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From the pseudogap metal to the Fermi liquid using ancilla qubits
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We propose a new parton theory of the hole-doped cuprates, describing the evolution from the pseudogap metal
with small Fermi surfaces to the conventional Fermi liquid with a large Fermi surface. We introduce two ancilla
qubits per square lattice site, and employ them to obtain a variational wave function of a fractionalized Fermi
liquid for the pseudogap metal state. We propose a multilayer Hamiltonian for the cuprates, with the electrons
residing in the physical layer, and the ancilla qubits in two hidden layers: the hidden layers can be decoupled
from the physical layer by a canonical transformation, which leaves the hidden layers in a trivial gapped state.
This Hamiltonian yields an emergent gauge theory, which describes not only the fractionalized Fermi liquid, but
also the conventional Fermi liquid, and possible exotic intermediate phases and critical points. The fractionalized
Fermi liquid has hole pockets with quasiparticle weight which is large only on Fermi arcs, and fermionic spinon
excitations, which carry charges of the emergent gauge fields.
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I. INTRODUCTION

The structure of the pseudogap metal state in the hole-
doped cuprate superconductors has long been the focus of
much theoretical and experimental attention [1]. In more
recent experiments, it has become clear that the pseudogap
state is present only for a hole doping p smaller than a critical
value pc [2–14]. For p > pc, many observables indicate the
presence of a conventional Fermi liquid (FL) state, with a
large Fermi surface enclosing a volume associated with a hole
density 1 + p. While there have been many theoretical pro-
posals for the pseudogap metal, there is as yet no framework
that can capture the essential physics of both the pseudogap
metal and the conventional Fermi liquid as different mean-
field solutions of the same theory. Such a framework is surely
needed as a starting point for a theory of the mysterious
strange metal found near p = pc.

We present such a framework here. We show that the
introduction of two ancilla qubits per square lattice site leads
to a valuable flexibility in describing possible correlated states
of mobile electrons on the square lattice. It should be noted
that the ancilla qubits are not physical degrees of freedom
that can be directly observed; rather, they are theoretical tools,
which enable us to capture new varieties of entangled states of
the electrons.

We will describe the pseudogap metal as a fractionalized
Fermi liquid (FL*) state [15]. This state has electronlike
quasiparticles around pocket Fermi surfaces enclosing a vol-
ume associated with hole density p. Such small pocket Fermi

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

surfaces can appear even in the absence of any translational
symmetry breaking by charge or spin density wave order.
But compatibility with the Luttinger constraint requires that
there be additional fractionalized spinon excitations carrying
charges of an emergent gauge field [15–17]. Such a FL* state
is compatible with many of the experimental observations
noted above for p < pc, and several theoretical descriptions
have been proposed [18–26]. However, these theories do not
describe the termination of the FL* state followed by the
appearance of a FL state. A SU (2) gauge theory [27–29] has
been proposed to described optimal doping criticality in the
cuprates, but this connects naturally to an algebraic charge
liquid [30] description of the pseudogap metal, in which the
Fermi pockets are initially of spinless fermionic chargons,
which have to bind with spinons to obtain the electronlike
Fermi surfaces of FL* [31].

Our approach with ancilla qubits is illustrated in Fig. 1. We
are interested in the electrons, ciσ , in the physical layer, where
i labels a square lattice site, and σ =↑,↓ is the electron spin.
We use the ancilla qubits in the hidden layers to generate wave
functions and field theories for observables in the physical
layer. The spin operators Si;1, Si;2 act on the qubits in the two
layers. It is convenient (but not required) to represent the spins
by fermions fi;1σ , fi;2σ using

Si;1 = 1
2 f †

i;1σ σσσ ′ fi;1σ ′ , Si;2 = 1
2 f †

i;2σ σσσ ′ fi;2σ ′ (1)

where σ are the Pauli matrices, and there must be exactly one
fermion on each hidden layer site∑

σ

f †
i;1σ fi;1σ = 1,

∑
σ

f †
i;2σ fi;2σ = 1 . (2)

