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Transport through a quantum critical system: A thermodynamically consistent approach
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Currents through quantum systems may probe nonanalyticities in quantum-critical many-body ground states.
For a large class of dissipative quantum critical systems we show that it is possible to obtain the reduced system
dynamics in the vicinity of quantum critical points in a thermodynamically consistent way, while capturing
non-Markovian effects. We achieve this by combining reaction coordinate mappings with polaron transforms.
Exemplarily, we consider the Lipkin-Meshkov-Glick model in a transport setup, where the quantum phase
transition manifests itself in the heat transfer statistics.
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I. INTRODUCTION

At vanishing temperature, a quantum many-body system
may exhibit a drastic change upon modification of a control
parameter solely driven by quantum fluctuations. Such a
quantum phase transition (QPT) is accompanied by a closing
gap of the low excitation energies and nonanalytic changes
of the ground state and observables [1–5]. Recent experi-
ments have demonstrated the ability to investigate quantum
phase transitions in ultracold atoms [6–10], through cavity-
assisted Raman transitions [11], in one-dimensional ferro-
magnets [12], in spinor Bose-Einstein condensates [13], by
means of trapped ion quantum simulators [14,15], and in
circuit quantum electrodynamic lattices [16]. These engi-
neered systems allow us to study a broad range of quantum
critical phenomena in a highly controlled manner. However,
as experimental setups are intrinsically open and often in-
volve driven-dissipative systems [6–8,17–21] that cannot be
described by equilibrium models [22], exploring the influence
of nonequilibrium environments on QPTs and many-body
physics is essential. Examples include periodically driven
systems [23–26], quenched systems [27–32], systems with
dissipation [33–42], and critical transport setups [43–46].

A natural question that arises is whether signatures of
quantum criticality can be probed when the system is coupled
to reservoirs in a transport setup, such that even at steady
state energy is transferred between the reservoirs through
the system. To establish a consistent formalism for such a
transport scenario, two fundamental constraints have to be
considered. First, in the thermodynamic limit, the vanishing
energy scales of low-energy excitations lead to a breakdown
of the standard perturbative expansion in the system-bath cou-
pling. Second, the developed framework has to obey the laws
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of thermodynamics, in particular when considering critical
systems as working fluid of heat engines [47,48].

In general, there has been a great effort in developing
techniques to access the strong-coupling regime with master
equations, such as polaron transformations [49–52] and the
reaction coordinate (RC) mapping [53–58]. While the first
approach is capable of addressing quantum-critical systems
[59], its thermodynamic interpretation remains challenging as
system and reservoirs are transformed globally and a clear
separation is not evident. On the other hand, the RC map-
ping comes with well-defined thermodynamic notions [55].
However, when combining it with a secular approximation
to obtain a Lindblad master equation, the approach becomes
questionable when the energy gaps of the (transformed) sys-
tem are comparable to or smaller than the (transformed)
system-reservoir coupling strength.

In this paper, we present a method to overcome this limita-
tion. It allows us to go beyond the perturbative weak-coupling
regime and describe quantum critical systems coupled to
multiple structured heat baths while being thermodynamically
consistent: Within the framework of the RC formalism, parts
of the environment that interact strongly with the system can
be defined as part of a supersystem, which in turn is coupled
to effectively Markovian residual reservoirs [see Figs. 1(a) and
1(b)]. Applying a consecutive polaron transformation only on
the original reservoir parts [see Fig. 1(c)] allows for a pertur-
bative treatment arbitrarily close to quantum-critical points.
Moreover, the steady-state heat flow between supersystem and
reservoirs is well defined and allows us to investigate the
manifestation of QPTs in thermodynamic quantities.

