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In this paper we investigate the scattering mechanisms of viscous momentum transport in unitary Fermi gases
below the pseudogap temperature T ∗ by opening almost all the elastic and inelastic scattering channels. For a
given system Hamiltonian, we adopt a microscopic t-matrix approximation to determine the thermodynamical
quantities, and we approach an equivalent three-fluid dynamics to calculate the viscous relaxation time τ by
two kinds of elementary excitations. The exotic scattering processes raised by uncondensed Fermi pairs greatly
decay τ and lead to a universal behavior of τ with temperature, which is closely related to the anomalous
transport in a wide range of strongly correlated systems. For linking our findings of τ to the shear viscosity
η, we present a Kubo-based expression of η by the stress-tensor correlation function with conserved vertex
corrections, and we give an approximate relation for a possible experimental determination of τ . Our results
fit well with measurements and are comparable with other theories. Moreover, we verify the newly proposed
universal upper bound of the ratio of η and entropy density s in unitary Fermi gases.
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I. INTRODUCTION

Many strongly correlated systems display a remarkable
degree of universal anomalous behaviors in their transport
properties, such as the quantum-limited values of diffusivity
for diverse fluids from quark-gluon plasma [1,2] to ultracold
Fermi gases [3–5], and the linear-in-temperature (T ) resis-
tivity in a wide range of materials [6]. Recent attention has
linked these universalities to the relaxation time τ , which
typically carries fundamental coherence of corresponding
transport and is highly associated with transport coefficients
[7]. In particular, some studies have found that τ exhibits
the same temperature dependence as the characteristic Planck
time τP = h̄/(kBT ) in the anomalous transport regions [6,8,9]
(h̄ = kB = 1 hereafter), and some conjectures proposed that τ

could lead to the universal behaviors of transport coefficients
by controlling the universal lower and upper bounds [10,11].

For example, the well-known lower bound on the ratio of
shear viscosity η to entropy density s conjectured by Kovtun
et al. (KSS) [10], η/s � 1/(4π ), has motivated great interest
in searching for a nearly perfect fluid, where the minimum
of η/s is obtained when τ is assumed to be equal to τP. The
shear viscosity is closely related to the transverse momentum
diffusion coefficient Dη = η/(sT ) in a wide class of interact-
ing systems. Lately, this bound has been generalized to any
diffusion D � v2/T with the typical velocity scale v [8,9].
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And from causality, an upper bound has also been proposed as
D � v2τ [11], which for the transverse momentum transport
can be written as η/s � v2T τ , where T τ could be a constant
for a T -linear scattering rate τ−1 = αT . Interestingly, besides
the hydrodynamic fluids, analysis of many materials with
T -linear resistivity revealed the phenomenological constant
0.9 < α < 2.2 in the anomalous T -linear region, despite the
considerable differences in their microscopic natures [6].

It is tempting to establish a universal explanation for the
robust transport behaviors. Before that, however, one should
concretely investigate the basic scattering mechanisms in dif-
ferent strongly correlated systems. The low-frequency trans-
port properties are controlled by the longest-lived excitations.
In weakly coupled systems, the longest-lived excitations are
the dominant quasiparticles. Equilibration in such systems
is slow, and the relaxation time is much longer than the
Planck time [11]. However, in strongly correlated systems, it
is difficult to identify which excitations are dominant from
the tight coupling of various energy states and environments,
as their lifetimes may be affected by various exotic relaxation
processes, and these additional degrees of freedom may inval-
idate some conventional transport laws.

The unique ability of highly tunable scattering length a f

in ultracold Fermi gases makes the system an ideal plat-
form to study the above properties systematically, which
could undergo a smooth crossover from the Bardeen-
Cooper-Schrieffer (BCS) state of weakly correlated pairs of
fermions to the Bose-Einstein condensation (BEC) of di-
atomic molecules [12,13]. In the vicinity of a Feshbach reso-
nance, a f → ∞ is the so-called unitary Fermi gases (UFGs),
which is a scale invariant, strongly interacting quantum many-
body system. There are many measurements on the shear vis-
cosity of UFGs [3,14–16]. At high temperatures, the kinetic
temperature dependence η ∝ T 3/2 [17] has been confirmed.
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Near the superfluid transition temperature Tc, the minimum
value of η/s turns out to be about several times the KSS
bound. And in the superfluid phase η behaves like super-
fluid 3He without the upturn predicted by phonons [18,19].
The inhomogeneity caused by external traps in experiments
can be circumvented by extracting the local data [16,20]. A
quantum Monte Carlo (QMC) calculation of the frequency-
dependent shear viscosity from the imaginary time Kubo
correlator meets an ill-posed problem and requires other the-
oretical constraints a priori [21–23]. Theoretical progress has
proposed different constraints on viscosity spectral functions
in the form of sum rules and high-frequency tails [24–28].
The static shear viscosity is the zero-frequency limit of the
spectral functions. A calculation based on a self-consistent
t-matrix approximation gives a careful result in the normal
phase [25], and a calculation based on the pseudogap theory
is consistent with the experimental results that η decreases
to zero in the superfluid phase [26]. As for the relaxation
time τ , an independent measurement of it is still lacking,
which may be done in the same experiment for shear viscosity.
Previous calculations of τ at high temperatures are accurate
within the framework of kinetic theory [29], and the medium
effects have been introduced into the scattering cross section
at temperatures comparable to the Fermi temperature [30].
However, at the strong correlation and dissipation regimes
near Tc, the fundamental properties of the system are only
partially understood; thus the high-T evaluation of τ is not
applicable, and its intrinsic connection with η is still ambigu-
ous.