We can now introduce our trial wave functions for the
electrons in the physical layer. We propose a trial Slater
determinant state |Slater[c, f1, f2]〉 for c, f1 and f2 fermions.
Then we project out components of this wave function in
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FIG. 1. A Hubbard model of mobile electrons ciσ of variable
density p in the physical square-lattice layer, coupled to two hidden
square-lattice layers of ancilla qubits (spin-1/2 spins) Si;1 and Si;2.
The lattice sites are labeled by i. We develop a theory with the
exchange interactions J1,2 finite, and take the limit J2 → ∞ of
infinite antiferromagnetic exchange between the hidden layers at the
end.

which the ancilla qubits are locked in a spin singlet on
each site

|s〉 =
∏

i

1√
2

( f †
i;1↑ f †

i;2↓ − f †
i;1↓ f †

i;2↑)|0〉 . (3)

The wave function on the physical layer is

|�[c]〉 =
∑

a

|a〉〈a, s|Slater[c, f1, f2]〉, (4)

where |a〉 is a basis of states in the physical layer. Different
choices for |Slater[c, f1, f2]〉 will lead to different physical
states |�[c]〉. A FL* state is obtained by having the c and
f1 fermions occupy linear combinations of states between the
physical layer and the first hidden layer, while the f2 occupy
states on the second layer. The total fermion density of the c
and f1 layers is 2 − p, and so their band structure can exhibit
hole pockets of volume p in the conventional Luttinger count
(FL* states using an auxiliary band with total fermion density
2 − p have also been discussed earlier [20,32]). Concomi-
tantly the f2 layer realizes the needed fractionalized spinons
of the FL* state. In the FL state, we choose |Slater[c, f1, f2]〉
with decoupled the physical and hidden layers. Then the c
layer, with fermion density 1 − p will have a large holelike
Fermi surface of volume 1 + p, and the hidden layers will
form a trivial gapped insulator.

For analytic progress, we need the Hamiltonian of Fig. 1,
from which we can derive gauge theories. We consider the
Hamiltonian

H = HU + Ha, (5)

where HU is a Hubbard model of electrons ciσ on the sites i of
a square lattice

HU = −
∑
i, j

ti jc
†
iσ c jσ − μ

∑
i

c†
iσ ciσ + U

∑
i

c†
i↑ci↑c†

i↓ci↓

(6)

and Ha describes two hidden layers of ancilla spin S = 1/2
qubits Si;1, Si;2 (see Fig. 1)

Ha = J1

2

∑
i

c†
iσ σσσ ′ciσ ′ · Si;1 + J2

∑
i

Si;1 · Si;2

+ H1(Si;1 ) + H2(Si;2 ), (7)

where H1 represents exchange interactions between the first
hidden layer qubits Si;1 (which we do not specify), and
similarly for H2. When J2 is large, the two ancilla layers will
form a spin gap state; so we can safely integrate out the an-
cilla qubits, and induce near-neighbor exchange interactions
between the ciσ electrons on the physical layer. Alternatively
stated, a canonical transformation decouples the physical and
hidden layers at the cost of additional exchange interactions in
the physical layer. Rather than accounting for these exchange
interactions explicitly, more progress is possible by keeping
the hidden layers alive, and considering possible states and
gauge theories in the expanded Hilbert space. In the end we
can take the J2 → ∞ limit [corresponding to projection onto
the singlet hidden layer state |s〉 in (3)], which reduces the
above model to the standard Hubbard model for the cuprates.
A similar approach using auxiliary degrees of freedom has
been taken by Refs. [33,34] for a description of the bosonic
composite Fermi liquid in the lowest Landau level.

The outline of the rest of the paper is follows. We present
a gauge theory description of phases of H in Sec. II. This
leads to a mean-field description of the FL* and FL phases.
The physical properties of the FL* phase, including its pho-
toemission spectrum, are described in Sec. III. The critical
region between the FL* and FL phases is discussed in Sec. IV,
including a possible intermediate phase, or a direct transition.
Some directions for future research are noted in Sec. V, and
we summarize in Sec. VI.

II. GAUGE STRUCTURE AND MEAN-FIELD THEORY

A. [SU (2)1 × SU (2)2 × SU (2)S]/Z2 gauge structure

The spins in the hidden layers can be represented by the
standard fermionic partons [1] in (1). Naively we can just
form mean-field theories using c, f1, f2. However, this kind of
analysis does not incorporate the large J2. For example, let us
consider mean-field ansatz for which c decouples from f1, f2;
then f1, f2 can form gapless spin liquids. However, in the
large J2 region, the spin carried by f1 and f2 must be gapped.
This is similar to a Mott gap in spin channel. In the familiar
Hubbard model, we use slave boson theory to describe the
Mott transition and incorporate the charge gap at large U .
Here we can use a similar slave spin approach to incorporate
the spin gap at large J2.