II. PERTURBATIVE TREATMENT OF OPEN QUANTUM
CRITICAL SYSTEMS

A. Quantum critical system interacting with several heat baths

We consider a class of systems, which undergo a QPT
upon changing a control parameter κ in the thermodynamic
limit N → ∞. After appropriate diagonalization, they can be
described by the Hamiltonian

HS =
∑
n�0

En(κ ) |n(κ )〉 〈n(κ )|, (1)
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(a) (b) (c)

FIG. 1. Sketch of the method. (a) A system S is coupled to
multiple heat reservoirs. (b) After local RC mappings, the coupling
to residual reservoirs is mediated by RCs. The new supersystem S′

(shaded region) consists of S and the RCs. (c) The polaron transform
UP, acting solely on original reservoir parts, alters the coupling
between S′ and heat reservoirs while leaving S unchanged, thereby
allowing a weak-coupling treatment across the full phase diagram.

where En(κ ) are the ordered energies and |n(κ )〉 are the
many-particle eigenstates of the system. At least the lowest
many-particle excitation energy E1(κ ) − E0(κ ) vanishes at
the critical point κcr, where the |n(κ )〉 undergo a nonanalytic
transition. Examples of such systems described by HS are the
Dicke model [2,60–62] realized in Bose-Einstein condensates
[6–11], the Lipkin-Meshkov-Glick (LMG) model [63–66] or
spinor Bose-Einstein condensates [13,67], and the quantum
Ising model [1,27] and its quantum simulator realizations
[68–71].

We consider the scenario where the generic quantum-
critical model is interacting with several bosonic heat reser-
voirs ν [see Fig. 1(a)] H ν

B = ∑
kν

ωkν
c†

kν
ckν

with frequencies
ωkν

and bosonic annihilation operators ckν
. The heat baths are

assumed at local equilibrium states with inverse temperatures
βν = (kBT ν )−1. To ensure that the system is thermodynam-
ically stable [72], it is required that the spectrum of the
total Hamiltonian Htot is bounded from below for all values
of the system-reservoir interaction strength. This is manifest
by writing the system-reservoir coupling via a generic di-
mensionless system operator Xν = X †

ν in terms of positive
operators:

Htot = HS +
∑
ν,kν

ωkν

[
c†

kν
+ tkν

ωkν

Xν

][
ckν

+ tkν

ωkν

Xν

]
, (2)

where tkν
∈ R represent emission (absorption) amplitudes

that fix the spectral densities of the reservoirs Jν
0 (ω) =

2π
∑

kν
t2
kν

δ(ω − ωkν
). In the standard weak-coupling ap-

proach (perturbative treatment of the tkν
), the term quadratic

in Xν can be neglected, such that Xν induces transitions be-
tween the unperturbed energy eigenstates of HS (Pauli master
equation), leading to local thermalization in case of just one
reservoir. However, this naive perturbation theory will fail in
the vicinity of the critical point, where the system-reservoir
coupling strength exceeds (at least the smallest) system en-
ergy differences, manifest, e.g., in second-order eigenvalue
perturbation theory. We argue that to maintain thermodynamic
consistency the quadratic term in Xν should generally be kept
in particular near critical points.

B. Reaction coordinate mapping and polaron transformation

We propose to apply two consecutive transformations to
each individual reservoir ν in order to apply weak-coupling
theory while being thermodynamically consistent.

First, the RC mapping [53–56,73–75] extracts a collective
mode bν from the reservoir and introduces it as part of a new
supersystem S′ [see Fig. 1(b)]:

Htot = HS′ +
∑
ν,kν

�kν

[
d†

kν
+ hkν

�kν

(b†
ν + bν )

]

×
[

dkν
+ hkν

�kν

(b†
ν + bν )

]
, (3)

where S′ is described by the Hamiltonian

HS′ = HS +
∑

ν

λν

[
b†

ν + gν

λν

Xν

][
bν + gν

λν

Xν

]
. (4)

The RC mapping is a normal-mode transformation of the
original reservoir modes which is fully determined by the
knowledge of Jν

0 (ω) only [76]. Thus, the RC frequencies
λν > 0, the coupling constants gν ∈ R, and the transformed
residual spectral densities Jν

1 (ω) = 2π
∑

kν
h2

kν
δ(ω − �kν

) are
fixed by the original spectral density Jν

0 (ω) (see Appendix A).
We assume that the residual reservoirs are effectively Marko-
vian, that is, the residual spectral densities are (super) ohmic
and admit a perturbative treatment. If this is not the case, such
mappings can be performed iteratively, which may result in
a chain of RCs [55,77] or more complicated geometries [78]
until the resulting spectral densities are unstructured. Still, the
energy scales of HS′ may become small at κcr in comparison
to any finite residual coupling.

