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We theoretically investigate how the presence of a reservoir of incoherent excitations affects the superfluidity
properties of resonantly driven polariton fluids. While in the absence of reservoir the two cases of a defect moving
in a fluid at rest and of a fluid flowing against a static defect are linked by a formal Galilean transformation,
where the reservoir defines a privileged reference frame attached to the semiconductor structure and causes
markedly different features between the two settings. The consequences on the critical velocity for superfluidity
are highlighted and compared to experiments in resonantly driven excitons polaritons.
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I. INTRODUCTION

Since the late 2000s, fluids of exciton-polaritons have
emerged as a most powerful platform where to investigate
quantum hydrodynamics questions related to superfluidity [1].
A key strength of these systems is that the speed of flow of the
fluid can be directly controlled by varying the incidence angle
of the pump driving laser, while defects can be engineered
both optically and at the sample fabrication stage. These
features have allowed a direct experimental implementation of
the Landau criterion for superfluidity in terms of the density
pattern generated by polariton flow past a static defect [2].
In particular, experimental observation of superfluid behaviors
was reported [3], as well as the hydrodynamic nucleation of
vortices [4] and solitons [5].

In addition to their intrinsic nonequilibrium character [1],
a series of recent experiments has unveiled another novel fea-
ture of polariton fluids, namely the presence of a reservoir of
incoherent excitations interacting with the polariton fluid and
modifying its dynamical properties. While such a reservoir is
naturally present under generic incoherent pumping schemes
[6–9], its presence was not expected a priori in coherent pump
schemes and has been experimentally established in a series of
recent works [10–12].

More specifically, our contribution [12] inferred the pres-
ence of the reservoir from an important modification of the
dispersion of collective excitations in the fluid, in particular a
significantly reduced sound speed. In order to get a deeper
understanding of the role of the reservoir and, at the same
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time, reconcile our observations with previous works on po-
lariton superflows past a static defect, a general theoretical
study of the effect of Galilean transformations on polariton
superfluidity is needed, so to identify the consequences of
the privileged frame of reference set by the underlying semi-
conductor cavity structure. These conceptual issues are the
subject of the present article.

The structure of the paper is as follows. In Sec. II we review
the standard theory of Galilean boosts in quantum mechanics,
which formally represent a symmetry for the undriven polari-
ton field within the parabolic approximation for the polariton
dispersion; as a consequence, these transformations preserve
the form of the generalized Gross-Pitaevskii equation (GPE)
for driven-dissipative polariton fluids in the absence of a reser-
voir, provided one keeps into account the proper covariance
law for the coherent pump term. The Galilean transformation
is meant as a useful mathematical mapping to link the GPE
dynamics of fluids driven with different wave vectors and
entails that, for a given value of the polariton density and
thus of the speed of sound, the perturbation induced by a
defect only depends on its relative velocity with respect to
the fluid. For instance, our mapping provides a useful link
between the relevant situations of polaritons injected against
a static defect and of a defect moving in a fluid at rest.
However, since optics in materials is generally not Lorentz
invariant and Fresnel drag effects [13,14] take place, such
a mapping does not describe a physical change of frame of
reference. As next step in Sec. III we provide a reformulation
of the Landau criterion for superfluidity in nonequilibrium
fluids based on complex-valued wave vectors. In Sec. IV
we move to the core of our work and we discuss the effect
of the reservoir of incoherent excitations on the Bogoliubov
dispersion of the collective excitations on top of a spatially
homogeneous, coherently pumped polariton fluid. The fact
that the incoherent excitations forming the reservoir, e.g., dark
excitons localized by disorder, are physically bound to the
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semiconductor cavity structure, breaks the formal Galilean
invariance of the undriven polariton field and has deep impli-
cations for the superfluidity properties of the polariton fluid,
as highlighted in Sec. V. The critical relative velocity turns
out to be different depending on whether a moving polariton
fluid is hitting a defect at rest, or a moving defect is flowing
through a polariton fluid at rest: Indeed, in the former case,
the critical velocity is related to the total blueshift of polariton
modes, while in the latter case, it receives the sole contribution
of the coherent polariton component. Conclusions are finally
drawn in Sec. VI.

II. GALILEAN TRANSFORMATIONS

The goal of this section is to illustrate a mathematical
mapping that relates the GPE dynamics of polariton fluids
driven with different pump wave vectors in the absence of a
incoherent reservoir. As a corollary, if the relative velocities
and the polariton densities are the same, then the two cases
of polaritons injected against a static defect and of a defect
moving in a fluid at rest turn out to be the same situation
depicted in two different systems of coordinate. Because of its
formal analogy, we call this transformation a Galilean boost,
even though it does not correspond to a physical change of
reference frame.

We start by considering the standard driven-dissipative
Gross-Pitaevskii equation for a resonantly pumped polariton
fluid [1,2],

i∂tψlab(x, t ) =
[
ω0 − h̄

2m
∇2 + g|ψlab|2 + Vext (x) − i

γ

2

]
ψlab

+Flab(x, t ). (1)

In the conservative part of the evolution, ω0 is the bottom
of the lower polariton band and m is the polariton mass
in the parabolic band approximation, Vext (x) the static po-
tential acting on the polaritons, g quantifies the strength
of polariton-polariton interactions. Concerning the driven-
dissipative terms, γ is the loss rate and the driving term
Flab(x, t ) is proportional to the spatiotemporal profile of the
coherent laser amplitude. In particular, the cavity material
determines the mass and interactions of the polaritons, but no
reservoir of incoherent excitations is assumed to be present at
this stage.

