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Even-odd effect and Majorana states in full-shell nanowires
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Full-shell nanowires (semiconducting nanowires fully coated with a superconducting shell) have been recently
presented as an alternative means to create Majorana zero modes. In contrast to partially coated nanowires,
it has been argued that full-shell nanowires do not require high magnetic fields and low densities to reach a
putative topological regime. Here we present a theoretical study of these devices taking into account all the basic
ingredients, including a charge distribution spread across the section of the nanowire, required to qualitatively
explain recent experimental results (Vaitiekėnas et al., arXiv:1809.05513). We derive a criterion, dependent on
the even-odd occupation of the radial subbands with zero angular momentum, for the appearance of Majorana
zero modes. In the absence of angular subband mixing, these give rise to strong zero-bias anomalies in tunneling
transport in roughly half of the system’s parameter space under an odd number of flux quanta. Due to their
coexistence with gapless subbands, the zero modes do not enjoy generic topological protection. Depending
on the details of subband mixing in realistic devices, they can develop a topological minigap, acquire a finite
lifetime, or even be destroyed.

DOI: 10.1103/PhysRevResearch.2.023171

Majorana quasiparticles are localized zero-energy exci-
tations, usually arising due to the nontrivial topology of
a superconducting bulk [1–9]. Topological protection, to-
gether with the non-Abelian braiding statistics of Majoranas,
forms the basis of topologically protected quantum com-
puting [2,10,11]. This prospect has spurred a great deal of
effort in recent years towards their creation and manipulation
in various solid-state platforms [12–16]. Amongst the most
developed is the so-called Majorana nanowire [17–19], a
proximitized semiconducting nanowire partially coated with
a superconductor along its length. The device was designed
to realize the Oreg-Lutchyn model [20,21], which predicts the
emergence of one-dimensional (1D) topological superconduc-
tivity [2] and protected Majorana zero modes under a strong
Zeeman field at low carrier densities. The superconducting
coating of the device is limited to some facets of the nanowire
to allow depleting the nanowire carrier density with a gate
[22–24], while still preserving a good proximity effect from
the superconductor [25,26]. Majorana-like signatures, e.g.,
zero-bias anomalies (ZBAs) in transport spectroscopy, have
been repeatedly reported in these systems [19]. Despite such
promising results, the search continues for alternative plat-
forms or detection schemes [27–45] where Majoranas could
also be engineered and manipulated.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

A recent experiment [46] reported on an innovative type of
device, known as a full-shell Majorana nanowire, that appears
at first sight to be a minor variation of the Majorana nanowire.
The term full shell refers to the superconducting coating, that
is applied on all facets of the nanowire instead of just a few. A
full coating prevents external gating of the device as external
electric fields can be expected to be totally screened in the
nanowire bulk. The full-shell geometry, however, also enables
new possibilities, particularly the creation of superconduct-
ing vortices around the nanowire axis. Under a longitudinal
magnetic flux �, the order parameter develops an “n-fluxoid,”
� = |�|einφ , i.e., a winding n of its phase with angle φ around
the nanowire axis, where n = ��/�0� is the closest integer to
� normalized to the flux quantum �0 [47–50]. Furthermore,
the Little-Parks (LP) effect [50,51] arises, whereby the su-
perconducting gap |�| becomes suppressed (even completely
in the “destructive” regime [52,53]) around half-integer flux.
It was found experimentally [46] that, in the presence of an
odd-n fluxoid, a Majorana-like ZBA arises in the nanowire
at magnetic fields much smaller than in partial-shell devices.
It was furthermore found to remain robust for any magnetic
flux throughout the “first lobe” centered around �/�0 ≈ 1;
see Fig. 1(a).

