

In the following, we will omit subscripts while referring to ψ1

and p1. For ϕ = 0, we look for a solution of the eigenvalue
problem in the form

ψ = U0(ω)δ(v − ω) + U1(ω)δ′(v − ω), (30)

where the Dirac delta function and its derivatives are to be un-
derstood in the distribution sense. Imposing the normalization
R1[�] = R−1[�] = ∫

dv dω ψ = 1, one finds

U0 = K̃

2m̃
ei(α+ω0τ )e−λτ g(ω)

(λ + iω)(λ + 1/m̃ + iω)
, (31)

U1 = K̃

2im̃
ei(α+ω0τ )e−λτ g(ω)

λ + 1/m̃ + iω
. (32)

Making explicit the normalization condition yields the disper-
sion relation

�(λ) = 1 − K̃

2m̃
ei(α+ω0τ )e−λτ

∫
dω

g(ω)

(λ + iω)(λ + 1/m̃ + iω)

= 0. (33)

We can see that p∗(ϕ) gives another eigenfunction of D with
eigenvalues λ∗, so that �(λ) = �∗(λ∗) = 0. For k �= ±1, one
has only a continuous spectrum occupying the imaginary axis.

The adjoint eigenvector has the form Q(ϑ ) = �̃e−λ∗ϑ =
ψ̃eiθ e−λ∗ϑ , where ψ̃ solves

(λ∗ − iv)ψ̃ + 1

m̃
(v − ω)∂vψ̃

= K̃

2im̃
e−i(α+ω0τ )e−λ�τ

∫
dω g(ω)∂vψ̃ (ω,ω). (34)

The full solution of the above equation is not straightforward
to obtain, but thankfully we just need to know ψ̃ (ω,ω) and
the derivative ψ̃ (n)(ω) = ∂n

v ψ̃ (ω,ω), which may be obtained
by successive differentiation of Eq. (34).

Summarizing, the linear stability analysis yields the disper-
sion relation

�(λ)≡ 1 − K

2m
ei(α+ω0τ )e−λτ

∫
G(ω + ω0)

(λ + iω)(λ + γ /m + iω)
dω

= 0, (35)

which has its roots giving the eigenvalues associated with the
linear operator D . In particular, for K � Kc, the stationary
state f 0 becomes unstable, with associated unstable eigenval-
ues λ satisfying Re(λ) � 0. Note that for K < Kc the incoher-
ent state is neutrally stable, i.e., there is no discrete eigenvalue
but only a continuous spectrum; in this case, perturbations f 0
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are damped in time via a mechanism similar to the Landau
damping [30].

B. Weakly nonlinear analysis and the unstable
manifold expansion

The weakly nonlinear analysis describes the type of bifur-
cation as K → K+

c and hence as Re(λ) → 0+. The analysis
involves decomposing the perturbation into a contribution
along the unstable eigenvectors P(φ), P∗(φ) associated with
the unstable eigenvalues λ, λ∗ and a contribution St (φ) in the
perpendicular direction, as

ft (φ) = [A(t )P(φ) + c.c.] + St (φ), (36)

where c.c. stands for complex conjugation, A(t ) = (Q, ft )τ is
the amplitude of the unstable mode, and (Q, St )τ = 0. Here,
we have introduced the eigenvector Q of the adjoint operator
D† and the scalar product (·, ·)τ . The unstable manifold
approach consists of expanding the perpendicular component
St in terms of the small amplitude A, St (φ) ≡ St (θ, v, ω, φ) =
H[A, A∗](θ, v, ω, φ) and computing H perturbatively. We
now follow the nonlinear study based on ideas developed in
Refs. [18,22], and detail our analysis. The starting point is the
expansion

ft (ϕ) = A(t )P(ϕ) + A∗(t )P∗(ϕ) + H[A, A∗](ϕ), (37)

with A(t ) = (Q, ft )τ , (Q, P∗) = 0, and (Q, H ) = 0. We as-
sume that H is at least of order (A, A∗)2. For small A (that
is, in the close vicinity of Kc), it can be shown that R(t ) =
A∗(t ) + O(|A|2A∗(t )), so that studying the bifurcation of A is
equivalent to that of the order parameter R. Let us define the
following Fourier expansions needed for further analysis:

ft = 1

2π

∞∑
k=−∞

( ft )keikθ , (38)

