
PHYSICAL REVIEW RESEARCH 2, 023156 (2020)

Many-variable variational Monte Carlo study of superconductivity in two-band
Hubbard models with an incipient band
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We study superconductivity in two-band models where one of the bands does or does not intersect the Fermi
level depending on the parameter values. Applying a many-variable variational Monte Carlo method for a
Hubbard model on two-leg ladder and bilayer square lattices, we show that superconductivity can be enhanced
in a parameter regime where the edge of one of the bands is near the Fermi energy, that is, when the band
is incipient. The resemblance of the present results to those obtained by a weak-coupling method in a recent
study suggests that, even in the large-U regime, the suppression of the near-zero-energy spin fluctuations and the
development of finite-energy spin fluctuations are the key factors for the enhancement of superconductivity by
an incipient band.
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I. INTRODUCTION

A purely electronic mechanism of superconductivity is
expected to exhibit extremely high Tc due to the large en-
ergy scale of the pairing glue originating from quantum
fluctuations, such as spin, charge, and orbital fluctuations.
In particular, spin-fluctuation-mediated pairing is one of the
leading candidate mechanisms at work in unconventional
high-temperature superconductors, namely, cuprates and iron-
based superconductors.

In particular, in the early days of the study of iron-based
superconductors, it was considered that the Fermi surface
nesting between electron and hole Fermi surfaces, combined
with Hubbard U , induces spin fluctuations, which in turn act
as a pairing interaction around a certain wave vector Q if
the gap sign changes across Q. This kind of superconducting
gap is referred to as the s± pairing [1–6]. However, the
spin-fluctuation theory has been challenged by the discovery
of (heavily) electron-doped iron-based superconductors with
a relatively high Tc where holelike bands sink below the
Fermi level leaving only electronlike Fermi surfaces [7–19].
Naively, removing the hole pocket is expected to destroy the
spin-fluctuation-mediated pairing interaction and suppress Tc

rapidly.
After these observations, “incipient bands,” which sit

close to but do not intersect the Fermi level, have re-
ceived much attention. Various authors have suggested that
the spin-fluctuation scattering of pairs between an electron
Fermi surface and an incipient hole band can induce s±
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pairing [1,15,17,20–25]. In this context, the bilayer Hubbard
model, which has been extensively studied in the past [26–35],
has recently attracted renewed focus. Having hole and elec-
tron Fermi surfaces, it can be regarded as a single-orbital
analog of the iron-based superconductors. In fact, it has been
found in previous studies that s± pairing is favored over dx2−y2

pairing by increasing the relative strength of the interlayer
nearest hopping to the intralayer nearest hopping [36]. Fur-
thermore, as one of the bands becomes shallow or incipient,
the spectral weight of spin fluctuation is transferred to higher
energies, which can lead to an s± pairing state in which a gap
appears on the hole band with the opposite sign to the gap on
the electron Fermi surfaces [37–39].

Regarding the incipient band situation, it was proposed in
Ref. [40] by one of the present authors and his co-workers
that strongly enhanced superconductivity can take place in
a system with coexisting wide and narrow bands when the
narrow band sits in the vicinity of the Fermi level. There,
the Hubbard model on a two-leg ladder was studied within
the fluctuation exchange (FLEX) approximation. In the two-
leg ladder model, which is a two-band model with bond-
ing and antibonding bands, one of the bands becomes wide
and the other becomes narrow when diagonal hoppings are
introduced. In today’s terminology, the narrow band in this
case is incipient. Quite recently, partially motivated by studies
on various lattice models with coexisting wide and narrow
(or flat) bands [41–46], one of the present authors and his
co-workers studied the bilayer model with diagonal interlayer
hoppings [47], where one of the bands becomes wide and
the other narrow, as in the two-leg ladder. There again, it
has been shown using the FLEX approximation that s±-wave
superconductivity is strongly enhanced when one of the bands
is incipient. The role of the finite- and low-energy spin fluctua-
tions on superconductivity, along with the commonalities and
differences with the two-leg ladder, has been discussed [47].