Viscous relaxation is a response to the transverse pertur-
bation and is thus sensitive to the properties of excitations.
It is an open question to open almost all the scattering chan-
nels among different excitations in the UFGs. In this paper,
based on a pairing fluctuation theory which incorporates both
fermionic and bosonic excitations, we present an equivalent
three-fluid dynamics to investigate the scattering mechanisms
in momentum transport. Due to the vanishing of bulk viscosity
in the scale-invariant fluid [28,31,32], we show explicitly the
dominant mechanisms of η by various elastic and inelastic
scatterings. The overall relaxation process exhibits a universal
characteristic time behavior in the pseudogap regime above Tc,
which results in an anomalously small η [3] and contributes
to broadened excitation spectra [33,34]. We then give an
approximate relation connecting η and τ with thermodynamic
quantities, which is extended from an exact mean-field rela-
tion [35] based on the microscopic properties of pseudogap
region. A generalized Kubo expression for η is also carried out
with conserved vertex corrections on stress-tensor correlation
functions in the strong dissipation regimes. The results of
η yield fair agreement with measurements [16,20] and are
comparable with other theories [21,25,26]. Finally, we verify
the newly proposed universal upper bound of η/s [11], which
is related to τ .

This paper is organized as follows. In Sec. II, we present a
detailed description of the scattering processes. In Secs. II A
and II B, we adopt the tractable microscopic theory called a
“pseudogap” model to get the thermodynamical quantities and
present an equivalent three-fluid dynamics to determine the
effective scattering parameters. A main result of this work
is the universal temperature dependence of relaxation time,

which is shown in Sec. II C, as well as those detailed scattering
mechanisms represented by the respective relaxation times. To
verify our findings, we calculate the shear viscosity in Sec. III.
The approximate relation of τ and η are shown in Sec. III A,
and the Kubo expressions for η are in Sec. III B. They are
compared with previous work in Sec. III C. Section IV con-
cludes our work and gives a outlook.

II. SCATTERING MECHANISMS

We consider a 50-50 mixture of two Fermi species
σ = ↑,↓ in the BCS-BEC crossover scenario and start from
the Hamiltonian with zero-range interactions [12]:

Ĥ =
∑
pσ

ξpĉ†
pσ ĉpσ + g f

2

∑
pp′qσσ ′

ĉ†
p+qσ ĉ†

p′−qσ ′ ĉp′σ ′ ĉpσ . (1)

Here ξp = p2/2m f − μ is the dispersion measured from the
chemical potential μ, and m f is the mass of a Fermi atom.
ĉ†

pσ (ĉpσ ) is the creation (annihilation) operator with the Fermi
wave vector p. g f is the bare coupling strength characterized
by a f at a given momentum cutoff �, g f = 4πa f

m f

π
π−2�a f

. The

density of Fermi atoms in volume V is n = ∑
pσ 〈ĉ†

pσ ĉpσ 〉/V ,

where the average of operator Q̂ is performed by 〈Q̂〉 =
Tr[e−Ĥ/T Q̂]/Tr[e−Ĥ/T ].

The stronger than BCS attractions arouse gap structures of
the single-particle excitations in the normal state roughly at
temperature T ∗, known as the “pseudogap state,” where addi-
tional incoherent bosonic excitations from the noncondensed
fermion pairs (b1, density nb1 ) occur simultaneously with
fermionic excitations ( f , density n f ). Below the superfluid
phase transition temperature Tc, the condensation of pairs (b0,
density nb0 ) occurs in the ordered phase, where the particle-
number conservation relation n = n f + 2nb holds with nb =
nb0 + nb1 . We may use “bosons” (b, density nb) to describe
the fermion pairs hereafter.

In many cases, transport processes are governed by the
intrinsic timescale τ , which also corresponds to the lifetime of
carriers. Its inverse, the relaxation rate τ−1, is often set as the
characteristic energy scale to determine the boundary between
the collisionless and hydrodynamic regimes. For UFGs, the
system is well described by long-lived Fermi quasiparticles
at temperatures well above the Fermi temperature εF . Kinetic
theory gives the accurate result that τ ∼ T 1/2 [29], where the
energy-dependent scattering cross section is independent of
a f . When the system enters the temperature regions compara-
ble to or less than εF , medium effects have been introduced
into the scattering cross section [30], which significantly
decrease τ . As T < T ∗, the emergence of bosonic degrees of
freedom changes the microscopic nature of UFGs; thus the
modifications on the scattering cross section is not enough.
According to the authors themselves, it is assumed that the
strong interactions only modify the collision term while the
streaming terms are unaffected [17].

In this section, focusing on temperature regimes T � T ∗,
we present an estimation of τ by the combination of mi-
croscopic theory with our equivalent three-fluid ( f , b0, b1)
dynamics. By comprehensively considering various relaxation
processes in different elementary components, we exhibit the

023166-2



SCATTERING MECHANISMS, RELAXATION TIMES, AND … PHYSICAL REVIEW RESEARCH 2, 023166 (2020)

universal behavior of τ that is responsible for many anoma-
lous transports.