{L ft ,N [ ft ]} = 1

2π

∞∑
k=−∞

{Lk ( ft )k,Nk[ ft ]}eikθ , (39)

H[A, A∗] = 1

2π
|A|2w0[|A|2] + 1

2π

∞∑
k=1

(Akwk[|A|2]eikθ

+ (A∗)kw−k[|A|2]e−ikθ ), (40)

where the dependence on A of the Fourier coefficients of
H is imposed by rotational symmetry [31]. To proceed with
the analysis, we will need to expand the coefficients wk in
powers of |A|2, wk = ∑∞

j=0 |A|2 jwk, j . To be consistent with
the assumption of the unstable manifold being at least of order
(A, A∗)2, we need to have w±1,0 = 0.

The Fourier coefficients of the nonlinear operator (22) are

Nk[ ft ] = iK̃

2m̃
(e−i(α+ω0τ )R1[ ft ](−τ )∂v ( ft )k+1(0)

− ei(α+ω0τ )R−1[ ft ](−τ )∂v ( ft )k−1(0)). (41)

Note that—in contrast to the case with no inertia, m = 0,
where L0 = N0 = 0 so that ( ft )0 = constant = 0—in the
present case ( ft )0 �= 0 and w0 �= 0. This difference will have
major consequences for the reduction, giving a 1/λ divergence
in the c3 coefficient.

For ϕ �= 0, we find w0(ϕ) = h0,0e2λrϕ + O(|A|2),
w2,0(ϕ) = h2,0e2λϕ + O(|A|2), and with the boundary
equation ϕ = 0

(2λr − L0)h0,0 = i
K̃

2m̃
e−i(α+ω0τ )e−λ∗τ ∂vψ + c.c., (42)

(2λ − L2)h2,0 = −i
K̃

2m̃
ei(α+ω0τ )e−λτ ∂vψ, (43)

where we used the decomposition (37) and the orthogonal pro-
jection with respect to the eigenvectors (19) − (Q, (19))P −
(Q∗, (19))P∗ on the Fourier modes k = 0 and 2 while only
keeping the quadratic orders O((A, A∗)2). Solving these equa-
tion will give us h0,0 and h2,0 needed in the following.
Projection of the dynamics along the unstable mode using
(Q, (19))τ yields the equation for the amplitude A(t ) to be

Ȧ = λA + c3A|A|2 + O(A|A|4), (44)

c3 = K̃

2im̃

(
ei(α+ω0τ )e−λτ

∫
dω ψ̃∗∂vh0,0

− e−i(α+ω0τ )e−λ∗τ
∫

dω ψ̃∗∂vh2,0

)
, (45)

where we used Eq. (41) for k = 1 keeping only the leading
order. To determine the nature of the bifurcation, we must
compute explicitly the coefficient c3. To do that, we must first
compute the Fourier component of the unstable manifold.

1. Computation of h0,0

We start with Eq. (42). We have h0,0 = h + c.c., where h is
the solution of

(2λr − L0)h = i
2π K̃

2m̃
e−i(α+ω0τ )e−λ∗τ ∂vψ. (46)

Equation (46) reads

2λrh − 1

m̃
∂v[(v − ω)h]

= K̃2

4im̃2
e−2λrτ

(
− g(ω)δ′(v − ω)

(λ + iω)(λ + iω + 1/m̃)

+ i
g(ω)δ′′(v − ω)

(λ + iω + 1/m̃)

)
. (47)

We introduce the ansatz

h = W0(ω)δ(v − ω) + W1(ω)δ′(v − ω) + W2(ω)δ′′(v − ω)
(48)

to get

W0(ω) = 0, (49)

W1(ω) = i
(K̃/2m̃)2e−2λrτ g(ω)

(2λr + 1/m̃)(λ + iω)(λ + 1/m̃ + iω)
, (50)

W2(ω) = (K̃/2m̃)2e−2λrτ g(ω)

2(λr + 1/m̃)(λ + 1/m̃ + iω)
. (51)
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2. Computation of h2,0

A similar computation starting from Eq. (43) yields h2,0.
We have to solve

(2λ − L2)h2,0 = −i
K̃

2m̃
ei(α+ω0τ )e−λτ ∂vψ. (52)

Using the ansatz

h2,0 = X0δ(v − ω) + X1δ
′(v − ω) + X2δ

′′(v − ω), (53)

we obtain

X0(ω) = iX1(ω)

