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Deep-learning-assisted detection and termination of spiral and broken-spiral
waves in mathematical models for cardiac tissue
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Unbroken- and broken-spiral waves, in partial-differential-equation (PDE) models for cardiac tissue, are the
mathematical analogs of life-threatening cardiac arrhythmias, namely, ventricular tachycardia and ventricular-
fibrillation. We develop (a) a deep-learning method for the detection of unbroken- and broken-spiral waves and
(b) the elimination of such waves, e.g., by the application of low-amplitude control currents in the cardiac-tissue
context. Our method is based on a convolutional neural network (CNN) that we train to distinguish between
patterns with spiral-waves S and without spiral-waves N S . We obtain these patterns by carrying out extensive
direct numerical simulations of PDE models for cardiac tissue in which the transmembrane potential V , when
portrayed via pseudocolor plots, displays patterns of electrical activation of types S and N S . We then utilize
our trained CNN to obtain, for a given pseudocolor image of V , a heatmap that has high intensity in the regions
where this image shows the cores of spiral waves and the associated wavefronts. Given this heatmap, we show
how to apply low-amplitude currents of a two-dimensional Gaussian profile to eliminate spiral-waves efficiently.
Our in silico results are of direct relevance to the detection and elimination of these arrhythmias because our
elimination of unbroken or broken-spiral waves is the mathematical analog of low-amplitude defibrillation.
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I. INTRODUCTION

The normal pumping of blood by mammalian hearts is ini-
tiated by electrical waves of excitation that propagate through
cardiac tissue and induce cardiac contractions. The abnormal
propagation of such waves can lead to cardiac arrhythmias,
such as ventricular tachycardia (VT) and ventricular fibrilla-
tion (VF), which cause sudden cardiac death (SCD), which
is among the leading causes of death in the industrialized
world [1–3] (see, e.g., Refs. [4,5] for SCD data from India
and the U.S.). The principal cause of VT and VF are spiral or
scroll waves of electrical activation in cardiac tissue; unbroken
(broken) spiral or scroll waves are associated with VT (VF)
[6–8]. Such waves have been studied, e.g., in ex vivo [9–11]
and in vivo [12–14] in mammalian hearts, in vitro [6–8,15] in
cultures of cardiac myocytes, and in silico [16–18] in math-
ematical models for cardiac tissue. The efficient elimination
of such spiral or scroll waves and the subsequent restoration
of the normal rhythm of a mammalian heart is a difficult
problem; this can be attempted by pharmacological means
[19] or by electrical means called defibrillation [20]. Defib-
rillation by the application of low-amplitude current pulses
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is the grand challenge here [21]. Two important steps are
required for such defibrillation: (a) An efficient detection of
spiral waves or their broken-wave forms; (b) the elimination
of such waves by low-amplitude electrical pulses [16–18,20]
or through optogenetic methods [22].

We develop a deep-learning method, based on a convo-
lutional neural network (CNN), that helps us to accomplish
task (a). We then develop the mathematical analog of a
defibrillation scheme for the efficient elimination of well-
formed spiral and broken-spiral waves in two dimensions
(2D). Electrical waves in cardiac tissue belong to a large class
of nonlinear waves in excitable media, e.g., calcium-ion waves
in Xenopus oocytes [23], waves in chemical reactions of the
Belousov-Zhabotinsky type [24], waves that occur during the
oxidation of carbon monoxide on the surface of platinum
[25–27], excitable-wave patterns in a recent semiconductor-
laser experiment [28], and waves in Dictyostelium discoideum
that are associated with cyclic-AMP signaling [29,30]; our
step (a) can be applied, mutatis mutandis, for the detection
of spiral waves in such systems.

Specifically, we train our CNN to classify, into the fol-
lowing two sets, patterns of electrical-wave activation, which
we obtain from in silico studies of different mathematical
models for cardiac tissue [31–35]: (a) spiral waves (S ) and
(b) no spiral waves (N S ) (Fig. 1). Next, we use our trained
CNN to detect spiral-wave patterns, with both unbroken and
broken spirals. We then use the outputs from our CNN to
construct a heatmap that has a high intensity in the regions
with spiral cores. We demonstrate how to eliminate the broken
or unbroken spiral waves by applying low-amplitude current
stimuli at those positions at which the heatmap has high
intensity; this is the mathematical analog of defibrillation
[20].
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FIG. 1. Collages of illustrative pseudocolor plots of V with
(a) single-spiral (S ) images and (b) no spiral (N S ) images, which
we use for training our CNN.