As shown in Ref. [54], a hollow version of the nanowire
can be mapped analytically to the Oreg-Luthyn model, which
could then sustain topologically protected states without the
need of a Zeeman field, an essential ingredient in the original
Oreg-Lutchyn proposal [20,21]. In such case, however, the
corresponding Majorana zero modes only survive near the
edge of the odd lobes, see Figs. 1(d) and 1(e), but not near
the center of the lobe, unlike in the experiment. The theory
analysis also showed that the more realistic case of a solid
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FIG. 1. (a) Experimental results for differential tunneling con-
ductance dI/dV vs bias voltage V and magnetic flux � (or equiva-
lently magnetic field B) into a solid-core full-shell superconductor-
semiconductor nanowire in the destructive Little-Parks regime, taken
from Ref. [46]. Zero-bias anomalies, revealing the presence of zero
modes in the LDOS, are observed in the first Little-Parks lobes
with n = ±1 fluxoid around the shell. (b),(c) Numerical simula-
tion of the local density of states (LDOS) (in arbitrary units) in
semi-infinite solid-core full-shell nanowires, both in the destructive
(b) and weak/moderate (c) Little-Parks regime, showing similar
phenomenology. Zero modes are absent around integer flux in sim-
pler hollow-core full-shell nanowires (d),(e). Simulation parameters:
� = 0.2 meV, α = 20 meV nm; (b),(c) λN = 38 nm, λS = 35 nm,
R = 80 nm, and R2/(dξ ) = 1.72 (b) and 4.35 (c); (d),(e) λN = λS =
61 nm, R = 43, d ≈ 0, and R/ξ = 0.47 (d) and 0.67 (e).

full-shell nanowire can also exhibit a topological phase. Its
parameter window, however, was found to be very small and
restricted to low densities, at least in the case of a pristine
nanowire with perfect circular symmetry, and would require
fine control of its density to be realized. Away from this
small window, it was shown that the system is gapless, due
to the presence of ungapped subbands with higher angular
momentum components. An open question thus remains as
to the nature of the experimental ZBAs, that, surprisingly,
required no fine tuning of gates or field.

In this work we address this question by studying the
spectral properties of more general full-shell nanowires with
a solid core, generalizing previous results to the realistic case
in which charge density is spread across nanowire section.
We find that unprotected but strong Majorana-like ZBAs
arise from the sector with lowest angular momentum mj =
0, embedded in a gapless mj �= 0 background. Their emer-
gence results from a nontrivial topology of the mj = 0 sector
when the occupation of the corresponding normal-state radial
subbands is odd. We compute the system’s phase diagram,
which clearly reveals this even-odd effect, with ZBAs present
throughout a substantial fraction of parameter space. We
further demonstrate that ZBAs persist across odd lobes. Our
spectroscopy simulations shows a marked similarity to the
experimental observations without the need of fine tuning.
The resulting Majorana states are however unprotected against
general subband-mixing perturbations (from, e.g., interface
disorder or a noncircular nanowire section or shell), since
they coexist with a gapless background, as also noted in
Ref. [54]. We explore here their fate in the presence of angular
mode mixing. Depending on the mixing details, we find a
variety of possible behaviors, including the development of
a trivial or a nontrivial gap, a splitting or a broadening of the
zero mode into a delocalized quasibound Majorana state. We
conclude by commenting on possible alternative scenarios for
the observations.

Model. We first develop the simplest description of a solid
semiconducting nanowire of radius R, oriented along the z
direction, and fully coated with a conventional superconductor
of thickness d . The Fermi energies of the two materials are de-
noted by μN and μS respectively, with μS � μN . The associ-
ated Fermi wavelengths are denoted by λN,S = h̄/

√
2m∗μN,S ,

with m∗ the effective mass (assumed uniform for simplicity).
When the nanowire core is contacted to the superconducting
shell, μ(r) will in general acquire self-consistent screening
corrections. We assume instead the simple approximation
μ(r < R) = μN , μ(r > R) = μS . While the chemical poten-
tial is piecewise contact, the resulting charge density is not,
acquiring a nontrivial radial profile that affects the local
density of states (LDOS) measured by a tunnel probe. Sim-
ilarly, we assume |�(|r| < R)| = 0, |�(r > R)| = |�|. The
dependence of |�| with flux � is incorporated from the LP
Ginzburg-Landau theory results, see Appendix A, whose high
accuracy has been recently established [55]. The relevant spin-
orbit Rashba coupling inside the nanowire is radial, α(r) ‖ r̂,
and is much smaller in the superconductor than in the semi-
conductor. We approximate α(r < R) = α r