(λ + iω)
, (54)

X1(ω) = −i(K̃ei(α+ω0τ )e−λτ /2m̃)U0(ω)

(2λ + 2iω + 1/m̃)

+ 4iX2(ω)

(2λ + 2iω + 1/m̃)
, (55)

X2(ω) = −i(K̃ei(α+ω0τ )e−λτ /2m̃)U1(ω)

2(λ + iω + 1/m̃)
. (56)

3. Putting everything together

One can ascertain that the only diverging term will come
from

∫
ψ̃ (2)∗W ∗

1 dω; thus, the leading term is∫
dω ψ̃ (2)∗W ∗

1 ∼ i
K̃2

2m̃2

e−2λrτ

(1/m̃)4

1

�′(iλi )

π

2

g(−λi )

λr
. (57)

These types of singularities are called “pinching singulari-
ties”; they arise when two poles approach the real axis, each
on one side in an integral. Indeed, with Eq. (34) and the
notation ψ̃ (ω,ω) = ψ̃ (n)(ω), we find that

(ψ̃ (n) )∗(ω) = (−i)nn!

�′(λ)

1∏n
l=0(λ + iω + l/m)

. (58)

The (λ + iω)−1 factor paired with the (λ∗ − iω)−1 term ap-
pearing only in W ∗

1 gives a “pinching singularity” resulting in
the 1/λr divergence. We conclude that the leading behavior of
c3 for m̃ > 0 is given by

c3 ∼ πm̃K̃3

8

ei[α+(ω0−λi )τ ]

�′(iλi )

g(−λi )

λr
. (59)

In particular, the sign of s(τ ) ≡ Re( K
2m

ei[α+(ω0−λi )τ ]

�′(iλi )
) determines

the type (sub- vs supercritical) of the bifurcation.
Summarizing the analysis of this subsection, we find the

following reduced equation for the order parameter:

Ȧ = λA + c3(λ)|A|2A + O(|A|4A), (60)

c3(λ) ∼ πm
K3

8γ 4

ei[α+(ω0−λi )τ ]

�′(iλi )

G(ω0 − λi )

λr
, λr → 0+, (61)

where the unstable eigenvalue λ is decomposed into its real
and imaginary parts: λ = λr + iλi. A few remarks are in
order: (a) The coefficient c3 diverges as λr → 0, which is the
regime where the reduction is valid. This singular behavior
is typical of this type of systems [16,18,31], and stems from
the existence of the continuous eigenspectrum that cannot
be described by the finite dimensional equation (60). (b)
However, we still expect the behavior of c3 to determine the

type of bifurcation. For Re(c3) > 0 we expect a subcritical
(discontinuous) bifurcation, while for Re(c3) < 0 we expect a
supercritical bifurcation. In the latter case, the scaling of the
stationary amplitude is Ast ∝ λr, which differs from the usual
Kuramoto model where it goes as

√
λr. (c) In the case with

no inertia, that is, with m = 0, we expect the coefficient c3 to
be quantitatively relevant in giving the exact amplitude Ast of
the stationary branch close to the bifurcation; here, because of
the singularity, only the sign and scaling of c3(λ) can be used
heuristically to get qualitative information. Heuristically, the
unstable manifold procedure will describe the linear growth
of the instability until the nonlinear effects, governed by
c3, kick in, and then the simple one-dimensional reduced
model, Eqs. (60) and (61), cannot capture the full saturation
dynamic. However, even if the diverging term in Eq. (57)
is always the dominating contribution in c3(λ) for m �= 0,
one can intuitively guess that, away from the bifurcation
point K � Kc, this term proportional to m will become “very
quickly” small compared to other terms contributing to c3(λ)
when m is small. Hence, one can expect that other very
different bifurcations take place closely after the bifurcation.
In practice, this is what we observe for smaller m in numerical
simulations; see Fig. 4.