Therefore, we perform a further fractionalization of f1 and
f1 in (1):

fi;aσ = Ri;σ σ̃ f̃i;aσ̃ , (8)

where a = 1, 2 and the slave spin R is a SU (2) matrix, similar
to that introduced in Ref. 27. Basically this means the spin
index σ̃ carried by f̃ can be freely rotated by a SU (2) gauge
transformation: (

f̃i;a↑
f̃i;a↓

)
→ Ui;S

(
f̃i;a↑
f̃i;a↓

)
, (9)

where Ui;S ∈ SU (2). Accordingly the slave spin transforms as
Ri → RiU

†
i;S . We label this gauge transformation as SU (2)S .

See also Appendix for further discussion on the origin of this
expanded gauge structure.

It is well known [1] that the parton representation for each
layer in (1) has another SU (2) gauge transformation in the
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particle-hole channel:(
f̃i;a↑
f̃ †
i;a↓

)
→ Ui;a

(
f̃i;a↑
f̃ †
i;a↓

)
, (10)

where a = 1, 2 and Ui;a ∈ SU (2). The Ui;1 and Ui;2 are two
independent gauge transformations for f̃1 and f̃2, respectively,
which commute with Ui,S [35]. The slave spin Ri remains
unchanged under both Ui;1 and Ui;2. We label these two gauge
transformations as SU (2)1 and SU (2)2, respectively. In total
the gauge structure of our parton theory in terms of f̃i;aσ is
(SU (2)1 × SU (2)2 × SU (2)S )/Z2. Here we need to mod out
the transformation: f̃i;aσ → − f̃i;aσ . The combined transfor-
mations in (9) and (10) are similar to the O(4) fractionalization
of Ref. [35], but the SU (2)S transformations for a = 1, 2
fermions have been tied to each other by the large J2.

The fermions f̃1, f̃2 are neutral under both physical charge
and spin probes because they couple to the [SU (2)1 ×
SU (2)2 × SU (2)S]/Z2 gauge fields. If the boson R is gapped,
and there is no further Higgs term, in the strong gauge field
coupling limit f̃1, f̃2 will be confined to form on-site spin
singlets. A more interesting possibility can be obtained by
a mean-field ansatz in which we Higgs the gauge field by
coupling f̃a;σ to the physical electron c: we will explore such
an ansatz in the remainder of the paper.

B. Mean-field theory

Let us define C = (c↑, c↓, c†
↓,−c†

↑)T , �1 =
( f̃1↑, f̃1↓, f̃ †

1↓,− f̃ †
1↑)T and �2 = ( f̃2↑, f̃2↓, f̃ †

2↓,− f̃ †
2↑)T .

We define ρa and μa as Pauli matrices acting on the spin and
particle-hole channels, respectively. Then the SU (2)S gauge
transformation Ui;S is generated by ρa, and acts on both �1

and �2. The SU (2)1 gauge transformation Ui;1 is generated
by μa, and acts only on �1. Similarly, the SU (2)2 gauge
transformation Ui;2 is generated by μa and acts only on �2.
In this basis, the gauge transformations Ui;1, Ui;2, and Ui;S are
4 × 4 matrices.

After condensation of appropriate Higgs fields, we obtain
our proposed mean-field theory:

HM =
∑

i

(C†
i Bi;1�i;1 + H.c. + �

†
i;1Bi;2�i;2 + H.c.)

+ HC + H1 + H2 + HR, (11)

where Bi;1 and Bi;2 are 4 × 4 matrices. The Hamiltonian HC is
the bare kinetic term for physical electron c. The Hamiltonians
H1 and H2 are mean-field ansatzes for �1 and �2 which we
will specify later. The Hamiltonian HR is the ansatz for the
slave spin Ri; at large J2 limit, we can assume R is massive and
〈Ri〉 = 0 by invariance under physical global spin rotations.

Under the [SU (2)1 × SU (2)2 × SU (2)S]/Z2 gauge trans-
formation, Bi;1 and Bi;2 transform as

Bi;1 → Bi;1U
†
i;1U

†
i;S

Bi;2 → Ui;SUi;1Bi;2U
†
i;2U

†
i;S. (12)

Note that the Ui;a commute with the Ui;S [35], and so their
ordering is unimportant.