A. Scattering processes

For a particular elementary excitation 
 in a given fluid,
its relaxation process can be generally regarded as the sum
of all uncorrelated individual processes, denoted by scattering
rate as 1

τ

= ∑

jl ( 1
τ
 jl

+ 1
τ ′

 jl

). Here the subscript jl denotes

the incoming components in a reversible scattering process
and the superscript ′ distinguishes the inelastic scattering. For
the unitary Fermi gases, it microscopically consists of three
elementary components ( f , b0, b1) in the superfluid phase
[13], whose relaxation processes can be expressed in turn
from Boltzmann or Gross-Pitaevskii equations, respectively
[30,36]. The condensations b0 have a considerably long dissi-
pation time due to the signatures of phase coherence, but they
do not participate in the momentum transport. The transport
properties of the system are determined by the longer-lived
excitation between f and b1, so here we consider 
 = ( f , b)
with the indices j = ( f , b1), l = ( f , b0, b1) and express the
viscous relaxation processes by the Boltzmann equations as

∂F

∂t
+ �Fext · ∇pF + p

m f
· ∇F = C[F ],

∂B

∂t
+ �Fext · ∇qB + q

mb
· ∇B = C[B]. (2)

�Fext is the external force, and the mass of bosons mb is twice
that of the fermions mb = 2m f . q is the Bose wave vector.
C[F] = ∑

jl (Cjl [F] + C′
jl [F]) is the total collision integral,

where the inelastic scattering may be a composite boson split
into two single fermions or its inverse process, and we have
denoted F = F, B as the distribution functions for n f and nb1 ,
which has the equilibrium correspondence F0 = B0, F 0:

F 0(p) = 1

e(ε̃p−μ f )/T + 1
, B0(q) = 1

e(ε̃q−μb)/T − 1
, (3)

and

n f = 2
∑

p

F 0(p), nb1 =
∑

q

B0(q). (4)

The chemical potentials of fermions μ f and bosons μb satisfy
the chemical equilibrium condition μb = 2μ f = 2μ, as the
natural consequence of particle number conservation. The
single-particle energy ε̃p(q) = εp(q) + u f (b) is the sum of ki-
netic energy per particle εp = p2/2m f (εq = q2/2mb) and the
corresponding interaction energy u f (b) [see Eq. (10) below].

The Boltzmann equation can be variationally solved with
errors less than 2% [30]. Under the relaxation time approx-
imation, the elastic and inelastic scattering rates for a given
process can be evaluated by

1

τ
 jl

= −〈�∗Cjl [F]〉0

〈�∗(F − F0)〉0
,

1

τ ′

 jl

= −〈�∗C′
jl [F]〉0

〈�∗(F − F0)〉0
. (5)

Here 〈· · · 〉0 denotes the average under a trial function �

with the linear change δF = F − F0 = F0(1 ± F0)� and
+(−) denotes bosons (fermions). The choice of trial function
determines the specific type of relaxation, such as viscous,
thermal, and conductive. We evaluate all elastic scattering and

those inelastic scatterings whose contributions may not be
ignored. They contribute to the relaxation rates of elementary
excitation 
 = ( f , b) as the following terms:

1

τf
= 1

τf f f

+ 1

τf f b0

+ 1

τ ′
f f b0

+ 1

τf f b1

+ 1

τ ′
f f b1

,

1

τb
= 1

τb f b0

+ 1

τb f b1

+ 1

τ ′
b f b1

+ 1

τbb1b0

+ 1

τbb1b1

. (6)

The tedious expressions of the various collision integrals both
for the elastic Cjl [F] and for the inelastic C′

jl [F], which are
used in Eq. (5) to calculate every term in Eq. (6), are per-
formed in Appendix, where the additional s-wave scattering
lengths of ab and a f b for boson-boson and fermion-boson
scattering processes respectively will be determined in the
next subsection.

Above is our first kind of elementary excitations for ap-
proaching the relaxation time of the system, by considering
the respective relaxation times of fermions and composite
bosons to find the longer one. We can also give the second
kind of elementary excitation: since this is a single-component
Fermi system, we can alternatively treat the elementary exci-
tations of the system approximately as only fermions, while
the composite bosons play a medium role in the three-fluid
dynamics [36]. In this case, the overall relaxation rate is given
by the following scattering channels:

1

τ
= −∑

jl〈�∗(Cjl [F ] + C′
jl [F ])〉0

〈�∗(F − F 0)〉0

= 1

τ f f
+ 1

τ f b0

+ 1

τ ′
f b0

+ 1

τ f b1

+ 1

τ ′
f b1

+ 1

τb1b0

+ 1

τb1b1

.

(7)

The expressions of the various collision integrals Cjl [F ] and
C′

jl [F ] are still performed in the Appendix for F = F .

B. Microscopic model and equivalent three-fluid
dynamical model

The thermodynamical quantities, such as Tc, T ∗, μ, energy
gap �, and single-particle energy ε, can be obtained by an
arbitrary microscopic theory, and the most commonly used
microscopic approaches incorporating pairing fluctuations in
the normal state to treat the strong couplings are the many-
body t-matrix theories [12,13]. We choose the one with an
asymmetric t-matrix form sometimes called the (GG0)G0

scheme, which reports the second-order superfluid phase
transition and consists with the BCS ground state in the
BCS-BEC crossover. Note that Q̂(τ ) = eτ ĤQ̂e−τ Ĥ , with the
imaginary time τ = it . The generalized single-particle normal
imaginary time Green’s function is defined by G(p, τ ) =
−〈Tτ ĉpσ (τ )ĉ†

pσ (0)〉, and the paired anomalous imaginary time
Green’s function is F (p, τ ) = 〈Tτ ĉ−p↓(τ )ĉp↑(0)〉 with the
time order operator Tτ . We use the notation P = (iωn, p),
Q = (i�m, q) for fermionic and bosonic four momenta, re-
spectively, and

∑
P(Q) = T

∑
p(q)

∑
iωn(�m ). The bare Green’s

function is G0(P) = (ξp − iωn)−1. The dressed Green’s func-
tion G(P) mediates the interactions between fermions in
the t matrix t (Q)−1 = g−1

f + ∑
P G(P)G0(Q − P) with the
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FIG. 1. Normalized particle densities: nf (red solid), 2nb0 (yel-
low dash), 2nb1 (blue dash dot), and neff (green short dash) vs T/Tc.

regulation condition � = ∫
d|p|. The self-energy is �(P) =∑

Q t (Q)G0(Q − P), which constructs G(P) through the
Dyson equation G−1(P) = G−1

0 (P) − �(P).
Based on the essential distinction between the total

excitation-energy gap � and the superconducting order pa-
rameter �sc, one can adopt further simplifications to decom-
pose t (Q) into a standard BCS term tsc(Q) = −(�2

sc/T )δ(Q)
and the remaining nonzero momentum term tpg(Q) = t (Q �=
0), which leads to the pseudogap �pg approximately as �2

pg ≡
−∑

Q �=0 tpg(Q). As a result, the total gap is also separated as
�2 = �2

sc + �2
pg.