C. Application to a Lorentzian distribution

To assess the effects of inertia in a delay system, we
consider a Lorentzian distribution of the natural frequen-
cies: GL(ω) = σ/[π{(ω − ω0)2 + σ 2}]. The dispersion rela-
tion (35) at criticality gives K = Kc and λ = 0+ + iλi,c:

Kc

2
= (

γ σ + mσ 2 − mλ2
i,c

)
sec[(λi,c − ω0)τ ], (62)

λi,c(γ + 2σm)

γ σ + mσ 2 − mλ2
i,c

= − tan[(λi,c − ω0)τ ], (63)

where, for simplicity, we chose α = 0 for this application.
Solving this system gives us Kc(τ ) and λi,c(τ ). Then the sign
of the cubic coefficient Re(c3)(τ ) is given by

s(τ )=Re

(
(σ + iλi,c)2[γ + m(σ + iλi,c)]2

m(γ + (σ + iλi,c)[γ τ + m(iλi,cτ + στ + 2)])

)
,

(64)

where we used Eq. (61) with G = GL. We plot in Fig. 2
the quantities Kc and s as a function of the delay for two
different inertia values m = 0.1 s/rad and m = 3 s/rad for a
Lorentzian distribution. For τ → 0, we recover the no-delay
results showing a positive Re(c3) and hence a subcritical
bifurcation [7]. Moreover, as in the case with no inertia [22],
m = 0, the delay induces “oscillations” in the sign of Re(c3).
We observe that different nonzero values of m do not change
much the behavior of the bifurcation.

III. NUMERICAL RESULTS

A. Method

In the preceding section, we provided an analytic character-
ization of the stability properties of the incoherent state in the
Kuramoto model with delayed coupling and inertia in the limit
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FIG. 3. Numerical integration results for the average Kuramoto order-parameter R̄(t ) as a function of the coupling constant K in the vicinity
of the critical coupling constant Kc. Plots show the cases with inertia m = 3.0 s/rad and τ = {0.2, 1.0, 2.0, 3.0, 4.2, 5.25} s in order from
(a) to (f). For each value of K , the system of N = 105 oscillators was integrated for at least Tnum = 200 s, and the K values are separated by
�K = (2.5 × 10−4)/(2π ) Hz; see text. The horizontal black lines at R̄ = 1/

√
N denote the order parameter fluctuations expected for a finite

system with N unsynchronized oscillators.

N → ∞. Here we present results from numerical integra-
tion of the dynamics (5) with Lorentzian-distributed natural
frequencies with location parameter ω0 = 3 radHz and scale
parameter σ = 0.1 radHz. For all-to-all coupling, Eq. (5)
can be rewritten in terms of the Kuramoto order parameter:
Using Rx(t − τ ) = 1/N

∑
j cos[θ j (t − τ )] and Ry(t − τ ) =

1/N
∑

j sin[θ j (t − τ )], we rewrite the equations of motion as

θ̇i(t ) = vi(t ),

mv̇i(t ) + γ vi(t ) = γωi + K [Ry(t − τ ) cos(θi(t ))

− Rx(t − τ ) sin(θi(t ))]. (65)
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FIG. 4. Numerical integration results as in Fig. 3 but for m = 0.1 s/rad.

We set α = 0 for the numerical experiments. Hence, for γ =
1, we have the set of equations

θ̇i(t ) = ωi + K xC
i (t ), (66)

ẋC
i (t ) = 1

m

(
xPD

i (t ) − xC
i (t )

)
, (67)

xPD
i (t ) = Ry(t − τ ) cos[θi(t )] − Rx(t − τ ) sin[θi(t )], (68)

which we integrate numerically using an Euler iteration
method, given the initial phases θi(0) independently and
identically distributed in [0, 2π ) and the initial states of the
filters xC

i (0). Rx(thist ) and Ry(thist ) with thist ∈ [−τ, 0] given
by the history of the network of oscillators, which we obtain
by evolving each oscillator independently according to its
own natural frequency, i.e., as if they were uncoupled. The
code is written in PYTHON and compiled with CYTHON for
fast execution and can be found on the Gitlab repository here
[32].
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Our objective behind performing the numerics is to verify
our theoretical results obtained in the limit N → ∞ for the
critical coupling constant Kc above which the incoherent state
becomes unstable. Furthermore, we want to confirm the type
of bifurcation as predicted by our theoretical results that can
be observed as the coupling constant K is tuned across Kc.
To this end, we integrate numerically the dynamics of large
networks of all-to-all delay-coupled Kuramoto oscillators in
the vicinity of the theoretically predicted Kc; see Fig. 2.