We also have a global U (2)C symmetry corresponding to
charge conservation and spin rotation. In the basis of C, the

U (1) part is generated by μz while the SU (2) spin rotation
is generated by ρ. Under this global U (2)C transformation
UC , Ci → UCCi, Bi;1 → UCBi;1, while B2, �1, �2 remain un-
changed. Hence Bi;1 carries both physical charge-spin and
gauge charges.

The mean-field characterizations of the phases are

FL∗ : 〈B1〉 = �ρ0 ⊗ μz, 〈B2〉 = 0

FL : 〈B1〉 = 0, 〈B2〉 = �′ρ0 ⊗ μz, (13)

where � and �′ are real numbers. Here we chose a specific
gauge. Equivalent ansatzes can be obtained through gauge
transformations. In the FL phase, 〈B2〉 
= 0 does not need to
be put by hand; once 〈B1〉 = 0 and 〈Ri〉 = 0, gauge fluctuation
can confine �1 and �2 automatically, which is equivalent to
the effect of nonzero 〈B2〉.

The condensate 〈B1〉 = �ρ0 ⊗ μz Higgses the [SU (2)1 ×
SU (2)2 × SU (2)S]/Z2 gauge fields (the hopping terms in H1

and H2 also Higgs parts of the gauge symmetry even with
〈B1〉 = 0). In a more precise language, it locks the SU (2)C ⊂
U (2)C background field to the internal gauge fields corre-
sponding to SU (2)S . Thus the spin index σ̃ carried by f̃1σ̃

and f̃2σ̃ can now be identified as a physical spin index. The
internal U (1) gauge field generated by μz in SU (2)1 is locked
to the physical electromagnetic field; after the condensation of
B1, f̃1 can be viewed as electron and f̃2 can be identified as a
spinon. The fermion f̃2 is still charge neutral because SU (2)2

is not locked to the physical background field.

III. PROPERTIES OF THE PSEUDOGAP METAL

In this section we provide details of the FL* mean-field
ansatz for the pseudogap metal in the underdoped region and
discuss its properties. When 〈B1〉 = �ρ0 ⊗ μz, 〈B2〉 = 0, we
have the following mean-field theory:

HM = Hc, f̃1
+ Hf̃2

. (14)

The Hamiltonian Hc, f̃1
describes the electron Fermi surface

while Hf̃2
describes the phase of the spinon f̃2. Small Fermi

surfaces with Luttinger volume AFS = p/2 can be obtained by

Hc, f̃1
=

∑
i j

(−tc;i jc
†
iσ c jσ + t1;i j f̃ †

i;1σ f̃ j;1σ + H.c.)

−μc

∑
i

c†
i;σ ci;σ − μ1

∑
i

f̃ †
i;1σ f̃i;1σ

+�
∑

i

(c†
i;σ f̃i;1σ + H.c.), (15)

where μ1 is added to fix n f̃1
= ∑

σ 〈 f̃ †
i;1σ f̃i;1σ 〉 = 1, and μc

fixes nc = 1 − p. For the hopping parameters tc;i j , we use
t = 1, t ′ = −0.22, t ′′ = 0.19, which can reproduce the shape
of the Fermi surface in the overdoped regime. The hopping
parameters for f̃1 should be determined by minimizing the
energy for the wave function in (4). Alternatively, we can also
view them as phenomenological parameters and fit them from
experimental data. Here we choose t1 = 1, t ′

1 = −0.1, t ′′
1 =

0.1 for the purpose of illustration. In practice, the hopping
parameters t1;i j can also have dependences on doping level
p. Later we will provide an intuitive explanation why the
hoppings of f̃1 have the opposite sign to that of c.
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FIG. 2. Spectral function A(ω = 0, k) from mean-field theory at various doping levels. kx and ky are in unit of 2π

a . In (a)–(c), red line is
dominated by Ac(ω = 0, k) while blue line is dominated by Af̃1

(ω = 0, k). In (d)–(f) we only show Ac(ω = 0, k), which clearly shows Fermi
arc at p < pl ≈ 0.19. At pl ≈ 0.19, there is a Lifshitz transition.