Now we develop the aforementioned formal Galilean boost
and with some abuse of notation employ the terminology
commonly adopted for physical Galilean transformations. For
instance, when within this analogy we refer to the “frame of
reference moving at velocity vG with respect to the labora-
tory,” we have in mind the change of coordinates y = x − vGt
(the laboratory is just one chosen frame), while the time
variable remains the same in the two coordinate systems. The
chosen convention for the sign of vG is such that a fluid
moving at velocity vG in the laboratory frame is seen as at
rest in the boosted one. The Galilean transformation is given
by the unitary operator

Ûlab→G = ei p̂vGt−x̂mvG
h̄ = ei p̂vGt

h̄ e−i x̂mvG
h̄ e+i

mv2
Gt

2h̄ , (2)

so that applied on the wave function reads

ψG(y) = [Ûlab→Gψlab](y) = e−i myvG
h̄ e−i

mv2
Gt

2h̄ ψlab(y + vGt ) .

(3)

Galilean invariance of the conservative part of the GPE
evolution (1) is then guaranteed by the parabolic form of the
kinetic energy according to elementary quantum mechanics
[15], so that in our terminology the (undriven) polariton field
is Galilean invariant (instead, the covariance of the driving
term is to be discussed in a moment). For usual polariton
systems resulting from the strong coupling of a cavity photon
mode to an excitonic transition this parabolic approximation
is accurate for the typical flow speeds considered in the
experiments [1].

Concerning the pump and loss terms, it is straightforward
to see [16] that the dynamics in the boosted frame is described
by the same GPE

i∂tψG(y, t )

=
[
ω0 − h̄

2m
∇2 + g|ψG|2 + Vext (y + vGt ) − i

γ

2

]
ψG

+ FG(y, t ), (4)

provided the pump term is covariantly transformed according
to

FG(y, t ) = Flab(y + vGt, t )e−i myvG
h̄ e−i

mv2
Gt

2h̄ . (5)

Note that this transformation involves a shift of the wave vec-
tor proportional to the velocity as well as an overall frequency
shift mv2

Gt/(2h̄). The loss term remains unchanged thanks to
the spatiotemporally local form that we have assumed from
the outset.

Equations (1) and (4) describe the same dynamics, the
observables in the two frames being linked by the usual
Galilean prescriptions: |ψlab(x, t )|2 = |ψG(y, t )|2 for the den-
sity and vflow

lab (x, t ) = vflow
G (y, t ) + vG for the flow velocity,

defined in terms of the wave function as usual as vflow =
h̄ Im[ψ∗∇ψ]/(2m |ψ |2).

Along these lines, it is natural to define for a plane-wave
[17] coherent drive with frequency ωp and wave vector kp the
detuning in the frame comoving with the fluid at vp = h̄kp/m
as �p = ωp − h̄k2

p/2m − ω0. When �p = gn0 or equivalently
ωp = ω0 + h̄k2

p/2m + gn0, the fluid of density n0 = |ψ0|2 is
characterized by a sonic dispersion with speed of sound
mc2

s = h̄�p = h̄gn0. In what follows, most of the plots will
refer to this most remarkable sonic case. Note that the overall
phase factor in Eq. (5) is needed to ensure that the density
and thus the linearity of the dispersion is independent of the
Galilean frame.

Before proceeding, it is important to stress that the Galilean
transformation discussed here is useful to mathematically
relate the dynamics of fluids injected with different speed, but
it does not correspond to a physical change of reference frame,
for instance an experimentalist running parallel to the cavity
mirrors. Indeed, for a medium with a refractive index different
from unity, light propagation in a physically boosted Lorentz
frame at velocity vL is affected by the celebrated Fresnel drag
effect [13,14,18–20], which changes the dispersion relation to
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the same order in vL/c as the Doppler shift:

ω′(k′) = ω(k′) +
(

1

n2
cav

− 1

)
vL · k′ + . . . , (6)

where the apex refers to quantities measured in the Lorentz
frame and ncav is the refractive index inside the cavity.

III. LANDAU CRITERION FOR SUPERFLUIDITY IN
NONEQUILIBRIUM SYSTEMS

According to the Landau criterion [21,22], a superfluid
is able to flow without friction at speed v around a static
defect until it is energetically favourable to create excitations
in it, i.e., if ω(k) + k · v � 0, where ω(k) is the excitation
dispersion of the fluid at rest. This provides the well-known
expression for the critical velocity,

vc = min
k

ω(k)

k
. (7)

For a weakly interacting fluid of bosons with contact
interactions and dispersion ω(k) = cs|k| this gives vc = cs =√

h̄ gn0/m, where n0 = |ψ0|2 is the particle density, m is the
mass and g the interaction coupling strength.

Alternatively, a weak defect is able to move through a su-
perfluid without friction if the dispersion ω(k) of elementary
excitations in the latter has no intersection with a straight line
ω = −v · k. For particles with a parabolic dispersion and local
interactions, equivalence of the two points of view is ensured
by the Galilean invariance.

This formulation applies well to superfluids of material
particles with a long lifetime of the collective excitations,
i.e., where the imaginary part Im[ω(k)] of the dispersion
relation is much smaller than the real part Re[ω(k)] and can
be neglected at long wavelength. However, subtleties arise in
the case of driven-dissipative fluids, e.g., the polariton ones
where the real and imaginary parts of the dispersion ω(k) may
have comparable magnitudes. The crucial importance of this
effect for incoherently pumped polariton condensates was first
unveiled in Ref. [23], where generalized forms of the Landau
criterion for driven-dissipative systems were introduced in
terms of real frequencies and complex momenta. In particular,
for a polariton superfluid flowing against an obstacle it was
shown that a pattern forms when the velocity of the fluid is
larger than the critical velocity, thus showing clear superfluid-
like features even in the presence of drive and dissipation. For
the case of coherent pumping, a phenomenological way of as-
sessing superfluidity is by computing the drag force, for which
a pioneering discussion of the effect of drive and losses was
reported in Ref. [24]. Notice that driven dissipative polariton
fluids may not satisfy other definitions of superfluidity, e.g.,

the one in terms of the transverse current-current response
[25].