The above-mentioned studies on the two-leg ladder and
bilayer lattices with diagonal hoppings adopted the FLEX
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FIG. 1. (a) The two-leg ladder lattice and (b) the bilayer lattice.
Lower panels: typical band structures of the two-leg ladder lattice.
(c) tr ∼ tl, t ′ ∼ 0, (d) tr > tl, t ′ ∼ 0, (e) tr ∼ tl, t ′ > 0.

approximation [40,44,47], but because FLEX is basically a
weak-coupling method, it is not clear whether the method can
be applied to regimes where the electron-electron interaction
is large. In the present study, we study Hubbard models on
the two-leg ladder and bilayer square lattices, using a many-
variable variational Monte Carlo (mVMC) method [48,49],
which can be considered reliable in the strong-coupling
regime [50]. By comparing the results for the two-leg ladder
(one dimensional) and the bilayer lattice (two dimensional),
and with and without the diagonal hoppings, we discuss how
the density of states (DOS) affects superconductivity and
antiferromagnetism when one of the bands is close to being
incipient.

II. MODELS, METHOD, AND DEFINITIONS
OF PHYSICAL QUANTITIES

We study Hubbard models on the two-leg ladder and bi-
layer square lattices (Fig. 1). The Hamiltonian for the two-leg
Hubbard ladder is

H = −tl
∑

〈i j〉mσ

(c†
imσ c jmσ + H.c.) − tr

∑
iσ

(c†
i0σ ci1σ + H.c.)

− t ′ ∑
〈i j〉σ

(c†
i0σ c j1σ + H.c.) + U

∑
im

nim↑nim↓. (1)

Here c†
imσ (cimσ ) creates (annihilates) a fermion with spin

σ (=↑,↓) on the ith site on the mth chain (m = 0 or 1) and
nimσ = c†

imσ cimσ . The nearest-neighbor hoppings in the leg
and rung directions are tl and tr, respectively, and the next-
nearest-neighbor diagonal hopping is t ′. Since tr connects two
chains, we call this the interchain hopping. The band structure
for this model is

ε(k) = −2(tl + t ′ cos ky) cos kx − tr cos ky, (2)

where the case of ky = 0 (π ) corresponds to the bonding
(antibonding) band. For t ′ > 0, the bonding band is wide and
the antibonding band is narrow.

The Hamiltonian for the square lattice bilayer Hubbard
model is

H = −t
∑

〈i j〉mσ

(c†
imσ c jmσ + H.c.) − t⊥

∑
iσ

(c†
i0σ ci1σ + H.c.)

− t ′
⊥

∑
〈i j〉σ

(c†
i0σ c j1σ + H.c.) + U

∑
im

nim↑nim↓. (3)

Here c†
imσ (cimσ ) creates (annihilates) a fermion with spin

σ (=↑,↓) on the ith site on the mth layer (m = 0 or 1).
The intralayer hopping is t , the interlayer hopping is t⊥, and
the next-nearest-neighbor interlayer hopping is t ′

⊥. The band
structure for this model is

ε(k) = −2(t + t ′
⊥ cos kz )(cos kx + cos ky) − t⊥ cos kz, (4)

where the case of kz = 0 (π ) corresponds to the bonding
(antibonding) band. For t ′

⊥ > 0, the bonding band is wide and
the antibonding band is narrow.

We take Ns = 60 × 2 (12 × 12 × 2) sites for the two-leg
ladder (bilayer) Hubbard model with the antiperiodic-periodic
boundary condition in the x (y) direction. The band filling is
defined as n = Ne/Ns, where Ne = ∑

miσ nimσ . Hereinafter, the
site index (i, m) is simply written as i. We employ antiperiodic
boundary conditions in order to study physical properties near
half filling, avoiding the open-shell problem. In finite-size
systems, highly degenerate states (open shell) are realized
at specific band fillings, which can give rise to unstable
optimization in the quantum Monte Carlo method. Open shell
tends to occur near half filling, where superconductivity can
be strongly enhanced, under periodic boundary conditions. On
the other hand, if antiperiodic boundary conditions are used,
the open-shell problem near half filling is remarkably reduced.