For the spinon f̃2, we use the familiar d wave pairing ansatz
[1]:

Hf̃2
= −t2

∑
〈i j〉

f̃ †
i;2 f̃ j;2 +

∑
i,μ̂=x,y

�μ̂(εσσ ′ f̃ †
i;2σ̃ f̃ †

i+μ̂;2σ̃ ′ + H.c.),

(16)

where, �x̂ = −�ŷ = �. This ansatz is equivalent to the stag-
gered flux ansatz, and the spinon f̃2 is in a U (1) Dirac spin
liquid phase.

The gap at the antinode is opened by � 
= 0. We
choose to use �(p) = 0.25

√
0.23 − p. Then we can calculate

spectral densities Ac(ω, k) = (1/π )Im〈c†(ω, k)c(ω, k)〉 and
A f̃1

(ω, k) = (1/π )Im〈 f̃ †
1 (ω, k) f̃1(ω, k)〉. We show plots of

the calculated spectral densities in Fig. 2. Between pl ≈ 0.19
and pc = 0.23, the antinode is not gapped even if � 
= 0.
Instead, there is one-hole Fermi surface dominated by c and
one electron pocket dominated by f̃1. The total Hall number is
close to p at high temperature1 and this region still belongs to
the pseudogap phase. When we decrease p below pl , there is a
Lifshitz transition and the Fermi surfaces are reconstructed to
four small hole pockets centering at node KN = (±π

2 ,±π
2 ).

For each pocket, one side is dominated by f̃1 and thus has
almost vanishing spectral weight in terms of c. As a result,
only Fermi arcs are visible in an ARPES measurement. Note

1At low temperature it depends on the scattering rate of c and f̃1.

also the similarity of Fig. 2 to the STM observations in
Refs. [4,5].

In Fig. 3 we show Ac[ω, k = (π, ky)]. We define antinode
to be at KAN = (π,±δ), which separates the nc(k) = 1 and
nc(k) = 0 regions along the cut of kx = π . Then at k =
KAN , Ac(ω, KAN ) has a peak at ω = −�. Here the sharp
quasiparticle peak at ω = −� is an artifact of the mean-field
calculation, which ignores gauge fluctuation. Even inside the
pseudogap phase, the mass of the Higgs gauged fields is at
order of � ∼ �. For high-energy region |ω| > �, gauge fluc-
tuations can not be ignored and may completely destroy the
quasiparticle peak at antinode. In contrast, around the node,
the Fermi arc is at zero energy and the gauge fluctuations do
not have strong influences on spectral function here.

We define � as the gap of the antinode. The dependence of
� and � on the doping level is shown in Fig. 4. The doping
pc is the true quantum critical point QCP at the end of the
pseudogap phase. For our parameters, the antinode gap �

onsets at a smaller doping pl through a Lifshitz transition. In
slightly overdoped region pc < p < pd , there may be ghost
Fermi surfaces decoupled from the Fermi liquid, which get
confined and disappear at a larger doping pd .

A. Physical meaning of auxiliary fermions

At the J2 → ∞ limit, the wave function of (4) can be
written as

|�〉 = (〈s|Slater[c, f̃1]Slater[ f̃2]〉) |s〉 , (17)
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FIG. 3. Spectral function Ac[ω, k = (π, ky )] calculated from mean-field theory at various doping levels. The doping is (a) p = 0.15; (b) p =
0.19; and (c) p = 0.21. In ARPES only the ω < 0 region can be measured at low temperature. Because of the gauge fluctuations at high energy,
the true spectral function may be quite different and no sharp quasiparticle peak exists.

where |s〉 = ∏
i( f̃ †

i;1↑ f̃ †
i;2↓ − f̃ †

i;1↓ f̃ †
i;2↑)/

√
2|0〉. Slater[c, f̃1] is

the ground state of Hc, f̃1
in Eq. (15). Slater[ f̃2] is the ground

state of Hf̃2
in (16).