In spite of the complications arising from its driven-
dissipative nature, the Galilean invariance argument stating
that the critical (relative) speed depends on the density but not
on the reference frame remains true for the polariton field, as a
corollary of what shown in the previous section; importantly,
this does not assume to work at the acoustic point. More pre-
cisely, in the approximation of an infinite uniform excitation
spot [17], the pattern created by scattering against a defect
(hence the superfluidity threshold) depends only on density
and on the relative velocity between the defect and the fluid:
the flow against a static defect and the defect moving through
the fluid at rest correspond to the same dynamics viewed in
two different Galilean frames. Having argued the validity of
our next results in any reference frame, in this section we
turn to a formal study of the density pattern created when
a polariton fluid is coherently excited into motion against a
static obstacle by a monochromatic pump of frequency ωp

and in-plane wave vector kp [17], with a special focus on the
effects due to drive and dissipation.

In order to determine the density modulation pattern
of the fluid flowing around a weak defect at rest, we
adopt the method of Ref. [2] and linearize the GPE (1) on
top of the homogeneous solution at the pump’s wave vector
kp and frequency ωp, via the ansatz

ψ (x, t ) = ei(kp·x−ωpt )

[
ψ0 +

∫
d k δψkeik·x

]
, (8)

with δψ of the same order of the weak defect potential δVdef .
Importantly, since the defect produces a static perturbation on
the fluid, the wave function (8) keeps a monochromatic form
at the pump frequency ωp.

Inserting this ansatz into the GPE (1) and keeping the terms
of the first order in δVdef , one finds that the different Fourier
components δψk are decoupled and each of them satisfies[

ω0 + h̄(kp + k)2

2m
+ 2g|ψ0|2 − ωp − i

γ

2

]
δψk + ψ2

0 δψ∗
−k

= −δVdef (k)ψ0 . (9)

Then, by combining this equation with the complex conjugate
one and solving the matrix inversion problem, we obtain for
an arbitrary (real) potential

δψk = χV (k)ψ0δVdef (k), (10)

where the response function to an external potential is defined
as

χV (k) = [L (k)]−1
11 − [L (k)]−1

12 , (11)

and the 2 × 2 Bogoliubov matrix reads

L (k) =
[
η(kp + k) + gn0 − iγ /2 gψ0

2

−gψ0
∗2 −η(kp − k) − gn0 − iγ /2

]
. (12)

Here k = kp + k is the (real-valued) total momentum and the detuning function

η(k) = ω0 + h̄k2/2m + gn0 − ωp . (13)
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FIG. 1. Frequency and momentum dependence of the (non-
normalized) transmittivity of a coherently pumped cavity to a weak
monocromatic probe of frequency ω (measured with respect to the
pump frequency) and wave vector k. The pump injects a coherent
polariton fluid at kp = 0 and no incoherent reservoir is assumed to
be present. The pump intensity is adjusted to be at the resonant
point at which �p = gn0 and the Bogoliubov dispersion is sonic
and gapless. As usual [26], the transmission amplitude is set by
the matrix element [ω − Lk]−1|11 with the Bogoliubov matrix Lk

being defined in Eq. (12). The green dashes (dots) indicate the
particle (hole) branch of the Bogoliubov dispersion of the elementary
excitations, while the cyan dashes indicate the bare polariton band at
linear regime. Frequencies are measured in units of the interaction
energy gn0; lengths (momenta) in units of the (inverse) healing length
ξ = [h̄2/

√
mgn0]1/2.

The perturbed wave function in real space is finally obtained
from (10) by means of the Fourier transform (8). The Bogoli-
ubov dispersion relation ω(k) corresponds to the eigenvalues
of the matrix (12), i.e., the zeros of det [ω − L (k)].

Because of the presence of the imaginary loss terms in (9)
and then (12), the frequency ω(k) has complex values for real
values of the momentum k. Physically, this corresponds to
plane-wave excitations having a finite lifetime. In Fig. 1 we
plot in green dashes the dispersion of an interacting polariton
fluid at kp = 0 and in the sonic regime. The underlying color
plot shows the magnitude of the response δψ (k, ω) to a
monochromatic optical probe at (k, ωp + ω), which is pro-
portional to the (1,1) component of the susceptibility matrix,
[ω − L (k)]−1|11. The linewidth of the response along the
frequency axis is set by the imaginary part of ω, which in this
case is flat and equal to γ .

While these complex frequency modes allow to study
dynamical excitations, it was first noted in Ref. [23] that the
response of the steady state to static external perturbations is
most conveniently characterized in terms of modes with a real
frequency and a complex momentum. In classical electromag-
netism [27], such waves naturally appear when dealing with
monochromatic light incident on an absorbing medium. In our
context, this point of view is implicitly assumed upon using
the residue theorem to evaluate the Fourier integral (8): Since
the defect is at rest, it generates a static perturbation in the

fluid at ω = 0, whose peak wave vectors k are determined by
the zeros of det L (k), i.e., the poles of χV (k).

In the simplest case of a one-dimensional geometry and
a delta-like potential at rest giving a momentum-independent
δVdef (k) = δVdef , the position of the poles in the complex k
plane are shown in Fig. 2(a) for different values of the pump
wave vector kp > 0 (that is, of the speed h̄kp/m of the fluid)
and a resonant laser frequency ωp = h̄k2

p/(2m) + gn0 + ω0

such that the Bogoliubov dispersion is gapless and has a sonic
behavior with a well-defined speed of sound cs.

With the residue theorem technique, evaluation of the
Fourier integral (8) for x > 0 (x < 0) only picks the poles in
the upper (lower) complex half-plane. For the x > 0 region,
a single pole is present and this has a vanishing real part. It
corresponds then to the exponentially decaying perturbation
that is visible in Fig. 2(b) in the x > 0 downstream region.
The faster the flow, the closer the pole to the real axis, so the
slower the exponential decay.

The behavior is richer in the x < 0 upstream region: for
small speeds kp, the two poles have again a vanishing real
part and the perturbation displays a monotonic decay. Around
h̄kp/mcs � 0.75 the poles merge in the complex k plane at a
finite Im[k] and then separate again along a direction parallel
to the real axis. For sufficiently large speeds, their real part
exceeds the imaginary one so that the perturbation in the fluid
starts displaying a clear oscillatory character upstream of the
defect.