Second, we therefore apply reservoir-specific polaron
transformations U ν

P = exp [−(b†
ν + bν )Pν], where Pν =∑

kν
hkν

/�kν
(d†

kν
− dkν

) [79–83]. These commute mutually
and also with HS [see Fig. 1(c)]. Thereby, the original
system remains unchanged and the total Hamiltonian
(3) takes with UP = ∏

ν U ν
P in the polaron frame

H ′
tot = U †

P HtotUP = U †
P HS′UP +∑

ν,kν
�kν

d†
kν

dkν
the following

form:

H ′
tot = HS′ −

∑
ν

λνP2
ν +

∑
ν

λν (bν − b†
ν )Pν +

∑
ν,kν

�kν
d†

kν
dkν

,

(5)

where under the assumption that the residual reservoir cou-
pling is weak, hkν

/�kν
� 1, we may also drop the quadratic

term in Pν . We observe that the residual reservoirs couple via
their momenta to the RCs, which is inert to trivial displace-
ments. Furthermore, as the polaron transform is unitary, the
energy scales of U †

P HS′UP are just the same as that of HS′ ,
i.e., the effective coupling strength must scale adaptively with
the phase parameter κ . Therefore, we expect that when for
H ′

tot [Eq. (5)] a second-order perturbative treatment in Pν is
applicable away from the critical point it will hold also for
κ ≈ κcr.

We stress the fact that a polaron transform with-
out a prior RC mapping would have mixed system and
reservoir observables, where a thermal state in the po-
laron frame would have a different interpretation in the
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original frame. For the present approach, a perturba-
tive treatment in Pν yields U †

P exp{−βν

∑
kν

ωkν
c†

kν
ckν

}UP ≈
exp{−βνλνb†

νbν} exp{−βν

∑
kν

�kν
d†

kν
dkν

}, and for an ergodic
evolution in the polaron frame the standard thermodynamic
consistency is expected.

C. Lindblad master equation

To illustrate the framework introduced in Sec. II B, we turn
towards bosonizable systems for which the diagonalization of
HS′ [Eq. (4)] can be performed explicitly, i.e., we consider
systems with N constituents that in the thermodynamic limit
N → ∞ can be approximately written as

HS = NEG(κ ) +
∑
n�0

εn(κ )a†
nan (6)

with excitation energies εn(κ ) and bosonic modes an. Assum-
ing that these couple via their position to the reservoirs, we
can insert the bosonization transformations for the coupling
operator

Xν =
∑
n�0

Cnν (κ )
√

N + Dnν (κ )(a†
n + an)/

√
εn(κ ), (7)

where Cnν (κ ) and Dnν (κ ) are general functions. To account for
a macroscopically populated ground state we introduce mean
fields αn ∈ R and γν ∈ R and new operators An and Bν , such
that an = An + √

Nαn and bν = Bν + √
Nγν , and decompose

HS′ in orders of N−1/2, i.e., HS′ = NH0 + √
NH1 + H2 +

O(N−1/2). In order to expand around the correct ground state
in the two phases (normal and symmetry broken) separated by
κcr, one demands that H1 is always equal to zero, which yields
αν = 0 and

γν =
{

0 normal phase

− gν

λν

∑
n�0 Cnν (κ ) symmetry broken phase

. (8)

Then, H0 = EG and the ground-state energy remains un-
changed.