In this pseudogap model, the densities of the elementary
components (equivalent three-fluid effective dynamical quan-
tities) are related to the gaps [13]

nb0 = Z�2
sc,

nb1 = Z�2
pg =

∑
p

1

e(q2/2M∗−μpair )/T − 1
,

n f =
∑

p

2

e(ε̃p−μ f )/T + 1
. (8)

Here Z is an expansion coefficient ensuring the particle
number conservation Z = (n − n f )/(2�2). This microscopic
model gives almost the same form as Eq. (4), except that ub

is absorbed into the effective pair mass M∗, resulting in an
effective chemical potential μpair somewhat different from μb.
The three elementary components as functions of temperature
are shown in Fig. 1.

At this point we can introduce an equivalent three-fluid
dynamical model to determine the two unknown parameters
ab and a f b, which should be a function of the only independent
interacting variable a f for the ultracold Fermi gases in the
BCS-BEC crossover. The effective Hamiltonian density for
given Eq. (1) is written as

H = H0 + U ,

H0 = 2
∑

p

εpF 0(p) +
∑

q

εqB0(q) + nbεb,

U = 1

4
g f n2

f + gb

(
n2

b − 1

2
n2

b0

)
+ g f bn f nb. (9)

εb is the dimer binding energy, and the coupling constants are
gb = 4πab/mb and g f b = 4πa f b/m f b with the reduced mass
m−1

f b = m−1
f + m−1

b . From U , we can derive

ub = ∂U
∂nb

= 2gbnb + g f bn f ,

u f = ∂U
∂n f

= 1

2
g f n f + g f bnb. (10)

Substituting Eq. (10) into Eq. (4), and equating n f , nb1 in
Eqs. (4) and (8), one obtains the undetermined coupling
constants gb and g f b. As a consequence, they are actually
temperature dependent and can be viewed as two effective
parameters. This is reasonable since the “bosons” at uni-
tary are overlapping fermion pairs rather than tightly bound
molecules, whose sizes and degrees of overlapping vary with
temperatures. In addition, as we use the binary collisions to
approach such a complex many-body problem, the encoun-
tered scattering cross sections must be regarded as effective
ones. In other words, the many-body effects are considered in
the effective scattering lengths. The precision of this effective
approach is completely guaranteed by the microscopic theory,
since the effective Hamiltonian density Eq. (9) is equivalent
to the given system Hamiltonian Eq. (1).

C. Results for the scattering mechanisms

In Fig. 2, we exhibit the viscous relaxation times of
elementary excitation 
 = ( f , b), including the various in-
dividual processes expressed in Eq. (6). In Fig. 2(a), we
find that τf f f contributes the most to τf at most temperature
ranges, while τf f b1

acts as another dominant mechanism at
the pseudogap regime. Near zero temperature, active fermions
around the Fermi surface are condensed in pairs, and the
remaining unpaired fermions hardly dissipate. An interesting
comparison of τ ′

f f b0
< τf f b0

shows the robustness of condensa-
tion: breaking the condensed pairs is even easier than exciting
them. Circumstances in Fig. 2(b) are more complicated. τb
is strongly decayed by nb0 below Tc, corresponding to a
continuous conversion from short-lived nb1 to long nb0 . τbb1b1

is not significant until near Tc, where the condensed pairs
almost disappear. Above Tc, τb f b1

dominates as bosons become
fermions.

The resulting τf is always longer than τb, maintaining the
basic Fermi nature of the UFGs. The overall relaxation time
τ of the system should be close to τf. These results suggest
the validity of our second kind of elementary excitation, the
results of which are shown in Fig. 3(a). We can see that
the scatterings between bosons give considerable impacts to
τ near and below Tc compared to τf, which is a reasonable
consequence consistent with the physical nature. Our study is
comprehensive and has included all the meaningful scattering
channels: the elastic cases are complete since the scattering
between condensed bosons τb0b0 does not exist, and other
inelastic cases can be ignored from the results that τ ′

f b0
and

τ ′
f b1

take place on much longer timescales than their elastic
counterparts outside the deep collisionless regime. This is
sound, because pairing lowers the energy of fermions, which
introduces certain constraints into incident particles to break
bosons, thereby lowering the chance of inelastic collisions,
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FIG. 2. Various viscous relaxation times normalized to the recip-
rocal of Fermi energy vs T/Tc in the homogeneous UFGs. (a) Re-
laxation of unpaired fermions with the total lifetime τf (black solid),
and components of τf f f (red dash), τf f b0

(orange short dash), τ ′
f f b0

(yellow dash dot dot), τf f b1
(purple dash dot), and τ ′

f f b1
(magenta

dot). (b) Relaxation of uncondensed pairs with the total lifetime τb

(black solid), and components of τbb1b1
(blue dash), τb f b0

(orange
short dash), τbb1b0

(cyan dash dot dot), τb f b1
(purple dash dot), and

τ ′
b f b1

(magenta dot).

and the Pauli principle strongly inhibits the combinations of
three fermions.