To study the ground state of these Hubbard models, we
employ a mVMC method [48,49]. The variational Monte
Carlo (VMC) method is free from the negative-sign problem
unlike the auxiliary field quantum Monte Carlo method, so it
can be applicable to relatively large systems even with strong
electron correlation and geometrical frustration at reasonable
computational cost. Furthermore, in the conventional VMC
method, several dozen variational parameters are used, but
in the present mVMC method, thousands of variational pa-
rameters can be employed, which describe various quantum
fluctuations of order parameters and strong correlation effects
accurately. Our variational wave function is defined as

|φ〉 = PGPJ|φpair〉, (5)

where PG and PJ are the Gutzwiller and Jastrow correlation
factors, respectively. The Gutzwiller factor punishes the dou-
ble occupation of electrons defined as

PG = exp

(
−1

2

∑
i

gini↑ni↓

)
. (6)

The Jastrow factor is defined as

PJ = exp

⎛
⎝−1

2

∑
i j

vi jnin j

⎞
⎠, (7)
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where ni = ∑
σ niσ . The long-range part of this factor drives

the distinction between the metal and insulator. |φpair〉 is the
one-body part defined as

|φpair〉 =
⎡
⎣ Ns∑

i, j=1

fi jc
†
i↑c†

j↓

⎤
⎦

Ne/2

|0〉, (8)

where fi j is assumed to have 2 × 2 (2 × 2 × 2) sublattice
structure or equivalently 2 × 2 × Ns (2 × 2 × 2 × Ns) inde-
pendent variational parameters for the one-body part in two-
leg ladder (bilayer) systems.

To study a possible superconducting state, we consider the
following BCS wave function,

|φBCS〉 =
(∑

k∈BZ

ϕ(k)c†
k↑c†

−k↓

)Ne/2

|0〉, (9)

with

ϕ(k) = �(k)

ξ (k) +
√

ξ (k)2 + �(k)2
, (10)

where ξ (k) = ε(k) − μ, μ is the chemical potential, and
�(k) is the superconducting gap. The BCS wave function is
rewritten in the real-space representation as follows:

fi j = 1

Ns

∑
k

ϕ(k) exp[ik · (ri − r j )]. (11)

In this study, we employ the BCS partial d-wave (s±-
wave) superconducting state as the initial states for the ladder
(bilayer) system, namely, �(k) = �0 cos ky (�0 cos kz ). The
variational parameters are simultaneously optimized to mini-
mize the variational energy by using the stochastic reconfigu-
ration method [51].

To investigate the ground-state properties of these Hubbard
models, we calculate the momentum distribution function,
spin-structure factor, and equal-time superconducting corre-
lations. The momentum distribution function is defined as

nσ (q) = 1

Ns

∑
i, j

〈c†
iσ c jσ 〉 exp[iq · (ri − r j )],

and the spin-structure factor is defined as

S(q) = 1

3Ns

∑
i, j

〈Si · S j〉 exp[iq · (ri − r j )].

Regardless of the strength of the electron correlation, the
momentum dependence of S(q) is as follows: When both
bands intersect the Fermi level, the spin-structure factor S(q)
is sharply peaked at a specific momentum qmax. Near half
filling, where the present calculations are performed, qmax is
(π, π ) for the two-leg ladder and (π, π, π ) for the bilayer
model. On the other hand, the peak structure of S(q) becomes
less and less pronounced as one of the bands moves away from
the Fermi level. Furthermore, the equal-time superconducting
correlations are defined as

Pα (r) = 1

2Ns

∑
ri

〈�†
α (ri )�α (ri + r) + �α (ri )�

†
α (ri + r)〉.

(12)

Superconducting order parameters �α (ri ) are defined as

�α (ri ) = 1√
2

∑
r

fα (r)
(
cri↑cri+r↓ − cri↓cri+r↑

)
.

Here fα (r) is the form factor that describes the symmetry of
the superconductivity. For the partial d-wave superconductiv-
ity in two-leg ladder systems, we define

fd (rx, ry) = δrx,0δry,1,

where δi j denotes Kronecker’s delta. For the s±-wave super-
conductivity in bilayer systems, we define

fs± (rx, ry, rz ) = δrx,0δry,0δrz,1.

To reduce stochastic errors, we calculate the long-range
average of the superconducting correlation, which is defined
as

Pα = 1

M

∑
2<|r|<rmax

Pα (r),

where rmax is 30 (6
√

2) for the present two-leg ladder (bilayer)
models. M is the number of vectors satisfying 2 < r < rmax.
Here, we eliminate the short-range part of the superconducting
correlation since it does not reflect the off-diagonal ordering
nature of superconductivity in order to reduce the effect of the
boundary condition.