The quadratic Hamiltonian

H2 =
∑
n�0

εna†
nan +

∑
n,ν

λν

[
B†

ν + gνDnν

λν

√
εn

(a†
n + an)

]

×
[

Bν + gνDnν

λν

√
εn

(a†
n + an)

]
(9)

can be diagonalized by an orthogonal transformation U , such
that H2 = ∑

n�0 ε̄n(κ )e†
nen, where we have neglected the zero-

point energy. Hence, after diagonalization,

HS′ = NEG(κ ) +
∑
n�0

ε̄n(κ )e†
nen, (10)

where ε̄0(κ → κcr) → 0. Note that the position of the QPT
remains unchanged as the terms proportional to N in HS

and HS′ are equal. After applying the orthogonal (Bogoli-
ubov) transformation U that diagonalizes HS′ , to the system-
reservoir coupling, the total Hamiltonian in the polaron frame,
H ′

tot = U †
P HtotUP, takes the simple form

H ′
tot ≈ HS′ −

∑
ν,n

[
U ν

n

√
ε̄nλν (e†

n − en)Pν +
∑

k

�kν
d†

kν
dkν

]
,

(11)

where U ν
n denote the entries of U and we have neglected the

term quadratic in Pν (see Sec. II B). Collecting all factors
in a polaron frame spectral density, we see that J ′ν

1(ω) =
(U ν

n )2ε̄nλνJν
1 (ω)/ω2.

As the interaction shows the same scaling behavior as the
system, assuming that ε̄n are nondegenerate away from the
QPT, the Born-Markov secular approximations can be applied
across the full phase diagram. Thus, the reduced system den-
sity matrix (t ) evolves according to a Lindblad-type master
equation,

̇(t ) = −i[HS′ , ] +
∑

ν

Lν

= −i[HS′ , ] +
∑
ν,n

(
F ν

n D[en] + Gν
nD[e†

n]
)
, (12)

with transition rates

F ν
n = U ν

n
2λνJν

1 (ε̄n)

ε̄n

[
nν

B(ε̄n) + 1
]
,

Gν
n = U ν

n
2λνJν

1 (ε̄n)

ε̄n
nν

B(ε̄n). (13)

Here, nν
B(ω) = [exp(βνω) − 1]−1 and D[O] ≡ OO† −

1
2 {O†O, } for any operator O. We stress that the Marko-
vian Lindblad equation for the supersystem captures non-
Markovian effects in the original system. In the long-
time limit (t → ∞) = ⊗n exp(−β̄nε̄ne†

nen)/Zn with individ-
ual partition functions Zn = Tr{exp(−β̄nε̄ne†

nen)}, where the
effective inverse temperature β̄n is related to the emission and
absorption rates by β̄nε̄n = − ln(

∑
ν Gν

n/
∑

ν F ν
n ).

D. Heat transfer statistics and the second law

As the local detailed balance condition Fμ
n Gν

n/Gμ
n F ν

n =
exp[−ε̄n(βν − βμ)] is fulfilled [see Eq. (13)], a transparent
thermodynamic interpretation is possible. Based on the rig-
orous framework of full counting statistics [84] and large
deviation theory [85–89], we obtain the counting variable
χμ

n dependent cumulant generating function of the heat flow
statistics in the long-time limit (t → ∞) of the exchanged
energy between a reference reservoir μ and the supersystem
S′ (see Appendix B):

C∞
μ =

∑
n

⎧⎪⎨
⎪⎩�−

n −

√√√√[
�−

n + f −
μ

(
χ

μ
n
)

2

]2

− f +
μ

(
χ

μ
n
)[

�+
n + f +

μ

(
χ

μ
n
)

4

]⎫⎪⎬
⎪⎭. (14)
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Here, �±
j ≡ ∑

ν (F ν
n ± Gν

n )/2 and f ±
μ (χμ

n )[Fμ
n (eiχμ

n ε̄n − 1) ±
Gμ

n (e−iχμ
n ε̄n − 1)]. The cumulant of order k associated with

the heat flow probability distribution is expressed in terms of
derivatives of C∞