The above wave function is a state purely in the Hilbert
space of the physical layer. Thus f̃1 and f̃2 should correspond
to physical degrees of freedom. A natural question is: what
is the physical meaning of these auxiliary fermions inside
the physical Hilbert space? To gain intuition, let us look
at the zero doping case first. In this case, � can gap out
both c and f̃1 and we have a Mott insulator. Therefore we
should interpret � as Mott gap. The � condensate binds
electron c† to hole f̃1, and so we should view f̃1 as creation
operator for a correlation hole. This correlation hole may be
quite nonlocal and should not be confused with on-site hole
operator ci. In a certain sense, the physics is similar to that of
fractional quantum Hall effect (FQHE). In the FQHE system,
because of Coulomb interaction, electron also binds with its
correlation hole (also called a vortex) and only the bound
state (a composite fermion) can move coherently. In our case,

FIG. 4. Phase diagram in T − x space. We choose � =
0.25

√
0.23 − p. � is calculated from mean-field theory and is in

unit of t = 1. The dashed line is drawn by hand to show the other
crossover line of the quantum critical region.

the Hubbard U also favors the binding between electron and
correlation hole, which causes Mott localization. Unlike the
FQHE, here in (15) we use a BCS description of the exciton
binding instead of viewing the exciton as the fundamental
particle. The exciton binding means that the exciton c† f̃1

moves coherently, and thus the hopping of f̃1 should be similar
to that of c†. Thus it is natural that the hopping of f̃1 has the
opposite sign to that of c.

At zero doping, c, f̃1 are gapped and generate the upper
Hubbard band, and the lower Hubbard band for the Mott
insulator. The fermion f̃2 can be identified as spinon at low
energy. At small doping p, the Mott gap does not close
immediately and the doped hole just enters the lower Hub-
bard band, and forms small hole pockets. In this sense, the
pseudogap is inherited from the Mott gap of the undoped
parent compound. This picture is illustrated in Fig. 5. If the
spinon part is in a spin liquid phase as we assume here, the
phase is a fractionalized Fermi liquid (FL*). FL* phase has
been proposed before [15,21,23], but our construction is, as
far as we know, the first theory to describe the FL* phase fully
in mean-field level and naturally explain the observed Fermi
arcs. Another advantage of our theory is that the spinon part
explicitly decouples from the hole pockets. Here we assume
the spinon band f̃2 forms the U (1) Dirac spin liquid. However,
Neel ordered phase at small doping is also possible and can
be viewed as descendant of the Dirac spin liquid. In principle,

FIG. 5. An illustration of the pseudogap metal in our theory.
The red dashed line is the chemical potential. c, f̃1 form the upper
Hubbard band and the lower Hubbard band of the Mott insulator.
The chemical potential moves from inside the Mott gap to the lower
Hubbard band upon hole doping, resulting in small hole pockets. f̃2

is the neutral spinon band, which decouples from the hole pockets.
For cuprate we assume f̃2 forms the famous U (1) Dirac spin liquid.
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the spinon part can provide additional contributions to thermal
transport. Actually, the recent observed giant thermal Hall
effect in the pseudogap metal region [36] may be naturally
attributed to the Dirac spin liquid part of this FL* phase. We
will explore this aspect in the future.

IV. CRITICAL THEORY

In this section we provide the theory at the critical point
pc, where a nonzero � onsets. At the critical point, the
Higgs condensate B1 fluctuates along the manifold gener-
ated by the gauge transformations. The hopping terms for
f̃1 and f̃2 in (15) and (16) break the [SU (2)1 × SU (2)2 ×
SU (2)S]/Z2 down to [U (1)1 × U (1)2 × SU (2)S]/Z2. Basi-
cally there is no gauge transformation rotating a parti-
cle to a hole. As a consequence, the fluctuation of B1 is
generated by a U (2) = [U (1)1 × SU (2)S]/Z2 transformation.
We define C̃i = (ci;↑, ci;↓)T , �̃i;1 = ( f̃i;1↑, f̃i;1↓)T and �̃i;2 =
( f̃i;2↑, f̃i;2↓)T . We define the U (1) gauge fields for U (1)1 and
U (1)2 as a1 and a2. The SU (2)S gauge field is labeled as α.

The critical theory is

L = LC + L�1,a1,α + L�2,a2,α + LB,a1,α

+ [C̃†(τ, x)B(τ, x)�̃1(τ, x) + H.c.], (18)

where B(τ, x) is a 2 × 2 matrix parameterized as B1(τ, x) =
�(τ, x)U (τ, x). Here �(τ, x) is a complex field and U (τ, x)
is a SU (2) matrix field.

The Lagrangian LC is the action for the fermi liquid theory
of physical electron. L�2,a2,α is the action for the spinon cou-
pled to [U (1)2 × SU (2)S]/Z2 gauge field. For our Dirac spin
liquid ansatz, it has N = 2 Dirac fermions in the fundamental
representation coupled to the U (2) gauge field.