R r̂, α(r > R) = 0
[56–58]. The section of the nanowire is assumed circular for
the moment, so that subbands have a well defined total angular
momentum mj . The three-dimensional Nambu Hamiltonian
for this model can be written in cylindrical coordinates as

H =
[

(p + eA)2

2m∗ − μ(r) + α(r) · σ × [p + eA(r)]

]
τz

+ σyτy|�(r)|einφ, (1)

where σi are Pauli matrices for spin, and τi for the electron-
hole sectors. The magnetic flux is incorporated through the
n-fluxoid in the pairing term and through the axial gauge field
A(r) ≈ r�

2πR2 φ̂, where φ̂ is the axial unit vector in cylindrical
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FIG. 2. (a)–(c) LDOS at the end of a semi-infinite solid-core, full-shell nanowire as a function of energy eV and flux � in the first
Little-Parks lobe (destructive regime). The Fermi wavelength of the superconducting shell λS is fixed and the semiconducting core’s λN

increases from (a) to (c). Log-scale line cuts of the LDOS at � = �0 are shown on the right, resolved by sectors of different angular momentum
mj . The line cuts show that black regions in the density plots have a small nonzero LDOS background coming from gapless mj �= 0 subbands,
not visible with the chosen color scaling (as also happens in the experiment of Ref. [46]). Note the appearance of a quasibound zero mode
throughout the lobe in (b) and (c) that was split in (a). The contributions to the LDOS from sectors with different mj show that the zero mode
corresponds to the mj = 0 sector (in red). It arises as one mj = 0 subband undergoes an inversion at kz = 0, as shown in the Nambu band
structure in panels (d)–(f), thus becoming topologically nontrivial when considered on its own. The emergence of the mj = 0 Majorana zero
mode correlates with an odd occupancy of the mj = 0 radial subbands in the normal phase, panels (g)–(i). Parameters are as in Fig. 1(b) except
for R = 100 nm and λS = 24 nm.

coordinates, � = πBR2 is the flux, and B is the magnetic field
along the z direction.

Due to the axial symmetry of the model, the above H
can be decomposed into decoupled sectors with different
total angular momentum mj [54]. By discretizing the result-
ing Hmj into a one-dimensional semi-infinite tight-binding
Hamiltonian along the z direction, we can compute the total
LDOS at the end of the nanowire as a sum of different mj

contributions. Experimentally, the LDOS is measured with the
dI/dV conductance through a tunnel probe coupled to the end
of the wire [59]. At small bias voltage V and temperature
T , the tunneling dI/dV is an approximate measure of the

nanowire LDOS at energy eV . An LDOS ZBA in this context
thus refers to the existence of a zero-energy mode [60]. We
compute the LDOS using the Green’s function formalism for
one-dimensional, semi-infinite conductors [61–63].

Results and discussion. In Fig. 1 we show a comparison
between the experimental dI/dV as a function of bias V and
flux � (destructive LP regime) and our LDOS simulations
(both in the weak and destructive LP regimes). The LP regime
is mainly controlled by the ratio R2/(dξ ) between nanowire
radius R and superconductor coherence length ξ and thickness
d; a large ratio giving weak LP (see Appendix A). We also
present the corresponding simulation for a hollow nanowire,
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wherein the semiconductor is confined to a very thin shell R −
δ < r < R with δ 	 R (see sketch). The experiment shows
a strong ZBA clearly visible throughout the odd n = ±1
LP lobes, including �/�0 = 1 and its vicinity. This feature
is reproduced by LDOS simulations in the solid nanowire
model. A ZBA across the lobe like in the experiment, however,
is not reproduced by the hollow nanowire model, as already
demonstrated in Ref. [54].