As the association between the real part of the wave
vector and the transferred momentum suggests, this change in
behavior is expected to result into a sharp change in the value
of the drag force exerted by the moving fluid onto the defect,
defined as [23,24,28]

Fd = −
∫

dx ∇Vdef (x) |ψ (x)|2 . (14)

A plot of Fd as a function of the fluid speed is shown in
Fig. 2(d) for the sonic case and qualitatively agrees with this
prediction.

In particular, the position of the threshold position is con-
sistent with the naive Landau criterion based on comparing the
flow speed with the speed of sound. The velocity-independent
value of the friction force at high speeds is typical of one-
dimensional superfluids and was first anticipated in Ref. [28]
for conservative atomic systems. Finally, the smaller the loss
rate γ , the sharper the transition from a frictionless superfluid
behavior at slow speeds to a finite friction force at fast speeds.

While this picture is qualitatively accurate, establishing a
precise relation between the location of the threshold and the
behavior of the poles in the k-complex plane requires a bit
more careful analysis. As one can see in the lower half-plane
of Fig. 2(a), the k vectors aquire a real part in fact at a smaller
value kp ≈ 0.75 than the threshold that is visible in the force
plot around kp ≈ 1. To explain this feature, one can see in
Fig. 2(c) that the different curves of Re[k]/Im[k] for different
values of the loss rate cross at a single value close to

√
3

[29] for a value of the pump wave vector h̄kp � mcs � 1 that
approximately corresponds to the threshold for the drag force
shown in Fig. 2(d). This suggests that the threshold is not
determined by the point where the k vectors aquire a real part,
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FIG. 2. (a) Evolution of the four complex poles of the one-dimensional response function χV (k ∈ C) for different values of the flow speed
kp > 0. The residue theorem is to be applied to the upper (lower) half–plane for x > 0 (x < 0). (b) Spatial profile of the density modulation
induced by the defect (located at x = 0) for different values of kp. More precisely, the renormalized density perturbation g[n(x)−n0]

δVdef
is reported.

(c) Ratio |Re[k]/Im[k]| between the real and imaginary part of the poles as a function of kp and for different dissipation rates; the horizontal
dashed line indicates

√
3. (d) Drag force as a function of the flow speed for different loss rates γ . Across (a–d) the pump frequency is

kept at the sonic resonance point �p = gn0, unless differently specified the damping is set to γ /gn0 = 0.2, and no incoherent reservoir is
present.

but rather by the point when the real part exceeds (by a factor√
3) the imaginary part.

IV. BOGOLIUBOV DISPERSION IN THE PRESENCE OF
AN INCOHERENT RESERVOIR

The discussion in the previous sections was based on a
driven-dissipative, yet purely coherent dynamics of the polari-
ton fluid. Recent experimental works [10–12] have suggested
that an incoherent reservoir of excitations—most likely of
dark-excitonic nature—is excited even under a coherent pump
via nonradiative absorption processes.

Based on the analysis in the supplemental material in
Ref. [12], it is legitimate to assume that the reservoir mostly
consists of excitonic states that are energetically close to

bottom of the lower polariton band where the coherent po-
lariton fluid is located. Since these states are detuned from
the center of the exciton line by the Rabi splitting, they must
be trapped around the minima of the disorder potential in
the quantum well. As such, they are spatially localized and
attached to the microcavity frame of reference. In principle
the situation may be different in the case of an incoherent
pumping, where spatially extended electronic and excitonic
states are available and play a major role: indeed, these can
be electrically set into motion and drag the polariton fluid
[30,31]; however, if we instead consider the drag exerted by a
polariton flow on the excitons, due to their much heavier mass
and finite lifetime, then the excitonic propagation velocity
would be typically much slower than polaritons. Yet differ-
ent is the physics of atomic or Helium superfluids at finite
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temperature, where a sizable normal component fraction is
present in addition to the superfluid: While an isolated fluid
would fulfill Galilean invariance, the incoherent normal com-
ponent of a fluid contained in a vessel is able to move but still
feels the friction of the walls, which then define a privileged
reference frame [22].

For the system of coherently pumped polaritons under
consideration here, the effect of the incoherent reservoir can
be theoretically modeled by including the reservoir density
nR(x) to the equations of motion,

i∂tψ =
(

ω0 − h̄∇2

2m
+ g|ψ |2 + gRnR − i

γ

2

)
ψ

+ F (x, t ), (15)

∂t nR = −γRnR + γinc|ψ |2 . (16)

Here the decay of coherent polaritons into incoherent excita-
tions occurs at a rate γinc. These latter give a local contribution
gRnR to the polariton blueshift, do not move in space and
decay at a rate γR. The total decay of polaritons γ includes
the γinc contribution.

At stationarity under a monochromatic pump at ωp, one
has ψ (x, t ) = ψ0 exp(−iωpt ) and, from (16), one gets a time-
independent nR(x) = γinc

γR
|ψ0(x)|2. Reinjecting this expression

into (15), one simply obtains a renormalized nonlinear cou-

pling strength

geff = g + γinc

γR
gR . (17)

Except for the reinforced interactions and the consequently
reinforced blueshift μT = geffn0 = gn0 + gRnR, the reservoir
has thus no effect on the stationary state. The usual optical
bistability and optical limiting behaviors are found depending
on whether the laser frequency ωp is blue or red detuned as
compared to the polariton mode at kp.

Even more importantly for our purposes, superfluidity
features the usual behaviors with a speed of sound defined
by the total blueshift as mc2

s,T = μT = gn0 + gRnR. Since this
reasoning requires stationarity of both the polariton ψ (x) and
the reservoir nR(x) densities, this result only holds for static
defects that do not induce time-dependent modulations to the
fluid density, that is defects at rest in a (possibly moving) fluid.
And, of course, these statements are only relevant if the fluid
is indeed able to reach a dynamically stable steady state: as it
was pointed out in Ref. [32], the presence of a slow reservoir
can in fact give rise to dynamical instabilities that destabilize
the stationary state.