We proceed with our numerical work as follows. For
a given set of parameters (N, τ, m, γ = 1, α = 0), a
set of discrete coupling constants K (n) = {Kon, Kon +
�K, . . . , Kend − �K, Kend},�K > 0, and a set of
Lorentzian-distributed natural frequencies {ωi}, each
oscillator is evolved independently with its own natural
frequency for a time τ to obtain the dynamical history for
N oscillators in the interval [−τ, 0]. In the next step, we
turn on the coupling between the oscillators at an initial
coupling constant Kon that is close to but smaller than the
critical coupling constant predicted by our theoretical results.
Subsequently, the delay-coupled system of all-to-all coupled
oscillators is evolved with the coupling constant kept fixed at
Kon for time Tnum that is long compared to the mean period of
the independent oscillators, in order to ensure that the system
settles into a stationary state at the fixed value of the coupling.
Then, using the phases of the final interval [Tnum − τ, Tnum]
as the history, we evolve the system of coupled oscillators for
the next larger value in K (n) for time Tnum, and so on, until the
final value Kend is reached. In the final part of this procedure,
we follow the exact reverse protocol, namely, repeating the
above steps while decreasing the value of the coupling from
Kend until the initial value Kon < Kc is reached. In numerics,
we track the value of the Kuramoto order parameter in time,
and save for each value of the coupling in the set K (n) the final
value of the order parameter obtained at the end of run for
time Tnum as well as its average and variance computed over
a time taverage equal to 50 times the time period corresponding
to ω0, i.e., taverage = 50 × 2π/ω0.

B. Results

We present in Figs. 3 and 4(a)–4(f) results for transmission
delays τ = {0.2, 1.0, 2.0, 3.0, 4.2, 5.25} s and moments of
inertia m = {3.0, 0.1} s/rad, obtained for a system of N = 105

all-to-all coupled oscillators. In both the figures, the left panels
(respectively, right panels) show the cases for which the
theory predicts Re(c3) > 0 and hence a subcritical bifurcation
and presence of a hysteresis loop (respectively, Re(c3) < 0
and hence a supercritical bifurcation with no hysteresis). The
plots show the Kuramoto order parameter averaged over a
time equal to 50 times the time period corresponding to
the frequency frequency ω0 and plotted as a function of the
coupling constant K .

In our simulations, we find the bifurcations that were pre-
dicted by the theoretical results. We denote by K theory

c ≡ K the
theoretical critical coupling predicted by Eqs. (62), (63) in the
Lorentzian case G(ω) = GL(ω). As the coupling constant K
increases, it crosses a critical coupling constant Knum

c as found
in our finite-size simulation, and we observe a subcritical
(discontinuous) transition and hysteresis for Re(c3) > 0. Knum

c

denotes the value of the coupling strength in the numerical
calculations at which the incoherent state becomes unstable.
For Re(c3) < 0, on the other hand, we find a supercritical
(continuous) transition with a linearly growing order parame-
ter and no hysteresis as K grows larger than Knum

c . We observe
that for the case of m = 0.1 s/rad, the hysteresis seems to
be weaker than in the case with m = 3.0 s/rad. The obtained
results are in good agreement with our theoretical predictions
for Kc and the type of bifurcation.

C. Discussion of numerical results

Numerical validation of our analytical N → ∞ limit re-
sults obtained is not trivial and comes with a few difficulties
that we will discuss here. Since we do not know the critical
system size Ncrit of oscillators below which strong finite-size
effects will come into play nor the number Nthermo above
which the behavior coincides with that in the thermodynamic
limit, we decided use a system size as large as is practicable.
This, however, becomes very resource intensive, since, for
systems with time delays, a memory of the states of all
oscillators for a time period [t − τ, t] has to be stored in order
to perform dynamical evolution. For the mean-field coupling
case, we have the advantage that it is sufficient to store only
the history of the order parameter variables Rx(t − τ ) and
Ry(t − τ ).