μ [Eq. (14)], that is,

〈〈Q̇k〉〉 =
∑

n

(−i)k
∂kC∞

μ

∂ (χμ
n )k

∣∣∣∣∣
χ

μ
n =0

. (15)

The additive decomposition of the generating function reflects
the fact that in the diagonal frame the bosonic modes act
as independent transport channels generating independent
stochastic events, which eventually renders all cumulants
additive. Furthermore, C∞

μ fulfills a Gallavotti-Cohen symme-
try [90,91] with respect to χμ

n → −i(βμ −∑
ν =μ βν ) − χμ

n ,
which is a direct consequence of the local detailed balance
condition. Therefore, a steady-state fluctuation theorem holds
[84], which relates the probability p({mn}, t ) that a net number
of mn quanta have been transferred along the nth channel
between the reference reservoir μ to the supersystem S′ in a
time t , i.e.,

lim
t→∞

p({mn}, t )

p({−mn}, t )
= exp

⎡
⎣
⎛
⎝∑

ν =μ

βν − βμ

⎞
⎠∑

n

ε̄nmn

⎤
⎦.

(16)

It follows from the fluctuation theorem that at quantum critical
points the (net) heat transfer is blocked through the critical
channel with ε̄n → 0.

From the existence of a fluctuation theorem or via the
use of Spohn’s inequality one can show the non-negativity of
the entropy production rate in a straightforward calculation:
We introduce ν

eq ≡ e−βνHS′ /Zν for which Lν
ν
eq = 0. The

time derivative of the von-Neumann entropy is given by

d

dt
S = −Tr{̇ ln } = −

∑
ν

Tr{Lν ln }. (17)

By use of Spohn’s inequality for each individual reservoir,

−Tr
{
Lν

[
ln  − ln ν

eq

]}
� 0, (18)

and the definition of heat flow coming from reservoir ν,
〈Q̇ν〉 = Tr{HS′Lν}, it can be shown that the second law
holds, i.e., that the entropy production rate is non-negative:

Ṡi = d

dt
S −

∑
ν

βν〈Q̇ν〉 � 0. (19)

This demonstrates the thermodynamic consistency of our
approach. Moreover, the change of energy in the original
reservoir ν, 〈Ḣ ν

B〉, is connected to the change in energy in
the residual reservoir 〈Ḣ ν

B’〉 through the energy change of
the RC, i.e., 〈Ḣ ν

B〉 ≈ 〈Ḣν
B’ + Ḣν

RC〉. At steady state 〈Ḣ ν
RC〉 =

0, such that 〈Ḣ ν
B〉 ≈ 〈U †

P Ḣ ν
B’UP〉. We stress that, without the

RC mapping prior to the polaron transformation, system and
reservoir would be mixed without a clear thermodynamic
interpretation, in contrast to the approach shown here.

III. TRANSPORT THROUGH THE
LIPKIN-MESHKOV-GLICK MODEL

As a specific application of the general theory for bosoniz-
able systems, we investigate the LMG model [63–66], which
describes N two-level systems collectively interacting with an
external field and among themselves, coupled to two reser-
voirs at different temperatures (hot and cold). In terms of col-
lective spin operators Jm = ∑N

n=1 σ (n)
m /2, where m ∈ {x, y, z}

and J± = Jx ± i · Jy with σ (n)
m denoting the Pauli matrix of the

nth spin, the LMG Hamiltonian is given by

HS = −hJz − κ

N
J2

x , (20)

where h is the strength of the magnetic field in the z di-
rection and κ denotes the coupling between the two-level
systems. The scaling of Jx with 1/

√
N ensures a meaningful

thermodynamic limit (N → ∞). The system undergoes a
QPT at κcr = h with nonanalytic ground-state energy den-
sity [64–66,92–94]: For κ < h (normal phase) the system
has a unique ground state, whereas for κ > h the system
exhibits a symmetry-broken phase [4,95] with, e.g., collective
spontaneous polarization and bifurcation of the Jz-expectation
value. In the thermodynamic limit HS can be diagonalized by
a Holstein-Primakoff transformation [38,96] and subsequent
displacement of the bosonic operators [97], yielding HS =
NEG + εa†a [59,66].