The physics gets even more intriguing as soon as one looks
at the dynamics of the excitations on top of the fluid, as first
noticed in Ref. [12]. In the homogeneous case under a plane-
wave coherent pump of wave vector kp and frequency ωp,
the steady-state solution has the form ψ0(r, t ) = ψ0 exp[i(kp ·
r − ωpt )] and the Bogoliubov theory involves a 3 × 3 matrix

L (k) =

⎡
⎢⎣

η(kp + k) + gn0 − i γ

2 gψ0
2 gRψ0

−gψ0
∗2 −η(kp − k) − gn0 − i γ

2 −gRψ0

iγincψ0 iγincψ0
∗ −iγR

⎤
⎥⎦, (18)

where k is again the relative wave vector of the excitation on
top of the moving fluid and the effective detuning function is
now η(k) = ω0 + h̄k2/2m + gn0 + gRnR − ωp. The first and
second columns/rows of L (k) correspond to the polariton
modulation δψk and δψ∗

−k, while the third column/row corre-
sponds to the modulation of the reservoir density δnR.

The corresponding eigenvalue problem can be formulated
in a physically trasparent way by defining a frequency-
dependent effective coupling

geff (ω) = g + γinc

−iω + γR
gR, (19)

which allows to eliminate the reservoir by replacing g with
geff (ω) [33], and thus reduce matrix (18) to an effective 2 × 2
matrix involving the polaritons only. The eigenvalue equation
for the collective mode dispersion then reads(

ω − h̄kp

m
· k + i

γ

2

)2

= η(k̃)[η(k̃) + 2geff (ω)n0] (20)

with k̃ =
√

k2
p + k2. While this expression is formally nearly

identical to the usual one (12), the ω dependence of the right-
hand side has crucial consequences onto the dispersion of
collective excitations. Of course, the usual Bogoliubov disper-
sion is recovered in the limit where high-ω perturbations are

considered, so that geff recovers g. On the other hand, the static
value (17) for geff is recovered for stationary perturbations at
ω = 0.

A. Polaritons at rest kp = 0

Let us start from the kp = 0 case. In this case, the Bogoli-
ubov matrix (18) is characterized by particle-hole and parity
symmetries, that combine in

PL (k) = −L (k)P, (21)

where

P = K

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ (22)

and K stands for complex conjugation. For a generic eigen-
vector |ωk〉 of L (k) of eigenvalue ω, this symmetry implies
that

L (k) P|ωk〉 = −ω∗P|ωk〉 , (23)

i.e., that P|ωk〉 is itself an eigenvector of L (k) of eigenvalue
−ω∗. This imposes the presence of pairs of eigenvectors
with the same imaginary part and opposite real parts. Since
the size of the matrix is three, this guarantees that at least
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FIG. 3. Dispersion of collective excitations in a polariton fluid at rest kp = 0 [left column, panels (a) and (b)] and in motion at vp = 0.8cs,T

along the x direction [right column, panels (c) and (d)] in the presence of an incoherent reservoir. Upper [(a) and (c)] panels show the real part
of the dispersion, the lower [(b) and (d)] panels show the imaginary part. The total blueshift μT is the same in all panels and pumping is tuned
at the resonance point such that �p = μT . Other parameters: γ /μT = 0.2, gR = 2g, and γR = 2γinc = 0.08 γ which means cs,0 = cs,T /

√
2

and cs � 0.9cs,0. Note that for a slightly larger γinc � 0.05γ or for vp � 0.9cs,T , the flow configuration in the right panels would become
dynamically unstable. The different curves are colored according to their nature at large wave vector k. The dashed cyan lines in the upper
panels indicate the low-k sonic dispersions (25) and (30).

one eigenvalue is purely imaginary. This mode can be in-
terpreted as a reservoir branch ωR(k) = −iγ R(k), while the
remaining two eigenvalues, corresponding to particle- and
holelike branches have general complex dispersions of the
form ω±(k) = ±ε(k) − iγ (k)/2.

Let us focus on the most relevant resonant case ωp −
ω0 = μT = gn0 + gRnR where the dispersion is expected to
be gapless and sonic. In this regime, it is possible to obtain
some analytical insight on the eigenvalue problem, which can
be recast as(

ω + i
γ

2

)2
= h̄k2

2m

[
h̄k2

2m
+ 2geff (ω)n0

]
. (24)

At small k, this yields

ω±(k) = ±csk − iγ /2 (25)

with

mc2
s = h̄μT + γ

2γR − γ
h̄gRnR. (26)

In the fast reservoir limit γR � γ , the contribution of the
reservoir is negligible and one recovers the usual speed of
sound mc2

s,T = h̄μT in terms of the total blueshift μT .
In the opposite limit γR � γ , corresponding to the typical

experimental conditions where the reservoir reacts on a much
slower timescale [10–12], the speed of sound has the smaller
value

mc2
s,0 = h̄μT − h̄gRnR = h̄gn0. (27)

This means that, from the total blueshift μT , only the com-
ponent (gn0 = g|ψ0|2) due to the polaritons contributes to
the speed of sound, while the one (gRnR) due to the in-
coherent reservoir only provides a global blueshift of the
pumped mode. This feature was experimentally observed in
the pioneering experiment [12] and is illustrated in the left
panels of Fig. 3, showing the real and imaginary parts of the
dispersion in Figs. 3(a) and 3(b), respectively. As expected,
the cyan dashed lines in Fig. 3(a) indicate the sonic dispersion
ωs = ±cs,0k with the speed of sound cs,0 predicted by (27)
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TABLE I. Summary of the three characteristic velocities introduced in the text. From left to right, the three columns indicate the notation,
the mathematical definition, and the physical meaning.