Above Tc, the fermion-boson scattering channel dominates
in all three times, resulting in the departure from Fermi liquid
theory and a similar temperature dependence with the Planck
time τP. We fit τ by τ = 1/(αT ) in Fig. 3(b) as a gray
dashed line, with α � 0.97. Across a wide range of strongly
correlated systems, the phenomenological dimensionless con-
stant is 0.9 < α < 2.2 in the anomalous transport regimes [6],
which shows the dramatic universality of the UFGs due to the
pseudogap effects. The approximate lifetime of uncondensed
pairs τb is much shorter than the thermalization timescale
τ , which may explain why these pairs play no role in the
equilibrium thermodynamics [37] of the system.

Since the relaxation rate τ−1 is often set as the charac-
teristic energy scale of many collective oscillation modes,
a continuous crossover from hydrodynamic (τ−1 � εF ) to
collisionless (τ−1 � εF ) regimes arises smoothly as the tem-
perature approaches zero, which has been observed recently
[4]. The rapid rise of τ reveals a wide collisionless dynamic

FIG. 3. Various viscous relaxation times vs T/Tc. (a) The total
relaxation time τ (black solid), and the various relaxation channels
τ f f (red dash), τb1b1 (blue short dash dot), τb1b0 (olive short dot), τ f b0

(brown dot), τ ′
f b0

(kelly dash dot), τ f b1 (purple dash dot dot), and τ ′
f b1

(magenta short dash). (b) The total relaxation time of the system τ

(black solid), fermions lifetime τf (red dash dot), and uncondensed
bosons lifetime τb (blue short dash dot). The gray dashed line is the
fit of τ with 1/(αT ).

regime where the second sound in two-fluid hydrodynamic
descriptions rapidly damps into a diffusive mode, which is
also consistent with the vanishing of the second sound peaks
in observations [4,38] and predictions based on phonon exci-
tations [39,40].

Finally, the temperature dependence of τb shows significant
concavo-convex variations, which is caused by the alterna-
tions of dominant scattering mechanisms in our study. This
trend provides an opportunity to examine our detailed calcu-
lations experimentally. Recent realizations of trapping UFGs
at uniform density [4,41] ensures the trend will not be hidden
in the cloud averages. When this nonmonotonic behavior is
observed, it will be a strong evidence of our results. Since
measuring the two relaxation timescales τ f and τb is by no
means a trivial task, one can alternatively measure the decay
times by exponential fitting of the displacements of nb1 and
n f after a long evolution time, which also characterizes the
momentum transfer to equilibrium. And in the spin transport
measurements of UFGs, this timescale leads to the subse-
quent transport coefficients [5]. The remaining difficulty is
to separate the three elementary components, where nb0 has
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been filtered out [4,42], and recent achievements such as the
pair-breaking excitations [43] and quantum depletion in Bose-
Einstein condensates [44] can give prospects of distinguishing
different excitations in momentum space.

III. SHEAR VISCOSITY

The experimental extraction of the intrinsic relaxation time
τ is a challenging task which may be implemented model-
dependently from, for example, the radio frequency excitation
spectra as the lifetime of quasiparticles [26,45]. The situation
will be difficult near Tc because the spectral shape is not
Lorentzian. A more direct means is to use a simple relation
connecting τ with experimental observables. UFG is a scale-
invariant fluid due to the divergent s-wave scattering lengths;
therefore the kinetic relation between the shear viscosity η and
the pressure P that η = Pτ is shown to apply in the normal
phase [1]. Below Tc, an altered relation has been derived from
the mean-field theory [35], with η = (P − 2

5μns)τ , where ns

is superfluid density, and the Cooper-pair contributions have
been included on both sides. The kinetic relation has recently
been implemented in experiments to test the reliability of
using a hydrodynamic linear response [41]. From a theoretical
perspective, pressure can be obtained by the minus density of
the grand potential, and for UFGs it relates to the energy ε

with the relation P = 2εn/3. At the moderate temperatures of
interest in this paper, pairing fluctuations are significant and
η can be derived by the Kubo formula as the zero-frequency
limit of the linear response function, which is highly related
with τ . Therefore, we can check the universal temperature
dependence of τ alternatively by calculating η and comparing
it with measurements.

In the remainder of this section, first we present an ap-
proximate relation connecting η and τ with thermodynamics,
which is specialized for the pseudogap and superfluid regimes
and provides an opportunity for experiments to estimate τ . It
automatically returns to the kinetic relation above T ∗. Then
we give a generalized Kubo-based expression of η where τ

lies implicitly in the self-energy and results in the broadened
spectral functions. Both of the two new relations are smoothly
applicable from zero- to high-temperature limits.

A. Relation with thermodynamical quantities

The kinetic relation η = Pτ is fulfilled only in the high-
temperature limit where quasiparticles are well defined in the
weak dissipation regime. A hypothetical form of viscosity
spectral function exhibits that P is the Drude weight at zero
frequency [25] and thus extrapolates the high-T relation to
smaller temperatures near Tc. A recent extraction of τ based
on this relation did not capture the universal behaviors [40].
This may be the consequence of not sufficiently incorporating
the pseudogap effects, which affect both the collision and
streaming terms [17], and results in a considerably different
microscopic nature.

We analyze the viscosity relation in an alternative way
from the Einstein relation η = ρnDη, with the normal fluid
density ρn = m f nn and the diffusivity Dη ∼ v2τ . The high-T
relation η = Pτ comes from the estimate that nn = n and
m f v

2n ∼ P . In the pseudogap state, however, the additional

bosonic degrees of freedom reduce the many-body effective
carrier density neff [26], which plays the role of normal density
nn and is temperature dependent. Therefore, there should be
some deviation of the viscosity-pressure relation between the
pseudogap regime and the high-T limit. Inspired by the low-
T relation derived from mean-field theory [35], we give an
approximate relation specialized at T � T ∗:

η = [
2
3εn − 2

5μ(n − neff )
]
τ, (11)

where

neff = n − 2

3

∑
p

�2

E2
p

p2

m f

[
1 − 2F 0(Ep)

2Ep
+ ∂F 0(Ep)

∂Ep

]
, (12)

with Ep =
√

ξ 2
p + �2 .