The theory for the critical boson B is

LB,a1,α = 1

gB

∣∣∂μBαβ − a1
μBαβ − αa

μBαβ ′ρa
β ′β

∣∣2 − m|Bαβ |2,
(19)

which is a nonlinear σ model coupled to U (2) gauge field. We
used Einstein summation for α, β, β ′ =↑,↓. The fermion �1

forms a Fermi surface and couples to both a1 and α:

L�1,a1,α = �
†
1

(
∂τ − a1

0 − αa
0ρ

a
)
�1

− h̄2

2m∗ �
†
1

(
∂i − a1

i − α1
i ρ

a
)2

�1. (20)

The quantum critical point is tuned by the mass term m
for the critical boson. At m < 0, 〈B〉 = �ρ0 and this is a FL*
phase. When m > 0, �̃1, and �̃2 decouple from the physical
electron. In this case �̃1 forms ghost a Fermi surface, which
couples to neither charge nor spin probes. �̃1 couples to a
U (1) and a SU (2) gauge field. It is known that U (1) gauge
field suppresses pairing, while SU (2) gauge field induces
pairing [37]. Thus it is not clear whether this ghost Fermi
surface is stable or not. It can certainly be stable and survive
until a larger doping pd > pc. If the ghost Fermi surface is
unstable with infinitesimal m > 0 but is stable at the m = 0
point, there is hope to have a direct transition between the
FL* phase and the FL phase. It is also possible that the ghost
Fermi surface is not stable to pairing even at m = 0. The
pairing of f̃1 will also induce pairing for physical electron

c through the coupling C†B�. In this case the QCP will be
hidden inside a superconductor dome and the superconductor
Tc may be enhanced at m = 0 because of the SU (2)S gauge
field. In any case, our theory implies that there is a ghost
Fermi surface coexisting with the physical Fermi surface in
the strange metal region and the density of states (DoS)
should be significantly larger than that of the overdoped
Fermi liquid. A recent experimental measurement of specific
heat indeed found that γ = C/T close to critical region is
almost four times larger that that of the overdoped FL [9].
An independent measurement of the effective mass is needed
to subtract the contribution from the Fermi liquid part and
test the existence of ghost Fermi surface. The ghost Fermi
surface can also give an contribution to thermal conductivity,
in addition to that from the Fermi liquid part. However, the
scattering of the ghost Fermi surface by gauge fields may
make its thermal conductivity much smaller than that from the
Fermi liquid part. Thus it is not clear whether the violation of
the Wiedemann-Franz law is significant enough to be easily
detected in the experiments.

V. FUTURE DIRECTIONS

There are several directions to generalize our theory. In this
paper we restricted our analysis to the symmetric FL* phase,
but it is easy to incorporate symmetry breaking orders. For
example, we can let the ansatz of f̃1 have nematic order or
loop current order. In this case, the nematic order or loop
current order will onset when � 
= 0, and coincides with
the onset of the pseudogap phase. However, the symmetry
breaking order is just a byproduct of the pseudogap phase
and does not play any essential role. Alternatively, f̃2 can
be put in an ansatz with antiferromagnetic order. Thus the
theory describes evolution from an antiferromagnetic metal
with small Fermi surfaces towards the Fermi liquid phase with
large Fermi surface. In contrast to the standard Hertz-Millis
theory of antiferromagnetic critical point, this theory allows
a jump of carrier density across the critical point and may
be relevant for the quantum critical point in heavy fermion
systems.

Our framework can also be easily generalized to SU (N )
Hubbard model with any N . At integer filling nc, there is a
Mott insulator with nc electrons per site. We also introduce an
auxiliary fermion f̃1 at density n f1 = N − nc and an auxiliary
fermion f̃2 with density n f̃2

= nc. The fermions f̃1 and f̃2

can again form trivial SU (N ) singlet per site, and there is a
U (1)1 × U (1)2 × SU (N )S gauge structure. Then upon doping
at filling n = nc − x, we can have a coupling like −�c†

α f̃1α ,
which can lead to small Hall number ηH = −x. The fermion
f̃2 can be viewed as a spinon, and be put in spin liquid phase
or ordered phase. This implies that pseudogap metal is a quite
universal phenomena upon doping a generic Mott insulator.
Recently an approximate SU (4) Hubbard model is shown to
be realized in graphene moiré superlattice [38,39] and thus
this generalized theory may be relevant there.