Summary of the characteristic velocities

cs,T mc2
s,T = h̄μT

(total blueshift)
Critical speed for a stationary flow against

a static defect at ω = 0

cs,0 mc2
s,0 = h̄gn0

(coherent component only)
Propagation speed of dynamical

excitations at γR � |ω + iγ /2| � μT .
Critical speed for a moving defect

cs mc2
s = h̄μT + γ

2γR−γ
h̄gRnR

(slope of dispersion at k = 0)
Propagation speed of very low frequency

dynamical excitations for |ω + iγ /2| � γR

are in excellent agreement with the exact dispersion at low
k’s. At higher k’s, the dispersion recovers the parabolic single-
particle shape. As one can see in Fig. 3(b), the imaginary part
of the reservoir mode (on the order of γR) remains always
much smaller than the one of the sonic modes (on the order
of γ /2).

While this picture is fully accurate when γ is very much
larger than γR, a subtle distinction must be done when γ is
larger but still somehow comparable to γR. In this regime,
corrections in γR/γ are important and one must distinguish
the low-k speed of sound set by (26) to the one at higher-
k’s such that | − iω(k) + γ /2| � γR, for which one exactly
recovers (27). Also in this case, of course, the sonic behavior
is only visible up to the interaction energy h̄gn0, beyond
which the dispersion recovers a single-particle behavior [34].
The physical explanation is that at very small frequencies the
reservoir can still (weakly) respond, while at higher ω’s it
behaves as a completely static background for the coherent
field fluctuations. In order to clearly see the kink in the
dispersion coming from distinction between cs and cs,0, in
Fig. 6 of the Appendix we tune γR closer to γ . These different
characteristic velocities are summarized in Table I.

In the intermediate case where γR and γ have comparable
values and the blueshift due to the reservoir is a significant
fraction of μT , the squared speed of sound c2

s predicted by (26)
may becomes negative. This results in a flat Re[ω±(k)] = 0
at small k and a linear shape of the Im[ω±(k)] starting from
−γ /2. For larger k, the slope of the dispersion approaches the
real-valued speed of sound cs,0.

B. Moving polaritons at finite kp

We conclude this section by extending the analysis to the
case of a finite in-plane momentum kp = 0, which breaks
parity. Therefore, the action of the P symmetry only entails

PL (k) = −L (−k)P (28)

and relates eigenvectors at opposite k,

L (−k) P|ωk〉 = −ω∗P|ωk〉, (29)

that is P|ωk〉 is an eigenvector of L (−k) of eigenvalue −ω∗.
This no longer implies the presence of a purely imaginary
reservoir mode and the three branches are now strongly mixed
as one can see in the right panels of Fig. 3. Note that the
branches are colored here according to their nature at large
wave vectors, while their mixing at small and intermediate
k complicates their classification. For instance, in the super-

sonic flow case considered here, the sonic mode with a wave
vector k directed in the upstream direction (that is, kx < 0) is
strongly mixed with the reservoir. In Fig. 3(c), the Doppler-
shifted sonic dispersions

ω = ±cs,0k + vp · k − iγ /2, (30)

with the speed of sound (27) and the flow speed vp = h̄kp/m
(directed along the x axis) are plotted as a dashed cyan line.
Note that this form of the Doppler shift is only accurate for
small values of the momentum k, in contrast to the case with
no reservoir where it holds for any k.

These concepts are further illustrated in the Appendix,
where we plot three different response functions in the four
cases with and without the incoherent reservoir and for a fluid
at rest or in motion. In particular, one can see in the last plot
that the brightness of one side of the upper branch is strongly
reinforced in an experiment where Bogoliubov excitations are
generated by a phononic white noise. This effect can only
occur in the presence of the reservoir, otherwise the response
functions would be simply rotated by the Doppler shift.

While the dispersions shown in Fig. 3 are all dynamically
stable, it is worth stressing that the presence of the reservoir
can make a uniform flow at finite kp dynamically unstable, as
signalled by a positive imaginary part of the dispersion. With
respect to Figs. 3(c) and 3(d) of Fig. 3, a slight increase of
γinc and thus of the reservoir fraction, or of the flow velocity
kp will make the flow unstable by pushing the peaks in Im[ω]
above zero. Similar modulational instabilities in the presence
of a reservoir have been discussed in Refs. [6–9].

V. SUPERFLUIDITY IN THE PRESENCE OF AN
INCOHERENT RESERVOIR

In Sec. II we have seen that in the absence of reservoir,
the generalized Gross-Pitaevskii equation (1) has specific
invariance properties under Galilean boosts and in Sec. III we
have shown that the superfluidity properties must be then the
same in the two cases of a defect moving through a polariton
fluid at rest and of a moving polariton fluid hitting a static
defect: these two configurations represent in fact the same pro-
cess seen in two different Galilean frames. Correspondingly,
since the (not invariant but) covariant coherent pump does
not explicitely enter the linearized Bogoliubov calculation,
the complex-valued dispersion ω(k) simply gets Doppler-
shifted ω(k) → ω(k) + k · v when going to a reference frame
moving at speed v.
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FIG. 4. Density modulation induced by a moving defect in the absence (left) and in the presence (right) of an incoherent reservoir. The
total blueshift μT is the same in all panels. The polariton fluid is at rest kp = 0 and the pump frequency is tuned at the resonant point �p = μT .
In the upper panels, the defect speed is chosen in the vicinity of the critical speed for superfluidity in the absence of incoherent reservoir,
vd = cs,T . In the lower panels, the defect speed is larger vd = 1.3 cs,T . The dashed green lines in the lower panels indicate the Mach cone of
angle 2α expected from the chosen values of the flow vd and sound (27) speeds, sin α = cs,0/vd . Reservoir parameters are close to the ones
estimated in Ref. [12], gR = 2g, γR = 2γinc = 0.08 γ . For thse values, the contributions of the polaritons and the incoherent reservoir to the
blueshift are equal, gRnR = gn0 = μT /2.

The situation is completely different in the presence of
an incoherent reservoir, as described by the generalized dy-
namics of Eqs. (15) and (16). This latter, in fact, defines
a privileged frame of reference linked to the underlying
semiconductor cavity structure. Such a feature is visible by
comparing the Bogoliubov spectra shown in the left and right
panels of Fig. 3: even though the total blueshift is the same in
the two cases, the dispersions are markedly different in both
the real and the imaginary parts.