The effective normal density neff has been shown in Fig. 1
as short dashed green line, which has a different temperature
dependence from n f , like the situation between the superfluid
density ns and nb0 in strongly correlated quantum fluids. At
T = 0, neff = 0 and the remaining part in the square brackets
in Eq. (11) is consistent with the zero-temperature thermo-
dynamic relation ε = 3

5μ, which ensures the disappearance
of η at low T as observed experimentally [3,16]. This also
explains why there is no contribution of superfluid phonons in
η [26]. Although the calculations of τ based on phonons also
predict the collisionless regime near zero temperature [40],
the upturn predictions of η [18,39] cannot be observed. Our
relation introduces the pseudogap effects by the replacement
ns → n − neff to go beyond the superfluid regime, and it will
automatically return to the kinetic relation above T ∗ when
neff = n, whereas the beyond mean-field version given in the
original literature η = (P − 2

5μn)τ [35] seems unable to do
so.

It is worth noting that the relation of Eq. (11) is general and
independent of the specific expression of neff . Equation (12)
is just a kind of estimate we choose to make the calculation
of η feasible under the unified framework of the pseudogap
model. A more interesting extension of this relation may be an
unknown two-fluid hydrodynamics in the anomalous regimes
of a normal phase, with the new low-energy effective two-fluid
components neff and n − neff , which for the moment we may
call “pseudo-two-fluid” dynamics. The existence of different
effective carriers is a pervasive feature in the nonspontaneous
symmetry-breaking state of many materials [6]. Moreover, the
measurements of neff may be accessible based on new dynam-
ics, like the measurements of ns by Landau hydrodynamics
[38], and which also enable the qualitative estimation of τ by
Eq. (11).

B. Kubo expression from stress-tensor correlator

Strictly speaking, the viscosity-thermodynamics relation in
the former section is an extrapolation of both low- and high-
temperature limits, which implies use of the constraint τ−1 �
εF , which is only valid in the weak dissipation regimes. To
verify its validity at moderate temperatures of the strong
dissipation regimes, we present a generalized Kubo expres-
sion with conserved vertex corrections from the stress-stress
correlator within the pseudogap model.
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Formally, η is defined as the static limit of the correspond-
ing viscosity spectral function in terms of the imaginary part
of the stress-tensor correlation function

η = − lim
�→0

{
Im�ret

xy,xy(q = 0,�)

�

}
. (13)

The retarded correlation function �ret
xy,x̄ȳ(q,�) is Fourier trans-

formed from the real-time response

�ret
xy,x̄ȳ(q,�) = −i

∫
dtei�t�(t )〈[�̂xy(q, t ), �̂x̄ȳ(−q, 0)]〉,

(14)
where the stress tensor �̂xy contributing to η involves only the
off-diagonal bilinear kinetic term [25,28]

�̂xy(q, t ) =
∑
pσ

�0
xy(p, p + q)ĉ†

pσ (t )ĉp+qσ (t ), (15)

with �0
xy(p, p + q) = (2p + q)x(2p + q)y/(4m f ) being the

bare vertex factor.
The Matsubara correlation function �xy,xy(Q) can be rep-

resented as a bubble diagram in terms of the product of two
Green’s functions in the form

�xy,xy(Q) =
∑

P

�0
xy(p, p + q)G(P)G(P + Q)

×�xy(P + Q, P), (16)

where the dressed vertex function �xy can be given by an
integral equation on the t-matrix level,

�xy(P + Q, P) = �0
xy(p + q, p) +

∑
Q′

t (Q′)G(Q′ − P)

× G(Q′− P − Q)�xy(Q′− P− Q, Q′ − P).

(17)

For �xy, the Ward identities can be maintained by three types
of ladder diagrams in the (GG0)G0 scheme: a direct contri-
bution called the Maki-Thompson (MT) diagram, and two
exchange contributions called Aslamazov-Larkin (AL) dia-
grams [46]. In the same spirit of pseudogap approximations,
by decomposing t (Q′) into two parts, �xy can be decomposed
into the superconducting �sc and pseudogap �pg contributions
(omitting the subscript xy), where the former contains only
the MT diagram, as � = �0 + �MT

sc + �MT
pg + �AL1

pg + �AL2
pg .

Moreover, they satisfy a further simplified relation �AL1
pg +

�AL2
pg = −2�MT

pg [46].
One then inserts Eq. (17) with these diagrammatic contri-

butions into Eq. (16), and it turns to a compact form,

�xy,xy(Q) =
∑

P

�0
xy(p, p + q)�0

xy(p, p − q)

× [G(P)G(P + Q) − Fsc(P)Fsc(P + Q)

+ Fpg(P)Fpg(P + Q)]. (18)

After doing the frequency summation, the analytical continu-
ation i�m = � + i0+, and taking the limit � → 0 in Eq. (13),
we obtain the compact final form:

η = − 1

15m2
f

∫
d3p

(2π )3
p4

∫
dε

2π

∂F 0(ε)

∂ε

× [
A2(p, ε) − B2

sc(p, ε) + B2
pg(p, ε)

]
. (19)

Here the spectral functions of the generalized normal and
anomalous Green’s functions A(p, ε) =−2ImG(p, ε) and
Bsc(pg)(p, ε) =−2ImFsc(pg)(p, ε) are the same as those of the
pseudogap model and some high-Tc literature [27,45]:

G(p, ω) =
(

ω − ξp + iγ − �2
pg

ω + ξp + iγ
− �2

sc

ω + ξp

)−1

,

Fsc(p, ω) = −�sc

ω + ξp + i0+
1

ω − ξp − �2

ω+ξp
+ i0+ ,

Fpg(p, ω) = −�pg

ω + ξp + iγ
G(p, ω). (20)

The additional term γ = (2τ )−1 is inversely proportional to τ ,
which acts as a non-negligible damping term in the imaginary
part of retarded self-energy, leading to the broadening of the
spectral functions. Such broadening is a universal feature that
also shows incoherent metals with T -linear resistivity [8,11].
Note that [28] did a great job in computing the nonperturbative
results for the frequency-dependent shear viscosity spectral
function by including the self-energy, MT, and AL diagrams
in the stress-tensor correlation functions and applying them to
high-temperature regimes. Our calculations mainly deal with
the fundamental natures at 0 � T � T ∗.

C. Results of η/n and η/s

In Fig. 4(a), the plot of Eq. (11) (black) is almost identical
to that of Eq. (19) (red), in accordance with some quanti-
tative overestimates. Two reconstructions of the same inho-
mogeneous measurement by Joseph et al. [16] and Bluhm
et al. [20] are respectively shown in blue circles and a green
dashed line, where the former uses an iterative method and
the latter employs anisotropic fluid dynamics to extract the
local shear viscosity. Our black line locates close to the curve
of Joseph et al. [16] above Tc, which is also considered to
have some overestimation [20]. However, a robust non-Fermi
liquid signal independent of adjustable parameters is still
revealed by this curve, where a rapid drop starts above Tc

instead of at Tc, which is exhibited by our two curves too.
The smooth average of QMC results (orange dots) [22] also
shows such a significant drop, but it lies systematically below
our curves with only the fit in shape. Similar phenomena
have been reported from the particle conductive observations
in two-terminal configurations [47,48], where unexpected en-
hancements occur before the superfluid transition, which also
demonstrates the effects of preformed pairs [49]. Both of the
reconstructions shown in the figure have systematic errors (not
plotted here), and the approach in the work of Bluhm et al.
[20] only uses data where the whole cloud is in the normal
phase, so the sensitivity to η decreases as T → Tc, which may
obscure the phenomenon of a rapid drop above Tc. Perhaps a
future “pseudo-two-fluid” dynamics in the anomalous normal
phase with neff and n − neff as the new effective two-fluid
components will provide further understanding, the concept
of which has been proposed at the end of Sec. III A.

Previous microscopic calculations of η have some diffi-
culties at either low [25] or high temperatures [17,26], and
the disagreement near Tc seems incompatible [dark yellow,
short dashed line and magenta dash-dotted line in Fig. 4(a)].
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FIG. 4. Shear viscosity as a function of reduced temperature in
units of (a) particle density and (b) entropy density. Our calculations
of Eqs. (11) and (19) are shown in black and red lines, respectively.
For comparison, we show the experimental reconstructions from
Joseph et al. [16] (blue circles) and Bluhm et al. [20] (green dashed
line), and other theoretical results from Guo et al. [26] (dark yellow
short dashed line) around Tc, Enss et al. [25] (magenta dash-dotted
line) at T > Tc, as well as the QMC result from Wlazlowski et al.
[22] (orange dots). The inset of (a) shows a wide temperature regime,
where the kinetic result [17] η/n = 15(mT )3/2/(32

√
π ) is shown in

olive dashed line. The gray dashed lines on the bottom and top of
(b) indicate the lower and upper bounds of η/s [10,11].

Our Kubo result lies between them and join smoothly from
zero to kinetic limits, as shown in the inset of Fig. 4(a). The
high-T results almost coincide with the kinetic temperature
dependence η/n = 15(mT )3/2/(32

√
π ) [17]. The Kubo curve

agrees well with the previous theory [26] from the current-
current correlation function, also based on the pseudogap
model, and the viscosity-independent fitting parameter in their
work is naturally fixed in our calculations. In addition, the
discrepancies in the pseudogap regime between our results
and the theory based on the self-consistent (GG)G scheme
[25] come from the different t-matrix approximations with
different versions: in order to approximately approach the
anomalous pseudogap regime, the (GG0)G0 scheme starts
from the properties of low-temperature superfluids, while
the (GG)G scheme starts from the high-temperature normal
fermions.

Figure 4(b) shows η in units of entropy density s to
compare with a wider class of theories. Applications of holo-
graphic duality predict certain universalities of η/s, such as
the famous KSS lower bound η/s � 1/(4π ) [10] and a newly
proposed upper bound η/s � T τ from diffusivity [11]. Our
red line has a minimum � 0.52, about six times higher than
the KSS bound. More significantly, this line has a similar
temperature dependence to the upper bound, with about 1.5
times lower, η/s � 2T τ/3. The entropy density we used is
from the MIT experiment [50]. Our results not only verify the
unproved upper bound in the UFGs, but they also demonstrate
the robustness between τ and transport coefficients in a sys-
tematic way.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have developed an extensible theoreti-
cal method that enables study of the scattering mechanisms
during thermalization. We have presented a three-fluid dy-
namics that contains fermionic and bosonic excitations and
is consistent with the microscopic pseudogap model, through
which the scattering time τ is calculated by opening almost
all scattering channels both for two elementary excitations
of fermions and composite bosons, and for an elementary
excitation of fermions only. We have also obtained two re-
lations of η and τ . One is linear with the prefactor of the
thermodynamic quantities; another is complex by presenting
a Kubo-based expression for η on the stress tensor-tensor
correlation functions. Our theoretical results fit well with
measurements and other theories. And we have verified the
newly proposed universal upper bound of η/s.