Due to the nongateable nature of the full-shell devices, μN

and to some extent also μS are unknown. It is thus important
to establish when ZBAs arise as a function of these two
quantities. To this end we first analyze the solid nanowire
LDOS for fixed μS and decreasing μN . This corresponds to
fixing λS and increasing λN . Simultaneously we compute the
mj-resolved band structure at �/�0 = 1, both in the super-
conducting and the normal phase. The combined results are
shown in Fig. 2. We find a trivial phase with split ZBAs [panel
(a)] that transitions to a non-trivial phase with an unsplit ZBA
[panel (c)] corresponding to a Majorana bound state localized
at the tunneling contact. This happens whenever an mj = 0
Nambu subband, in red in panels (d)–(f), becomes inverted.

The topological phases accurately correlate, in the limit
of � 	 μS, μN , with an odd occupation of the normal-state
mj = 0 radial subbands, panels (g)–(i). These normal sub-
bands are spread throughout the inner core and the outer shell
of the nanowire, so that the precise transition point depends
on both λN and λS . It also depends weakly on �. This is
demonstrated in Fig. 2(b), where λN and λS are tuned to the
vicinity of an even-odd transition. There, �/�0 � 1 has odd
occupancy and a ZBA exactly at zero, while for �/�0 � 1 the
occupancy is still even, and the ZBA exhibits a weak splitting.
Such � dependence within odd lobes is however quite weak
in practice.

The phase diagram of the model at fixed � = �0 is
shown in Fig. 3(a), where we compare the normal-phase
odd-occupancy criterion (blue regions), the emergence
boundary of Majorana zero modes (orange lines), and two
analytical approximations for the latter, Eqs. (B10) and (B11)
of Appendix B (black and gray lines). We find that the unsplit
mj = 0 Majoranas are a common occurrence, occupying
essentially half of the phase diagram. No fine tuning is thus
necessary to achieve such a phase, which could explain why
the ungateable experimental nanowires are likely to show this
phenomenology.

The background of gapless mj �= 0 modes, represented in
gray in the second column of Fig. 2, provides a continuum
of excitations for the mj = 0 Majorana to couple to or decay
into [64]. As a result, the Majorana zero mode does not
enjoy generic topological protection in full-shell nanowires,
as mode mixing can potentially destroy it. To understand how,
we have performed simulations using a minimal model for
angular mode mixing, in line with our nanowire model; see
Appendix C for implementation details. A single parameter
η controls the strength of mj mixing, with all preceding
results corresponding to η = 0. In Figs. 3(c)–3(e) we show the
evolution of the LDOS in two topological points of the phase
diagram [yellow and green in (a)] as a uniform η is increased
throughout the semi-infinite nanowire. The LDOS first devel-
ops a small topological minigap (black background around the
ZBA), which then closes and reopens at a critical value of η,

FIG. 3. (a),(b) Phase diagram of a � = �0 solid-core, full-shell
nanowire of radius R, vs R/λN,S , where λN,S are Fermi wavelengths
in the semiconductor core and superconductor shell, respectively.
Panel (a) focuses on low densities while (b) shows a wider range.
The thick orange lines in (a) mark the boundaries of regions with
a topologically nontrivial mj = 0 subband with Majoranas. These
are computed using exact tight-binding simulations with finite �.
Blue regions in (a),(b) correspond to an odd occupancy of the mj = 0
normal-phase radial subbands, computed using wave matching at the
core-shell boundary for � = α = 0. Black and gray lines correspond
to two analytical approximations for the even-odd boundaries; see
Eqs. (B10) and (B11). (c)–(f) LDOS as a function of energy eV and
subband-mixing strength η, starting at different points in the phase
diagram, colored squares in (a). Note that the color scale is zoomed
in around zero conductance with respect to Figs. 1 and 2 to resolve
the small background LDOS. (d) Line cuts of (c) that emphasize
the opening and subsequent band inversion of a minigap induced
by mixing, which in our model eventually results in the destruction
of the Majorana state. Parameters: (a) R = 100 nm, d = 100 nm,
� = 0.2 meV, α = 10 meV nm (orange curve); (b) R = 65 nm,
d = 28 nm.

destroying the ZBA (c). The corresponding behavior starting
within a trivial phase [pink in (a)] is shown in (f). We see that
considerably complex evolutions with η may arise, including
intermediate phases with additional pairs of zero modes.
With a spatially nonuniform η we even see mode broad-
ening into a Majorana quasibound state; see Appendix C.
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We find that within our model mode mixing invariably ends
up by destroying all zero modes at large η, which suggests
that strongly asymmetric or disordered nanowires will be poor
candidates to exhibit this type of zero mode.