III. RESULTS

A. Two-leg Hubbard ladder

We begin with the two-leg ladder. Figure 2(a) shows the
interchain hopping dependence of several physical properties
for t ′/tl = 0 and U/tl = 4: the peak value of the spin-structure
factor S(qmax), which is the square of the antiferromagnetic
ordered moment, and the average value of superconducting
correlation Pd at long distance with the partial d symmetry,
corresponding to the square of the superconducting order
parameter. We also plot the momentum distribution function
at the antibonding band minimum n(0, π ) [the bonding band
maximum n(π, 0)], which monitors whether or not the anti-
bonding (bonding) band intersects the Fermi level. For 1.2 �
tr/tl � 1.6, n(0, π ) decreases rapidly, which indicates that the
antibonding band loses its Fermi points. On the other hand,
n(π, 0) increases in this tr/tl regime, but only moderately,
which indicates that, although the Fermi level is approaching
the top of the bonding band (actually it is close to the band top
because the band filling n = 0.97 is very close to half filling),
it still intersects the band. Also within this tr/tl regime, S(qmax)
rapidly decreases. Therefore, the incipient band regime is
estimated to be in the range 1.2 � tr/tl � 1.6. In the incipient
band regime, Pd is maximized. Furthermore, the partial d-
wave superconducting phase exhibits a dome structure around
tr/tl ∼ 1.5, which is reminiscent of a previous FLEX study
on the two-leg ladder Hubbard model without t ′ [52]. For
t ′/tl = 0.4, where there are wide and narrow bands, the in-
terchain hopping dependence of several physical properties
is similar to those for t ′/tl = 0 as shown in Fig. 2(b). For a
larger interaction value of U/tl = 8, the variation of n(0, π )
against tr/tl becomes broad due to correlation effects as shown
in Figs. 2(c) and 2(d). On the other hand, we find a clear
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FIG. 2. Interchain hopping tr/tl dependence of the averaged partial d-wave superconducting correlation Pd and the peak value of the
spin-structure factor S(qmax) (upper panels), the momentum distribution function of the antibonding band minimum n(0, π ) and the bonding
band maximum n(π, 0) (lower panels) for the two-leg ladder model with (a) t ′/tl = 0 and U/tl = 4, (b) t ′/tl = 0.4 and U/tl = 4, (c) t ′/tl = 0
and U/tl = 8, and (d) t ′/tl = 0.4 and U/tl = 8. The band filling is n = 0.97. The yellow region denotes the incipient band regime. In the
present plots and the plots in the later figures, the error bars indicate the estimated statistical errors of the Monte Carlo sampling.

suppression of S(qmax), which indicates the Lifshitz transition.
Thus, superconductivity is optimized when a band becomes
incipient also in the strongly correlated regime.

We also study tr/tl dependence of the superconducting
correlation Pd for various values of U/tl as shown in Fig. 3.
For both t ′/tl = 0 and t ′/tl = 0.4, the regime of enhanced
superconducting correlation extends to smaller tr/tl as U/tl
increases, presumably due to band narrowing caused by U .
In general, the Hubbard U can narrow bands near the Fermi
level and induce the Lifshitz transition [53].

B. Bilayer Hubbard model

We next move on to the bilayer model. Figure 4(a) shows
the interlayer hopping dependence of physical properties for
t ′
⊥/t = 0 and U/t = 8, the peak value of the spin-structure

factor S(qmax), and the average value of the superconducting
correlation Ps± at long distances with the s± symmetry. We
also plot the momentum distribution function at the anti-
bonding band minimum n(0, 0, π ) and the bonding band
maximum n(π, π, 0). For t⊥/t > 1.8, n(0, 0, π ) decreases
steeply, indicating the Fermi surface of the antibonding band
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FIG. 3. tr/tl dependence of Pd for the two-leg ladder model with various values of U/tl and (a) t ′/tl = 0, (b) t ′/tl = 0.4. The band filling is
n = 0.97.

is lost, while n(π, π, 0) barely varies and remains small,
so that the Fermi level is well within the bonding band.
Note that here an increase of n(π, π, 0) is not observed,
in contrast to the case of the n(π, 0) in the two-leg ladder,
presumably because the band filling is n = 0.94, more away
from half filling. Here again, S(qmax) rapidly decreases for
t⊥/t > 1.8. Thus, the incipient band regime is estimated to
be in the range 1.8 � t⊥/t � 2.4. Around the incipient band
regime, Ps± is enhanced. The s±-wave superconducting cor-
relation exhibits a dome structure around t⊥/t ∼ 2.0 [54],
which is reminiscent of FLEX [31], functional renormaliza-
tion group [35], and dynamical cluster approximation [36]
studies. For t ′

⊥/t = 0.6, t⊥/t dependence of the physical prop-

erties is basically similar to those for t ′
⊥/t = 0 as shown in

Fig. 4(b).
As in the two-leg ladder, we also study t⊥/t dependence

of the superconducting correlation Ps± for various values of
U/t as shown in Fig. 5. For both t ′

⊥/t = 0 and t ′
⊥/t = 0.6,

the regime where the superconducting correlation develops
extends to lower t⊥/t as U/t increases in the same way as
the two-leg Hubbard ladder.