In Fig. 4, we illustrate this breaking of Galilean invariance
by looking at the effect of the incoherent reservoir on the
density modulation pattern generated by a defect in motion
through a fluid at rest. As we expected and explicitly verified
by numerical integration of the Gross-Pitaevskii equation
[Eqs. (15) and (16)], a defect moving with constant velocity
vd in a fluid at rest with respect to the semiconductor substrate

generates a pattern which is stationary in the frame of refer-
ence of the defect.

Therefore, within linear response to a shallow defect, it is
possible to solve for the field perturbation in this frame by
using the technique illustrated in Eq. (9). Since the reservoir
equation in the defect frame [35] reads

∂t nR = −vd · ∇nR − γRnR + γinc|ψ |2, (31)

the ω = 0 condition discussed in Sec. III allows for elimi-
nation of the reservoir via a momentum-dependent effective
coupling

geff (k) = g + γinc

−ivd · k + γR
gR. (32)

Notice that this procedure of imposing ω = 0 in the defect
frame can be equivalently implemented in the laboratory
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FIG. 5. Critical speed for superfluidity in the presence of a reservoir, for a small and shallow defect moving in a polariton fluid pumped
at the sonic point �p = μT and at rest kp = 0. (a) Drag force as a function of the defect velocity vd in the absence (blue) and in the presence
(orange) of the incoherent reservoir. The force is here renormalized by the effective coupling geff Fd , so to have a fair comparison of the
two cases with and without reservoir. The vertical lines confirm that in the former case the critical speed is at cs,T , while in the latter case
it is at cs,0. An explanation for the negative drag at small vd is provided in panels (b,c) where vd = 0.02cs,T is taken. Panel (b) shows the
polariton-induced component to the blueshift g|ψ (x)|2. Panel (c) shows the incoherent reservoir contribution gRnR(x). The defect consists of
a Gaussian perturbation indicated in the plot by the cyan circle of radius three times its width. The depletion of the (slow) reservoir density
that it leaves behind it is partly filled by the (faster) polariton. Same parameters as in the previous figures, namely γ = 0.2μT , gR = 2g,
γR = 2γinc = 0.08 γ , so that cs,0 = cs,T /

√
2.

frame by solving for ω = vd · k; this is proven by expressing
the defect potential as δVdef (x − vdt ) = ∫

dkdω δ(ω − vd ·
k) δVdef (k)eik·x−iωt , and similarly for the ansatz of the field
and reservoir.

For a fully coherent polariton fluid in the absence of a
reservoir, the Galilean invariance holds and the physics only
depends on the relative velocity of the fluid and the defect. As
a result, the left panels of Fig. 4 equivalently represent the two
cases of a fluid flowing against a static defect or of a moving
defect in a fluid at rest.

On the basis of the discussion in the previous sections, it is
natural to expect that the situation be completely different in
the presence of an incoherent reservoir, which sets a privileged
reference frame linked to the semiconductor matrix. To start
with, a pattern identical to the fully coherent case is found for
a static defect via the renormalized coupling (17), as long as
the total blueshift is the same and no dynamical instabilities
develop [32]. Instead, when it is the defect to move in a
polariton fluid at rest in the presence of a reservoir. the density
modulation pattern is shown in the right panels of Fig. 4.
These panels are plotted in the experimentally relevant γR �
γ regime for the same values of the speed vd and the total
interaction energy μT used in the left panels. It is apparent
that the critical speed is strongly reduced, as expected from
the Bogoliubov dispersion discussed in Sec. IV. Moreover, the
shape of the density modulation profile shows a clear Mach
cone of angle 2α with sin α � cs,0/vd .

A more quantitative insight on the critical speed can be
obtained looking at the plot of the friction force as a function
of the defect speed for a polariton fluid at rest shown in Fig. 5.
The force is evaluated using (14) under the assumption that
the defect only interacts with the coherent polaritons. Both
in the absence (blue line) and in the presence (orange) of the

reservoir, the friction force displays a clear threshold behavior,
losses being as usual [24] responsible for a smoothening of
the threshold. In contrast to the 1D case of Fig. 2, in the
high-speed limit the force tends to the asymptotically linear
dependence on vd predicted in Ref. [28].

As expected, the position of the threshold occurs at a
markedly lower speed in the presence of the reservoir, at a
value consistent with the effective speed of sound cs,0. The
fact that the critical speed is set by the effective high-k speed
of sound cs,0 rather than by the low-k value cs is physically
understood by noting that the density modulation is peaked
in k-space at the intersection of the Bogoliubov dispersion
with the ω = k · vd condition for the moving defect. A further
confirmation of this statement can be found in Fig. 6(a) of the
Appendix, where we show the same plot for a faster reservoir
for which the distinction between cs,0 and cs is more evident.

The origin of the peculiar negative value Fd < 0 found
in the presence of the reservoir is illustrated in Figs. 5(b)
and 5(c). A very slow defect excites quasi–resonantly the
reservoir branch of the dispersion, leaving in its wake a
reservoir depletion, which is partially refilled by the faster
polaritons. This results in an excess of polaritons behind the
defect and, thus, to a negative drag. Of course, the fact that the
force tends to accelerate (rather than brake) the defect does
not violate energy conservation, since we are dealing with a
driven-dissipative system.