Conclusion. We have established the minimal ingredients
necessary to model and explain the subgap tunneling dI/dV
phenomenology of full-shell superconductor-semiconductor
nanowires of recent experiments [46]. The hollow-core ver-
sion never shows ZBAs throughout a full LP lobe. It is neces-
sary to consider solid-core nanowires with a nonzero charge
density throughout the full nanowire section to obtain ZBAs
similar to the experiment. We showed that these emerge for
odd normal-state occupation of the radial mj = 0 subbands.
We have mapped analytically and numerically this even-odd
effect in the emergence of ZBAs at odd LP lobes throughout
the full phase diagram of the system’s model, and established
the connection between the ZBAs to topologically unpro-
tected mj = 0 Majorana zero modes. We have found that,
while they are not a signature of robust topologically protected
zero modes, unsplit ZBAs should be a common occurrence
in these devices, occupying roughly half of their microscopic
parameter space at zero temperature. We also found that
the effect of angular subband mixing on the Majoranas is
quite complex, ranging from topological minigap opening to
mode splitting or broadening, but always ends up by destroy-
ing the Majorana states at sufficiently strong mixing.

While the physical picture presented here is qualitatively
consistent with the first batch of experimental results, it also
implies that the emergence of Majoranas in these devices is
hard to predict and control, owing to its dependence on the
even-odd occupation of mj = 0 radial subbands, and their
mixing with other mj �= 0. Another important prediction is
the lack of a ZBA within even-n lobes. Given the current
resolution, it is not clear from the available data in [46]
whether the n = 2 hosts a ZBA or a low-lying split resonance.
Thus, other common ZBA-generating mechanisms, such as
smooth confinement at the tunnel contact and unintentional
quantum dot formation, should not be discarded as alternative
scenarios in future studies.
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APPENDIX A: DESTRUCTIVE LITTLE-PARKS
OSCILLATIONS

A hollow superconducting cylinder has a single-valued
complex order parameter �(φ) around its axis, where φ is
the azimuthal angle. Assuming its modulus is never zero,
the phase of � can have only an integer winding, i.e.,
�(φ) = |�|einφ where n is an integer and φ ∈ [0, 2π ). This is
known as fluxoid quantization. In a hollow superconducting

cylinder longitudinally threaded by a magnetic field, this
condition leads to a periodic modulation of the self-consistent
|�| (and hence of the superconducting critical temperature
Tc) as a function of the applied flux (�). The maximal Tc

reduction is located at half-integer normalized flux (�̄ =
�/�0 = m + 1/2 for integer m). This is known as the Little-
Parks (LP) effect predicted in Refs. [47–49] and observed in
Ref. [51].

An additional pair breaking mechanism must be taken
into account in superconducting cylinder shells with small
radius R and thickness d as compared to the zero-temperature
coherence length ξ . Such pair breaking stems from the flux-
induced supercurrents circulating the shell, which may lead to
drastic deviations from the original LP prediction for large R,
d . In the small R/ξ 	 1 regime (which is the relevant one in
the experiments of Refs. [46,55]) the modulation of Tc results
in a full suppression of superconductivity in finite flux regions
and, therefore, metallic and superconducting phases alternate
with the applied flux at T = 0. This is the so-called strong (or
destructive) Little-Parks regime (SLP) [52,53].