We note that n(0, 0, π ) of the U = 8t bilayer Hubbard
model varies more steeply than n(0, π ) of the U = 8tl two-leg
Hubbard ladder, and actually resembles that of U = 4tl ladder.
Since the broadness of the momentum distribution variation
around the Lifshitz transition presumably originates from the

FIG. 4. Interlayer hopping t⊥/t dependence of the averaged s±-wave superconducting correlation Ps± and the peak value of the spin-
structure factor S(qmax) (upper panels), and the momentum distribution functions of the antibonding minimum n(0, 0, π ) and the bonding band
maximum n(π, π, 0) (lower panels) for the bilayer model with (a) t ′

⊥/t = 0 and U/t = 8 and (b) t ′
⊥/t = 0.6 and U/t = 8. The band filling is

n = 0.94.
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FIG. 5. t⊥/t dependence of Ps± for the bilayer model with various values of U/t and (a) t ′
⊥/t = 0, (b) t ′

⊥/t = 0.6. The band filling is
n = 0.94.

correlation effect, the present result indicates the strength of
the electron correlation is roughly determined by U/W , where
W is the bandwidth.

IV. DISCUSSION

The present results show that superconductivity is en-
hanced in the incipient band regime regardless of whether
the system is one or two dimensional, or whether one of the
bare bands is narrow or not. This is in fact reminiscent of the
recent FLEX studies [44,47,55]. In this section, we further
discuss the relation between the bilayer and two-leg ladder
models, based on observations made in previous studies.
References [37,38,47] pointed out the important role of the
finite-energy spin fluctuations played in the enhancement of
superconductivity in the bilayer Hubbard model. In particular,
quite recently, in Ref. [47], the role played by the spin
fluctuations in different energy ranges in two-band systems
has been discussed based on the theory of Ref. [56]. Namely,
the contribution from pair-breaking (pairing-effective) spin
fluctuations scales as 1/ω4 (1/ω2). Therefore, there is a
critical frequency ωc, smaller than a pairing cutoff energy εc,
so that the low-energy spin fluctuations with ω < ωc lead to
strong renormalization and hence are “pair breaking,” while
the finite-energy spin fluctuations with ωc < ω < εc enhance
Tc. Thus, when the low-lying spin fluctuations are suppressed
while the finite-energy spin fluctuations are enhanced, super-
conductivity can be enhanced. In multiband systems, as one
of the bands moves away from the Fermi level, the spin-
fluctuation spectral weight is transferred to higher energies.
When the spin-fluctuation spectral weight is away from the
critical frequency of spin fluctuations, but is within the pairing
cutoff energy (ωc < ω < εc), the pairing interaction can be
strong without strongly renormalizing the quasiparticles. On
the other hand, when the spin fluctuations are concentrated at
very low or too-high energies, superconductivity is degraded.
From this viewpoint, we further discuss the relation between
the superconducting correlation obtained by mVMC and the
shape of the DOS of the antibonding band.

One difference between the bilayer and the two-leg lad-
der observed in the present study is the U dependence of
superconductivity. Namely, in the two-leg ladder, the super-

conducting correlation is enhanced even for U/tl = 2 when
the antibonding band is incipient, while such an enhancement
is not obtained for the bilayer model for U/t = 4. Note that
here we compare two cases where U normalized by the
bare bandwidth are the same. Actually, a similar result was
obtained in the recent FLEX calculation [47]. There, it has
been pointed out that in the bilayer model, the correlation
effect reduces the width of the incipient band [53], which
makes more spin fluctuation weight lie within the energy
regime effective for pairing. In the two-leg ladder, such an
effect is not necessary when the antibonding band is incipient
because in a one-dimensional system, the DOS is diverging at
the band edge (see Fig. 6).