The total system including the two reservoirs, hot (ν = h)
and cold (ν = c), is described by Eq. (2) with Xν = Jx/

√
N .

Choosing peaked original spectral densities of the reservoirs
[see inset of Fig. 2(a)],

Jν
0 (ω) = �ν

ω3δ5
ν

[(ω − ω̄ν )2 + δ2]2[(ω + ω̄ν )2 + δ2]2
(21)

results in unstructured spectral densities of the residual reser-
voirs Jν

1 (ω) [see Fig. 2(a)] after the RC mapping (see Ap-
pendix A). The supersystem S′ consisting of the LMG and two
RCs [see Eq. (4)] reads in the diagonal frame HS′ = NEG +∑2

n=0 ε̄ne†
nen, where only ε̄0(κ → h) → 0 [see Fig. 2(b)].

Following the treatment we present in this paper, the

(a) (b)

FIG. 2. (a) Original spectral densities Jν
0 (dashed) of the hot

(ν = h) and cold (ν = c) reservoir and Jν
1 after the RC mapping

(solid) [see Eq. (21)]. (b) Excitation spectrum of the supersystem S′

after the RC mapping consisting of the LMG model and two RCs. At
the critical parameter κcr of the uncoupled LMG model the gap closes
above the ground state marking the QPT. Parameters: �h = 300.0h,
�c = 140.0h, δh = δc = h, ω̄c = 3.5h, and ω̄h = 5.0h.
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(a) (b)

FIG. 3. (a) Steady-state occupation of the excitation modes for
βh = 1.0/h and βc = 1.2/h. The diverging mode occupation 〈e†

0e0〉
indicates the QPT. (b) Steady-state heat flow: At the QPT the heat
flow 〈Q̇0〉 with vanishing excitation energy is blocked and in the
symmetry-broken phase the total heat flow is significantly reduced.
Inset: Second cumulant 〈〈Q̇2〉〉 of the heat flow statistics showing
the same behavior as the average heat flow, especially nonanalytic
behavior at κ = κcr. Other parameters are as in Fig. 2.

steady-state dynamics of the nonequilibrium LMG model are
calculated straightforwardly. Before investigating the trans-
port properties across the QPT, we analyze the system prop-
erties. To this end we look at the mean populations of the
independent channels 〈e†

nen〉 = ∂ ln Z/∂ (−β̄nε̄n), which are
shown in Fig. 3(a). The diverging occupation of the mode
with vanishing excitation energy 〈e†

0e0〉 indicates the QPT.
However, the two additional modes of the supersystem, 〈e†

1e1〉
and 〈e†

2e2〉, are mostly effectively unoccupied, which shows
that close to the quantum critical point the low-temperature
physics of the system is dominated by criticality.

As system observables are often difficult to measure in an
experiment, we also look for signatures of the QPT in the heat
flows and the statistics thereof. The first cumulant with k = 1
represents the average heat flow from the hot reservoir into the
system 〈〈Q̇〉〉 = 〈Q̇〉 = ∑

n〈Q̇n〉. Here, positive values of 〈Q̇〉
indicate energy transfers from the hot bath into the system
and vice versa. Another interesting quantity is the second
cumulant 〈〈Q̇2

n〉〉 = 〈Q̇2
n〉 − 〈Q̇n〉2 measuring the noise of each

channel n. We show both of these quantities in Fig. 3(b)
and its inset, respectively. At the quantum critical point, the
heat transfer along the transport channel with closing energy
gap 〈Q̇0〉 vanishes as already indicated by the steady-state
fluctuation theorem. Since this channel dominates the total
heat flow, also the latter is significantly reduced at the critical
point. Moreover, in the symmetry-broken phase κ > κcr the
ground state is macroscopically occupied, which suppresses
the energy exchange along the system compared to the nor-
mal phase κ < κcr. Furthermore, the second cumulant scales
equally as the first cumulant and also vanishes at the QPT.
This behavior can be observed for all orders of the cumulants
(not shown here), i.e., all cumulants of the heat flow statistics
vanish at κcr.