The effect of the flux-induced supercurrent as a Cooper
pair breaking mechanism is formally equivalent to that caused
by paramagnetic impurities [65], as shown in Refs. [66,67].
Thus, in order to find a formula for Tc(�) in the SLP regime,
we use a mean-field approach in close analogy to the stan-
dard theory of the microscopic time-dependent Ginzburg-
Landau (TDGL) description of a disordered superconductor
with paramagnetic impurities, as was done in Ref. [67].
This involves starting from the TDGL functional integral
in the saddle-point approximation and computing the poles
of the two-particle Green’s-function fluctuation propagator:
L(p, p′, q) = 〈Tτ (ψp+q,σ ψ−p,−σ , ψ

†
p′+q,σ ′ψ

†
−p′,−σ ′ )〉 up to ze-

roth order in its Dyson expansion, where ψ†
p,σ is a fermionic

creation field operator in the Heisenberg representation with
momentum p and spin σ . This results in the following condi-
tion (see Ref. [68] for a comprehensive derivation) from which
Tc(�̄) can be readily calculated:

0 = (νL)−1(n, ω = 0)

= ln

(
Tc

T 0
c

)
+ �

(
1

2
+ �n(�)

2πTc(�̄)

)
− �

(
1

2

)
, (A1)

where ν is density of states at the Fermi level, T 0
c is the

critical temperature of the bulk material at zero flux, � is
the digamma function, and �n is the pair breaking function
corresponding to hollow superconducting cylinders. The latter
is obtained by solving the GL equations in the presence of
impurities [69]. As a function of the fluxoid winding number
n, it reads

�n(�̄)= T 0
c

π

ξ 2

R2

{
4(n − �̄)2 + d2

R2

[
�̄2 +

(
1

3
+ d2

20R2

)]
n2

}
.

APPENDIX B: DERIVATION OF THE NORMAL-PHASE
ODD-OCCUPANCY CRITERION IN ODD-FLUX LOBES

In this Appendix we tackle the problem of computing
the occupation of the mj = 0 subbands in the normal state,
whose parity is an approximate criterion for the existence of
Majorana zero modes. This approximation is shown to be
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valid in the main text throughout odd-flux LP lobes, in the
Andreev limit (� 	 μS, μN ) and in the absence of subband
mixing. We perform the calculation using wavematching tech-
niques at the semiconductor-superconductor boundary, and
derive analytical approximations for the odd-parity regions in
parameter space.

At zero temperature, the occupation of the mj = 0, normal-
state, radial subbands changes when one of them crosses the
Fermi level. This always happens at kz = 0 in odd-flux lobes.
Therefore, we look for the solutions of

Hmj=0(r)�(r) = 0, (B1)

where Hmj=0 is the mj = 0 projection of the normal-state (i.e.,
� = 0) Hamiltonian of Eq. (1). We write it as a piecewise-
constant combination of nanowire HN (r) and shell HS (r)
Hamiltonians as [54]

Hmj=0(r) = HN (r)θ (R − r) + HS (r)θ (r − R), (B2)

with

HN (r) =
( −1

2m∗r
∂rr∂r − μN

)
σ0

− 1

8m∗r2

[
σz +

(
1 − �̄

r2

R2

)2

σ0

]2

+ α

2r
σz

[
σz +

(
1 − �̄

r2

R2

)
σ0

]
(B3)

and

HS (r) =
( −1

2m∗r
∂rr∂r − μS

)
σ0 − 1

8m∗r2
[σz + (1 − �̄)σ0]2.

(B4)

�̄ is the externally applied magnetic flux normalized by the
flux quantum, i.e., �̄ ≡ �

�0
. For the purpose of finding the

occupation boundaries we take the α = 0 limit in Eq. (B3).
This is a good approximation, since occupation boundaries
occur by band inversions at k = 0, where spin-orbit coupling
is zero. Our steplike model for the chemical potential in the
radial direction reads

μ(r) =
{
μN , if r � R

μS, otherwise
. (B5)

We proceed by wave matching the zero energy solutions
for the core and shell regions at r = R. The problem reduces to
solving a system of four uncoupled equations corresponding
to the semiconducting and superconducting bispinors: φN =
(φN

↑ , φN
↓ ) and φS = (φS

↑, φS
↓), respectively. These read

0 = φN
↑ (r)′′ + φN

↑ (r)′

r

+φN
↑ (r)

[
− 1

r2
+

(
2m∗μN + �̄

R2

)
− �̄2r2

4R4

]
,

0 = φN
↓ (r)′′ + φN

↓ (r)′

r
+ φN

↓ (r)

(
2m∗μN − �̄2r2

4R4

)
,

0 = φS
↑(r)′′ + φS

↑(r)′

r

+φS
↑(r)

(
2m∗μS − 1

4r2
(4 − 2�̄ − �̄2)

)
,

0 = φS
↓(r)′′ + φS

↓(r)′

r
+ φS

↓(r)

(
2m∗μS − 1

4r2

)
.