Another point that we notice, if we look closely, is that
in the two-leg ladder, the superconducting correlation, max-
imized around the incipient band regime, is reduced as tr/tl
decreases and the antibonding band intersects the Fermi level,
but does so rather mildly and smoothly especially for U = 8tl,
whereas the reduction of the superconducting correlation in
the bilayer model upon reducing t⊥ occurs rapidly after the

FIG. 6. Typical density of states of the two-leg ladder Hubbard
model. In each part, the left (right) side of the vertical line depicts the
DOS of the bonding (antibonding) band. The gray area denotes the
portion of the bonding band DOS which gives rise to the low-lying
pair-breaking spin fluctuations, and the red area is the portion of the
antibonding band DOS contributing to the spin fluctuations which
mediate pairings. (a) Both bands intersect the Fermi level and (b) the
antibonding band is incipient.
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FIG. 7. Typical density of states for the bilayer Hubbard model:
(a), (b) t ′

⊥/t is (nearly) zero; (c), (d) t ′
⊥/t is finite; (a), (c) both

bands intersect the Fermi level; and (b), (d) the antibonding band
is incipient.

antibonding band intersects the Fermi level. If we compare in
more detail the two cases for the bilayer model, the reduction
of the superconducting correlation is more abrupt for the case
with t ′

⊥ = 0.6t . These differences can again be understood
from the shape of the DOS (see Figs. 6 and 7). Namely,
in the two-leg ladder, where the DOS at the band edge is
diverging, the DOS at the Fermi level decreases (rapidly,
especially for large U because the bandwidth shrinks due to
renormalization) as tr is reduced after the antibonding band
intersects the Fermi level, so that the pair-breaking low-energy
spin fluctuations become weaker. By contrast, in the bilayer
model, where the DOS is diverging around the middle of the
antibonding band, the DOS at the Fermi level increases upon
reducing t⊥ after the antibonding Fermi surface is formed,
resulting in an increase of the pair-breaking spin fluctuations.
The diverging DOS of the antibonding band approaches the
Fermi level “faster” when t ′

⊥ is finite, so that the superconduct-
ing correlation is rapidly suppressed for the case of t ′

⊥ = 0.6t
as t⊥ is reduced. A similar analysis has been performed in
Ref. [47], not for the tr, t⊥ variation but for the t ′(t ′

⊥) variation
of superconductivity.

As mentioned above, the parameter dependence of the
superconducting correlation function is reminiscent of the
FLEX results obtained in Ref. [47]. However, this resem-
blance is highly nontrivial because it is not clear whether

FLEX, a weak-coupling approach, is valid for U/t = 6 (a U
value comparable to the bandwidth) for which the study in
Ref. [47] was performed. More importantly, the present VMC
study has been performed for U values as large as U/t =
16. Therefore, the present study reveals that the following
view holds, not only in the weak-coupling regime, but all the
way up to the strong-coupling regime: superconductivity is
enhanced by an incipient band due to the suppression of the
near-zero-energy spin fluctuations and enhanced finite-energy
spin fluctuations working as an effective pairing glue. It is
important to note that, unlike FLEX, this conclusion is derived
without an explicit consideration of the spin fluctuation as a
pairing glue.

V. SUMMARY

To summarize, we have studied superconductivity in the
Hubbard model on the two-leg ladder and bilayer square
lattices. In both systems, superconductivity can be optimized
in a region around the Lifshitz point, where one of the bands
is (nearly) incipient [57]. The parameter dependence of the
superconducting correlation function is reminiscent of the
FLEX results obtained in Ref. [47]. Our study reveals that
the following view holds even in the strong-coupling regime:
superconductivity is enhanced by an incipient band owing to
different roles played by spin fluctuations in different energy
regimes, namely, the suppression of the near-zero-energy
spin fluctuations and enhanced finite-energy spin fluctuations
working as an effective pairing glue. We stress that the
resemblance between the two approaches is highly nontriv-
ial because the two approaches are totally different; FLEX
is based on a weak-coupling perturbational theory, which
takes into account the spin fluctuations (in momentum space)
explicitly in the effective interaction, whereas the present
mVMC method takes into account the electron correlation
effect in a real-space-based manner, which is expected to be
more appropriate in the strong-coupling regime. Since it has
been shown that incipient bands enhance superconductivity in
other models [41–46,53], it is an interesting future problem to
study those models using the mVMC method.
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