It is known from the literature [33] that for the
Kuramoto model in absence of delay and inertia, when the
number of oscillators is finite, we may expect to find Knum

c �
K theory

c , depending on the number N of oscillators consid-
ered. This difference is even stronger when considering the
inertial model and subcritical bifurcation, where the conver-
gence K theory

c − Knum
c (N ) ∼ N−0.22 [17] is very slow with N

(compared with K theory
c − Knum

c (N ) ∼ N−0.4 without inertia
[33]). Note that the prediction K theory

c > Knum
c was obtained

for systems without delay, thus observing K theory
c ≈ Knum

c in
Figs. 3 and 4 at τ = 2 s does not contradict the results in
[17,33] and raises an interesting issue for future investigation
as to how the difference between Knum

c and K theory
c scales

with N . However, in cases with supercritical bifurcation, the
numerically observed value of the critical coupling seems
more different from the theoretical value than in cases with
subcritical bifurcation (which could be another indicator of
the type of transition). We thus have no prior knowledge of
the exact value Knum

c (N ) at which to expect the transition; see
the right plot in Fig. 5. Furthermore, the multistability present
in the system due to the delayed interaction results in a number
of steplike transitions that follow once the incoherent state
becomes unstable. As a consequence, validation of a linear
and continuous transition for K > Kc becomes hard to resolve
when increasing K further than the regime of the continuous
transition; see the left plot in Fig. 5. In that case, R̄ does not
return through the same values since the first bifurcation has
already been followed by one or more other bifurcations.

For smaller values of the inertia, the discontinuous transi-
tions and hysteresis regimes also become much smaller, and
it becomes difficult to resolve them even with, e.g., N = 105

oscillators. Furthermore, there are no a priori conditions to
guide our choice of the discretization �K with which we
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FIG. 5. Plot (a) addresses the difficulties in showing the supercritical bifurcation arising due to subsequent bifurcations close to the critical
coupling strength for the case m = 0.1 s/rad and τ = 1 s. Plot (b) addresses the issue of finite-size effects in our simulations, and we show
results for different numbers N of oscillators for the case m = 3 s/rad and τ = 4.2 s The arrows in the legend denote whether K is being
increased or decreased.

change the coupling strength and the time Tnum for which the
coupling strength is kept constant. The tests required in esti-
mating feasible values for the dynamical parameters are com-
putationally expensive and require long computation times.

Note that the cases in which the predicted discontinuous
transitions appear continuous in numerics (e.g., Fig. 4 left
panel, third row) are only due to the simulation time being
too short in the bifurcation region for the instability to grow
enough and yield a large value of the order parameter.

IV. CONCLUSIONS

In this work, we have studied the effect of time delay in the
interaction between oscillators within the framework of the
inertial Kuramoto model of globally coupled oscillators. For
a generic choice of the natural frequency distribution of the
oscillators, we obtain exact analytical results that imply that,
in contrast to the case with no delay, the system in the sta-
tionary state may exhibit either a subcritical or a supercritical
bifurcation between a synchronized and an incoherent phase.
The precise nature of bifurcation has an essential dependence
on the amount of delay present in the interaction and also on
the value of inertia of the oscillators. Our theoretical analysis,
performed in the limit of an infinite number of oscillators, is
carried out by employing an unstable manifold expansion in
the vicinity of the bifurcation, which we apply to the kinetic
equation satisfied by the single-oscillator distribution func-
tion, Eq. (14). The one-dimensional reduction, Eq. (60), of the
dynamics for the order parameter is plagued by singularities
that are reminiscent of an infinite dimensional bifurcation and,
thus, gives at best qualitative information on the bifurcation
nature, a fact that our numerical results fully support. We
notice, however, that the unstable manifold method is very
robust in the context of kinetic equations with continuous
spectrum, since it is, to the best of the authors’ knowledge, the
only one giving analytic predictions for the Kuramoto model
with both inertia m �= 0 and delay τ �= 0, while other methods,
like the Ott-Antonsen ansatz [34], work only for m = 0 and
self-consistent methods, e.g., [1] have been applied only for

the case with no delay, τ = 0. Direct numerical integration
of the dynamics allows one to highlight the subtleties one is
confronted with when checking the analytical results against
those obtained numerically for a finite number of oscillators.
For systems of delay-coupled PLLs with heterogeneous nat-
ural frequencies, our results allow us to predict the mini-
mal coupling sensitivity of the voltage-controlled oscillators
necessary to enable the network to become synchronized.
Moreover, such PLL networks generally seem to exit the
incoherent state at smaller coupling sensitivity if the transition
happens through a subcritical bifurcation, Re(c3) > 0, and
close to integer multiples of the mean natural period of the
oscillators, where we find the local minima of Kc; see Fig. 2.
It may be noted that, with increasing transmission delay, the
onset of synchronization can generally be achieved at smaller
values of Kc. Hence, larger values of the transmission delay
seem to decrease the stability of the incoherent state.
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