IV. SUMMARY AND CONCLUSIONS

In this paper we have presented a general method to study
nonequilibrium QPTs which is consistent with the laws of
thermodynamics based on a combination of the RC mapping

and a polaron transformation. This allows us to write the
reduced system dynamics by means of a Lindblad-type master
equation arbitrarily close to quantum critical points and comes
with a clear thermodynamic interpretation. For the specific
example of the LMG model interacting with a hot and cold
thermal reservoir we investigate the cumulants of the heat
transfer statistics, which reflect the QPTs by nonanalytic
behavior at the critical point.

We would like to remark that if one would not write the
total Hamiltonian in terms of positive operators [see Eq. (2)]
but neglect the squared term of Xν the interaction with the
reservoirs would shift the position of the QPT and, moreover,
induce additional phase transitions. However, as shown here
these additional phase transitions are prohibited in the same
way as the diamagnetic term prevents the QPT of the Dicke
model [98–104].

Beyond generic open systems with small or vanishing
energy gaps, the formalism presented here is particularly rel-
evant for quantum critical systems like quantum Ising chains
[44], cold atoms [105], and spinor Bose-Einstein condensates
[13]. Exploring these critical systems is a natural next step,
and with the advances in quantum simulation, structured
reservoirs [106], as well as critical systems [14] appropriate
setups can be engineered to test our predictions. Moreover, our
approach may be extended to systems undergoing topological
phase transitions, which also exhibit an energy gap closing,
like the Su-Schrieffer-Heeger model [107–110], giving rise to
interesting physics to investigate.
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APPENDIX A: REACTION COORDINATE MAPPING

The idea of the reaction coordinate mapping is to introduce
a part of the reservoir as part of an enlarged supersystem. We
follow here the procedure discussed in [53–58]. We postulate
the equivalence (up to a possible shift) of the Hamiltonians
defined in Eqs. (1)–(3). The mapping shall then be achieved
by means of a Bogoliubov transform

ckν
= uν

k0bν +
∑
q�1

uν
kqdqν

+ vν
k0b†

ν +
∑
q�1

vν
kqd†

qν
(A1)

and similar for the creation operator c†
kν

. To maintain the
bosonic character of the new modes, the coefficients uν

kq and
vν

kq are chosen via

uν
kq = 1

2

(√
ωkν

�qν

+
√

�qν

ωkν

)
�ν

kq,

vν
kq = 1

2

(√
ωkν

�qν

−
√

�qν

ωkν

)
�ν

kq,

(A2)
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with the unknown orthogonal transformation �ν obeying∑
q �ν

kq�
ν
k′q = δkk′ . Here, q = 0 maps to the annihilation and

creation operators of the RC.
By inserting the transformation and comparing the terms,

we find expressions for the energy and coupling strength of
the RC:

λ2
ν = �2

0ν
=
∫∞

0 ωJν
0 (ω)dω∫∞

0
Jν

0 (ω)
ω

dω
, g2

ν = 1

2πλν

∫ ∞

0
ωJν

0 (ω)dω.