VI. SUMMARY

We have proposed a new framework for describing the
pseudogap phase obtained from doping a Mott insulator,
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which can also be extended towards understanding its evolu-
tion towards the conventional Fermi liquid at larger doping.
We showed that the use of ancilla qubits allows us to ad-
dress the complete doping evolution in a single mean-field
framework, which has not been possible in previous work.
We applied our theory to the hole doped cuprates. At small
doping, we provide a simple parton mean-field theory of the
fractionalized Fermi liquid (FL*) with small Fermi surfaces
and reproduce the Fermi arc in ARPES experiments. We also
provide a critical theory at the end of the pseudogap phase
across which the carrier density jumps from p to 1 + p. Our
theory finds a ghost Fermi surface close to the optimal doping
which should significantly enhance the density of states.

Finally, we note the relationship of the present gauge
theory of optimal doping criticality to a recent SU (2) gauge
theory [26,40] of the same regime. The common features are a
SU (2)S gauge field and a large Fermi surface of gauge-neutral
electrons cσ . The differences are that the other theory [26,40]
has (i ) multiple Higgs fields that transform in the adjoint of
SU (2)S , (ii ) the Higgs fields transform nontrivially under the
space group of the square lattice, (iii ) bosonic spinon excita-
tions, which remain gapped across the transition. In contrast,
our present theory has (i ) a single Higgs field that transforms
as a SU (2)S fundamental, and also under a separate emergent
U (1) gauge field, (ii ) the Higgs fields is also a fundamental
of the global spin rotation SU (2) and the electromagnetic
U (1), (iii ) there are gapless ghost fermionic excitations;
which carry neither spin nor charge, but which carry the
charges of the SU (2)S gauge field, the emergent U (1) gauge
field, and another SU (2)2 gauge field. For our present theory,
it is possible to take a linear combination of the emergent
and electromagnetic U (1)’s and transfer the electromagnetic
charge from the Higgs field to a ghost fermion [41].
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APPENDIX: CONSTRAINTS AND GAUGE STRUCTURE

We make some additional comments here on the origin
of the [SU (2)1 × SU (2)2 × SU (2)S]/Z2 gauge structure. The
complete constraints from the single occupancy of the hidden
layers are [generalizing (2)] [1]:∑

σ̃

f̃ †
i;1σ̃ f̃i;1σ̃ = 1 ,

∑
σ̃

f̃ †
i;2σ̃ f̃i;2σ̃ = 1,

∑
σ̃ σ̃ ′

εσ̃ σ̃ ′ f̃i;1σ̃ f̃i;1σ̃ ′ = 0 ,
∑
σ̃ σ̃ ′

εσ̃ σ̃ ′ f̃i;2σ̃ f̃i;2σ̃ ′ = 0. (A1)

Writing ψi;a = ( f̃i;a↑, f̃ †
i;a↓)T , these constraints as the vanish-

ing of the Nambu pseudospin operator for each i and a = 1, 2
(see also Ref. [42])

T i;a = 1
2ψ

†
i;aσψi;a = 0. (A2)

So (A1), (A2) contain a total of six real constraints on each
lattice site i. In the limit J2 → ∞, the spins in the hidden
layers are projected onto singlets on each site, and so we have
three additional constraints

Si;1 + Si;2 = 0, (A3)

after replacing the fσ in (1) by f̃σ̃ . We note here that these nine
constraints per site correspond precisely to the nine generators
of the [SU (2)1 × SU (2)2 × SU (2)S]/Z2 gauge symmetry.

This pseudospin operator in (A2) transforms as an adjoint
under SU (2)1 × SU (2)2, and so its vanishing is maintained
under these transformations. The expressions in (A1) are
explicitly spin rotation invariant, and so are also invariant
under the SU (2)S transformation in (9).

Another feature of the SU (2) gauge transformation in
Ref. [1] is that it leaves the spin operator invariant. So (A3)
is invariant under SU (2)1 × SU (2)2. Finally, we note that the
SU (2)S spin rotation in (9) performs an adjoint rotation of
(A3) in spin space, and so the vanishing of the total spin per
site is also obeyed after the SU (2)S transformation.
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