The solutions to the above set of equations which satisfy
regularity at the origin are given by

φN
↑ (r) = CN↑e−�r2/(4R2 )r−1L(−1)

ν1

(
�̄

2

r2

R2

)
, (B6)

φN
↓ (r) = CN↓e−�r2/(4R2 )L(1)

ν2

(
�̄

2

r2

R2

)
, (B7)

φS
↑(r) = Ca

S↑Jν�
(r/λS ) + Cb

S↑Yν�
(r/λS ), (B8)

φS
↓(r) = Ca

S↓J1/2(r/λS ) + Cb
S↓Y1/2(r/λS ), (B9)

with

νi = 3

2
+ R2

2�̄λ2
N

− i (i = 1, 2),

ν� =
√

4 − 2�̄ + �̄2/2.

Cy
x are arbitrary constants, λ−1

N/S = √
2m∗μN/S are the Fermi

wavelengths in the semiconducting and superconducting re-
gions, respectively, L(a)

ν (x) are the generalized Laguerre poly-
nomials, and Jν (x) and Yν (x) are the Bessel functions of first
and second kind, respectively.

By imposing continuity of the solutions and their deriva-
tives at r = R, and by requiring uS (r) to vanish at the outer-
most radius (r = R + d), we obtain a set of two independent
transcendental equations (π1 = 0 and π2 = 0) for each spin
component that relates parameters μN , μS , and �̄ at the
occupation boundaries. For the sake of conciseness we omit
the explicit and lengthy expressions, which correspond to the
boundaries of the blue regions in Figs. 3(a) and 3(b) of the
main text.

A more compact formula for the occupation boundaries
can be derived by expanding to second order in λS

R in the
asymptotic series of Eqs. (B8) and (B9) (since λS 	 R is the
experimentally relevant situation) and to zero order in the ex-
pansion of π1,2 around � = �0. Under such approximations,
occupation boundaries satisfy

(
2 f L(−1)

ρ1
(1/2) − λS

R

[
L(0)

ρ2
(1/2) + 3L(−1)

ρ1
(1/2)

])

×
(

2 f L(0)
ρ2

(1/2) − λS

R

[
L(0)

ρ2
(1/2) + 2L(1)

ρ3
(1/2)

]) = 0,

(B10)

023171-6



EVEN-ODD EFFECT AND MAJORANA STATES IN … PHYSICAL REVIEW RESEARCH 2, 023171 (2020)

with

f = − cot

(
d

λS

)

+ λS

R

[
1 − λS

R
s cot

(
d

λS

)][
m + s cot

(
d

λS

)2
]
,

m = 1

8

(
4R + d

R + d

)
,

s = 1

8

(
d

R + d

)
,

ρi = 3

2
+ R2

2λ2
N

− i (i = 1, 2, 3).

Note that replacing = 0 by > 0 in Eq. (B10) above actually
selects the regions with odd normal occupation. Equation
(B10) is plotted in black in Figs. 3(a) and 3(b) of the main
text.

Alternatively, expanding π1,2 up to leading order in both
λS/λN and λS/R, reduces to

cos

(
d

λS

)
L(−1)

ν1

(
�̄

2

)
L(0)

ν2

(
�̄

2

)
= 0, (B11)

which corresponds to the square mesh plotted in gray in
Figs. 3(a) and 3(b). Despite its simplicity, the above equation
captures quite well the essence of the even-odd effect in the
ZBA of our full-shell nanowire model.