(A3)

Additionally, the transformed spectral density can be obtained
from the original spectral density by the following transforma-
tion:

Jν
1 (ω) = 4g2

νJν
0 (ω)[

1
π
P
∫∞
−∞ dω′ Jν

0 (ω′ )
ω′−ω

]2 + [
Jν

0 (ω)
]2 . (A4)

Here, P indicates the principal value and it is understood
that Jν

0 (ω) is extended to negative values of ω via Jν
0 (−ω) =

−Jν
0 (ω).
For the specific choice

Jν
0 (ω) = �ν

ω3δ5
ν[

(ω − ω̄ν )2 + δ2
ν

]2[
(ω + ω̄ν )2 + δ2

ν

]2 (A5)

of the original spectral density, the residual spectral density
after the RC mapping can be calculated analytically:

Jν
1 (ω) = 16δ3

νω
3√

δ2
ν + ω̄2

ν

[(
δ2
ν + ω̄2

ν

)2 + ω4 + 2ω2
(
7δ2

ν − ω̄2
ν

)] .

(A6)

Similarly, we find analytic expressions for the energy of
the RC, λ2

ν = δ2
ν + ω̄2

ν , and the coupling strength g2
ν =

�νδ
2
ν/(64λν ).

APPENDIX B: FULL COUNTING STATISTICS AND
LARGE DEVIATION THEORY

We consider systems described by H ′
tot = HS′ + HI +∑

ν H ν
B, where HI = −∑ν,n U ν

n

√
ε̄nλν (e†

n − en)Pν and H̄ ν
B =∑

k �kν
d†

kν
dkν

[see Eq. (5)]. Let us introduce a generalized
density matrix [57]

̄tot({χn}, t ) ≡ Ū ({χn}, t )̄tot(0)Ū †({χn}, t ), (B1)

with factorizing initial density matrix ̄tot(0) = ̄(0) ⊗∑
ν ̄ν

B, where ̄ν
B ∼ e−βνHν

B . Here, we have introduced the
so-called counting fields χn corresponding to the transport
channel n. The modified evolution operator Ū ({χn}, t ) is

related to the usual evolution operator U (t ) corresponding to
Htot by

Ū ({χn}, t ) = exp

(
− i

2
Hμ

B

∑
n

χn

)
U (t ) exp

(
i

2
Hμ

B

∑
n

χn

)
,

(B2)

where μ denotes the reference reservoir. The modified re-
duced density matrix ̄({χn}, t ) = TrB{̄tot({χn}, t )} evolves
according to a generalized master equation [84],

˙̄ =L̄ +
∑

n

[
Fμ

n (eiχn ε̄n − 1)en̄e†
n + Gμ

n (e−iχn ε̄n − 1)e†
n̄en

]
,

(B3)

which can be derived by performing the usual perturbative
expansion up to second order in HI. Here, Fμ

n and Gμ
n are

defined as in Eq. (6). Note that, for χn = 0, ̄ =  and the
standard Lindblad master equation is recovered.

The moment generating function associated to the prob-
ability distribution p(�E ) = p(Et − E0) of two projective
measurements of Hμ

B at time zero with outcome E0 and at time
t with outcome Et is given by [57,84]

Mμ({χn}, t ) = Tr{̄({χn}, t )}

=
∫

d�E
∏

n

e−iχn�E p(�E )

=
∏

n

Mμ(χn, t ), (B4)

where the last equality holds for weak coupling in the parallel
oscillator picture, since all transport channels are uncoupled.
Thus, the statistics of the exchanged energy between the refer-
ence reservoir μ and the harmonic oscillators are completely
independent from each other. In the long-time limit, large
deviation theory applies [85–89] and the moment generating
function tends to [84]

Mμ(χn, t ) → etC∞
μ (B5)

with the (scaled) cumulant generating function (CGF):

C∞
μ = lim

t→∞
ln(Tr{̄({χn}, t )})

t
. (B6)

When investigating transport statistics of nonequilibrium sys-
tems, cumulants usually grow linearly in time [85–89] and it is
more convenient to investigate C∞

μ , which is scaled by the time
t between the two projective measurements. For the model
at hand, i.e., harmonic oscillators independently coupled to
bosonic reservoirs (see main text), the CGF takes the form of
Eq. (7).
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Lett. 35, 432 (1975).
[99] K. Rzazewski, K. Wódkiewicz, and W. Zakowicz, Phys. Lett.

A 58, 211 (1976).
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