Coming back to the case of a defect at rest in a moving
fluid, here the density modulation pattern is stationary in the
frame of the semiconductor cavity structure, so the ω = 0
value of the effective interaction constant geff (ω) is to be
used. As we have discussed in the previous sections, this
value recovers the interaction constant geff defined in (17)
that enters the expression for the total blueshift μT , so that
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FIG. 6. Upper: Dispersion of the collective excitations of a po-
lariton fluid at the acoustic point and in the presence of reservoir with
parameters tuned so to make clear the distinction between the three
definitions of the speed of sound: cs is the slope of the dispersion at
k = 0, cs,T takes into account the total blueshift and it is correct in the
adiabatic limit, cs,0 is only due to the self-interaction of the coherent
polariton fluid. The reservoir parameters are γR = 2γinc = 0.2 γ . For
the parameters in this figure, μR = g|ψ0|2 = μT /2, cs,0 = cs,T /

√
2 ≈

0.71cs,T , and cs ≈ 0.41cs,T . In the lower panel, one sees that the
speed cs,0 turns out to be the critical speed when superfluidity is
considered for a moving defect, e.g., by computing the drag force
(solid orange line). For comparison, the blue line shows the drag
force for a purely coherent fluid without reservoir at the same μT .

the critical speed for superfluidity is set by cs,T such that
mc2

s,T = h̄μT . It is quite remarkable how this simple result
holds independently of the relative magnitude of the polariton
and reservoir contributions to this latter and of the details
of the complex Bogoliubov dispersion in a moving fluid
discussed in Sec. IV B. The only requirement is that the flow is
dynamically stable for the chosen pump parameters. This last
subtle feature is the reason why the pioneering experiments in
Ref. [3] were in quantitative agreement with a theory that did
not include the reservoir. For what concerns the dynamical
experiments in Ref. [4], instead, the quantitative agreement

with the reservoir-less theory was guaranteed by the fact
that the experiments were performed using a short pulse of
coherent pump light, so that the reservoir density did not have
time to build up.

VI. CONCLUSIONS

In this work we have reported a detailed theoretical study
of the effect of a reservoir of incoherent excitations on the
superfluidity properties of polariton fluids in planar micro-
cavities. In the absence of a reservoir, a formal Galilean
tranformation relates the two situations of a fluid flowing
against a static defect and of a defect moving in a fluid at rest.
As a result, the dispersions of the Bogoliubov excitations are
related by a simple Doppler shift and the density modulation
pattern are identical in the two cases, as it normally happens
in Galilean invariant fluids of material particles in free space.

On the contrary, the presence of the reservoir of dark lo-
calized excitons fixes a privileged laboratory reference frame
linked to the semiconductor cavity structure. This breaking of
Galilean invariance is visible in the Bogoliubov dispersion of
the collective excitations in the fluid and in the density modu-
lation pattern generated by a defect: While the effective speed
of sound probed by a defect at rest is univocally determined by
the total blueshift of the polariton modes as in the experiments
of Ref. [3], the one probed by a moving defect is significantly
smaller and mostly determined by the polariton contribution
to the blueshift. This results is of crucial importance to recon-
cile the historical demonstrations of polariton superfluidity in
Refs. [3,4] with the recent experiment in Refs. [12].

Beyond the microcavity polariton systems on which this
article is focused, our results can be straightforwardly applied
to other physical realizations of fluids of light such as photons
propagating in cavityless nonlinear optical media [36]. While
a sort of Galilean invariance along the transverse plane holds
for instantaneous Kerr-like nonlinearities [37], a strong break-
ing of Galilean invariance is in fact expected to occur when the
optical nonlinearity has a thermal nature [38]. This is a crucial
feature that needs being duly taken into account when using
quantum fluids of light as quantum simulators.
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APPENDIX

Dynamically relevant speed of sound

In the main text we take for the reservoir relaxation rate the
value γR = 0.08 γ directly estimated in Ref. [12], and choose
gR = 2g, γinc = γR/2, so to have half of the total blueshift due
to the reservoir and half to the coherent part of the fluid. With
these parameters cs,0 is quite close to cs, which determines
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FIG. 7. From left to right: Color plots of |χ11|, |χ12|, |χ11 − χ12| as functions of (k, ω). From top to bottom: without reservoir and kp = 0,
without reservoir and vp = 1.1cs,T , with reservoir and kp = 0, and with reservoir and vp = 1.1cs,T . The reservoir parameters are γR = 2γinc =
0.08 γ . In particular, looking at the last column, it is clear that having both kp = 0 and a reservoir allows for having different luminescence (as
generated by phononic white noise) on the left and right particle branches, while the colorplot is only Doppler shifted (shear mapping) if the
reservoir is absent.

the slope of the dispersion only at very low momenta. Indeed,
in Fig. 3(a) we plot only the comparison with cs,0. Also the
dynamical response to a moving defect is mainly determined
by cs,0, see Fig. 5(a). In order to better highlight the crucial
distinction between cs,0 and cs, in this paragraph we set γR =
2γinc = 0.2 γ . Doing so, it is well visible in Fig. 6(a) that cs

defines the slope of the dispersion in the immediate proximity
of k = 0, but very soon cs,0 gets more relevant; when the wave
vector exceeds the inverse of the healing length the parabolic
single particle character of the dispersion dominates. Also for
the superfluidity properties the dynamically relevant critical
velocity is clearly cs,0, as probed by the drag force in Fig. 6(b).
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Response functions

The dynamic response function is defined as

χ (k, ω) = 1

ω − L (k)
. (A1)

Physically, χ11(k, ω) is the response to a probe at (kp +
k, ωp + ω) measured at the probe momentum and frequency,
while χ12 describes the response in a four-wave mixing setup;
finally, χ11 − χ12 was considered in Ref. [12] and represents
the susceptibility to scattering with phonons (or to any real
field that couples to the polariton density). In Fig. 7 we
plot these quantities (from left to right), for four different

situations. When a polariton fluid is considered in the absence
of reservoir, Galilean invariance ensures that the physical
susceptibility of a fluid at rest (first row) gets Doppler shifted
when setting the fluid into motion (second row). Notice that
the Doppler shift corresponds to a k-dependent translation or
shear mapping and not to a rigid rotation, so that one of the
branches appears broader, but the point is that the “pixels”
are moved but do not change their color (p.e. the peaks at
±k reach the same maximum). In the plots in the last row,
which refer to the case with a resevoir, the left particle branch
is instead much brighter and qualitatively different than the
right one, which is only possible because Galilean invariance
is broken.
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