Our results have clearly exhibited the contribution of
each scattering process to η at different temperatures and
verified the importance of pairs. By comparing various re-
laxation processes among different excitations, we obtain
deeper insights of the superfluid and pseudogap phases. We
conclude that the boson-fermion scattering channel leads to
the universal thermalization time behaviors associated with
anomalous transport, and the scale invariance of unitary Fermi
gases implies broad applications of our results in different
strongly correlated quantum systems where exotic relaxation
mechanisms arise, ranging from the important materials [6] to
dense quark matters with a similar boson-fermion mixed form
[51].

Additionally, our method can be used to study thermal
relaxation processes and sound diffusivity consisting of mo-
mentum and heat, which have been measured in homoge-
neous traps recently [4,41]. The thermal conductivity κ of
an ultracold Fermi gas in the BCS-BEC crossover shows
some interesting phenomena at the pseudogap and superfluid
regimes [52]. The sound diffusivity attains a universal con-
stant below Tc, which may be quantitatively understood within
our theoretical framework.
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APPENDIX: COLLISION INTEGRALS

Here we express the various collision integrals to access
relaxation processes for the elementary components n f and
nb1 , which is directly applicable in analogous physical systems

with composite bosons and fermions. The collision integral
terms of mutual scattering between the same components
Cf f [F ] and Cb1b1 [B] have been well studied in early work
[29,53–55]. They only differ in the distribution functions with
the following forms:

Cf f [F] = 1

π3m2
f

∫
dp1

∫
dp2

∫
dp3

∫
dp4

dσ f

d�
δ(p1 + p2 − p3 − p4)δ

(
εp1 + εp2 − εp3 − εp4

)
× [δ(k − p1) + δ(k − p2) − δ(k − p3) − δ(k − p4)][(1 − F )(1 − F2)F3F4 − FF2(1 − F3)(1 − F4)], (A1)

Cb1b1 [F] = 1

π3m2
b

∫
dq1

∫
dq2

∫
dq3

∫
dq4

dσb

d�
δ(q1 + q2 − q3 − q4)δ

(
εq1 + εq2 − εq3 − εq4

)
× [δ(k − q1) + δ(k − q2) − δ(k − q3) − δ(k − q4)][(1 + B1)(1 + B2)B3B4 − B1B2(1 + B3)(1 + B4)]. (A2)

We denote k = p, q, and Fi ≡ F (pi, t ), Bi ≡ B(qi, t ) represent the actual Fermi or Bose distribution function with i = 1, 2, 3, 4.
Since each kind of scattering is considered separately, their differential cross sections are in the vacuum form to avoid double

counting: dσb, f

d�
= a2

b, f

1+p2
r a2

b, f
, where pr is the relative momentum of colliding particles, and the subscript (b, f ) presents the

corresponding scattering processes with scattering lengths of ab, a f and a f b, respectively.
We show other collision integrals below:

Cf b0 [F] = 8nb0

m2
f b

∫
dp1

∫
dp2

∫
dq1

dσ f b

d�
δ(p1 − p2 − q1)δ

(
εb0 + εp1 − εp2 − εq1

)
× [δ(k − p1) − δ(k − p2) − δ(k − q1)][(1 − F1)F2B1 − F1(1 − F2)(1 + B1)], (A3)

C′
f b0

[F] = nb0

π3m2
f b

∫
dp1

∫
dp2

∫
dp3

∫
dp4

dσ f b

d�
δ(p1 − p2 − q)δ(q − p3 − p4)

× δ
(
εb0 + εp1 − εp2 − εp3 − εp4

)
[δ(k − p1) − δ(k − p2) − δ(k − p3) − δ(k − p4)]

× [(1 − F1)F2F3F4 − F1(1 − F2)(1 − F3)(1 − F4)], (A4)

Cf b1 [F] = 1

π3m2
f b

∫
dp1

∫
dq1

∫
dp2

∫
dq2

dσ f b

d�
δ(p1 + q1 − p2 − q2)

× δ
(
εp1 + εq1 − εp2 − εq2

)
[δ(k − p1) + δ(k − q1) − δ(k − p2) − δ(k − q2)]

× [(1 − F1)(1 + B1)F2B2 − F1B1(1 − F2)(1 + B2)], (A5)

C′
f b1

[F] = 1

8π6m2
f b

∫
dp1

∫
dq1

∫
dp2

∫
dp3

∫
dp4

dσ f b

d�
δ(p1 + q1 − p2 − q2)δ(q2 − p3 − p4)

× [δ(k − p1) + δ(k − q1) − δ(k − p2) − δ(k − p3) − δ(k − p4)]

× δ
(
εq1 + εp1 − εp2 − εp3 − εp4

)
[(1 − F1)(1 + B1)F2F3F4 − F1B1(1 − F2)(1 − F3)(1 − F4)], (A6)

Cb1b0 [F] = 8nb0

m2
f b

∫
dq1

∫
dq2

∫
dq3

dσb

d�
δ(q1 − q2 − q3)δ

(
εb0 + εq1 − εq2 − εq3

)
× [δ(k − q1) − δ(k − q2) − δ(k − q3)][(1 + B1)B2B3 − B1(1 + B2)(1 + B3)]. (A7)

The trial function � is chosen as the general form for shear
viscosity � = uνuν̄ − δνν̄u2/3, where uν,ν̄ are the components
of velocity, u = p/m f (q/mb). Sequentially, the linearized
collision terms become Cjl [F] = Cjl [δF] and C′

jl [F] =
C′

jl [δF], with the transport index j = ( f , b1) and the

component index l = ( f , b0, b1). All of the collision terms
are proportional to the trial function �i of the ith scattering
particle, and under the relaxation time approximation the
relaxation rates in Eqs. (6) and (7) can be obtained by some
multiple integrals numerically.
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