APPENDIX C: FATE OF THE mj = 0 MAJORANA UNDER
INTERBAND MIXING

The analysis of the full-shell nanowire based on decou-
pled mj’s is valid in the idealized limit of nanowires with
perfect cylindrical symmetry. Any perturbation V̂η, such as
a noncircular section, disorder in the semiconductor, in the
superconductor shell or contact, or produced by the presence
of a substrate, should be expected to break the assumption of
decoupled mj’s to some degree, as was noted in Ref. [54].
To assess the likelihood of observing the mj = 0 ZBA phe-
nomenology connected to Majorana states, we compute and
analyze the local density of states (LDOS) under an increasing
coupling η = 〈φ±1|V̂η|φ0〉 between a small set of angular mo-
menta mj = 0,±1 at � = �0 (adding higher bands does not
change the qualitative results). As we discussed in the main
text, this simplified model is enough to produce a very rich set
of possible evolutions of the mj = 0 Majoranas, eventually
leading to its destruction at strong enough mixing.

The interband mixing is introduced as a uniform coupling η

between mj = 0 and mj = ±1. We first assume V̂η (and hence
also η) is independent of position. With a finite η, the LDOS
is no longer decomposable into different mj contributions. In
Figs. 3(c)–3(f) of the main text we present the total LDOS
at � = �0 for increasing η, starting from different points in
the phase diagram of Fig. 3(a). In Fig. 3(c) we see the simplest
possibility. Starting in a nontrivial configuration with one zero
mode, a small η creates a minigap in the mj �= 0 subbands by
making these modes susceptible to superconducting pairing

FIG. 4. The LDOS at the end of a semi-infinite full-shell
nanowire at � = �0, truncated to the mj = 0, ±1 subspace, as a
function of the coupling η between mj bands. The coupling is
restricted to within 10 nm of the end of the nanowire, where the
termination of the superconducting shell exposes the semiconductor
to external perturbations. The mj = 0 Majorana state is coupled
by the local η to the gapless mj �= 0 bands in the nanowire bulk,
which leads to broadening and decay in the limit of a semi-infinite
nanowire.

at zero energy, which otherwise only affects the mj = 0
sector. The minigap acts as a proper topological gap, and
protects the Majorana much as in conventional Oreg-Lutchyn
nanowires. As η is increased further, however, the minigap
eventually closes and reopens as a trivial gap, destroying the
Majorana.

Starting from a different topological point in the phase
diagram, see the green square in Fig. 3(a), can produce a more
complicated behavior, whereby the Majorana is not destroyed
after the minigap is reopened. Instead, two new zero modes
are added at a gap inversion, which takes place away from
the high-symmetry k = 0 point. Such kind of inversions are
trivial, and introduce zero modes in pairs that hybridize to
finite energy; see Figs. 3(e) and 3(f). Such split resonances
are also eventually destroyed at higher mixing.

Finally, a quite different scenario can take place. If η is zero
within the bulk of the nanowire, or due to some symmetry
some of the mj �= 0 modes remain ungapped, the Majorana
may become coupled to such gapless states by a local mixing
η confined to the tip of the nanowire, where the Majorana
wave function is concentrated. Such a local mode mixing is
a likely occurrence in experimental devices, since the tip of
the nanowire is not covered by a superconducting shell, and
is therefore more susceptible to mode-mixing perturbations
from the substrate or tunnel probes. The result of such a local
η is shown in Fig. 4. The background LDOS does not develop
a minigap. Instead, the zero mode becomes broadened into a
quasibound Majorana state, with a width that grows with η,
and which represents its decay rate into the gapless nanowire
bulk.

All these results assume a semi-infinite nanowire, without
any longitudinal quantization of the different mj subbands.
For finite nanowires the phenomenology becomes even more
complicated, although in such a case one can no longer rigor-
ously speak about topological nontriviality (at least in closed
systems [70]). The general conclusion from the analysis of
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our simple mode-mixing model, however, is that while a
small amount of mixing can be beneficial to stabilize the
mj = 0 Majorana, it eventually leads to its destruction, either

by broadening, splitting, or a minigap closing and reopening.
We expect this qualitative behavior to be generic also in more
elaborate models.
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