II. MODELS, METHODS, AND RESULTS

Mathematical models for cardiac tissue use nonlinear par-
tial differential equations (PDEs) of the reaction-diffusion
type:

∂V

∂t
= D0∇2V + f (V, g) + Iext,

∂g

∂t
= ε(V, g)h(V, g), (1)

∂V

∂t
= D0∇2V − Iion

Cm
+ Iext, Iion =

∑
i

Ii, (2)

where V , Ii, Iext, and Cm are the transmembrane potential, the
ionic current for ion channel i, the external current, and the
membrane capacitance, respectively (see [36] for the forms
of f , h, and Ii in these models). For our direct numerical
simulation (DNS), we use two classes of models, namely (a)
two-variable models [Eq. (1)] such as the Barkley model [31]
and the Aliev-Panfilov model [32], and (b) biologically realis-
tic models with ion channels, ion pumps, and ion exchangers
[Eq. (2)], such as the Luo-Rudy phase-I model (LR-I) [33], the
Tusscher-Panfilov model (TP06) [34], and the O’Hara-Rudy
model (ORd) [35] (see [36] for further details). We focus
on electrical activity in cardiac tissue, and our DNS yields
patterns such as spiral waves, target waves, and plane waves
[see Figs. 1(a) and 1(b)], and states with broken-spiral waves
(Fig. 3). The details of our numerical simulations and the wide
range of parameter we use are given in [36].

We use 22 000 such images to train, and then test, our
CNN. We create additional images by performing geomet-
rical operations on the primary pseudocolor images V , e.g.,
inequivalent reflections about the horizontal and vertical axes,
so that our dataset of images is not biased in favor of any
particular orientation; this improves the training performance

of our CNN. We train our CNN with 70% of the total number
of images, and we save the remaining 30% of the images for
the validation of our CNN model.

Our solutions of Eqs. (1) or (2) yield V at N2 grid points.
We first define the normalized transmembrane potential Ṽ =
(V − Vmin)/(Vmax − Vmin); Vmax and Vmin are, respectively, the
maximal and minimal values of V , so 0 � Ṽ � 1. We then
reduce a large number of grid points by specifying Ṽ on 32 ×
32 points by using the resize function in MATLAB R2018b. We
use the Deep Learning Toolbox in MATLAB R2018b to develop
our CNN, which we depict schematically in Fig. 2. It has three
main layers: (i) Input, (ii) Middle, and (iii) Final. The middle
layer contains three sets of Convolution, Rectified Linear Unit
(ReLU), and MaxPool sublayers. The final layer contains two
fully connected artificial neural networks (ANNs). We give a
brief description of the implementation of our CNN in [36].

We begin the training by feeding the image of Ṽ to our
CNN. If the CNN output predicts the class of the input image
incorrectly, then we use a cost function to rectify this error
iteratively (until the CNN yields the correct output class).
Specifically, we achieve this for our CNN by minimizing the
cross-entropy cost function,

C = −
M∑

�=1

η−1∑
q=0

[O�,q ln(Õ�,q) + (1 − O�,q) ln(1 − Õ�,q)]

M
,

(3)

by using the stochastic-gradient-descent method with a learn-
ing rate α = 0.001 (see, e.g., Chap. 2 of Ref. [37]); here,
Õ�,q are the CNN outputs [Õ�,q ∈ (0, 1)] and O�,q are the real
outputs for the input image �, and M is the minibatch size
(the total number of images is divided into subsets, called
minibatches, with M images each); we use M = 128. For the
class S , O�,0 = 1 and O�,1 = 0; and for N S , O�,0 = 0 and
O�,1 = 1.

A minimal spatial resolution is required to map any acti-
vation patterns in real optical imaging (see, e.g., Ref. [38]).
Similarly, when we train our CNN, we find that the resized
training image should have at least 32 × 32 points (on a
square lattice with lattice spacing 0.8 cm); e.g., if we use a
resized image with 16 × 16 points, then we cannot distinguish
spiral patterns clearly, as we illustrate in Fig. S2 in [36]. The
authors of Ref. [38] use a grid of electrodes to detect simple
spiral- and target-wave patterns; the minimal spacing that they
require between these electrodes is 1 cm, which is comparable
to the lattice spacing of our 32 × 32 resized image.

FIG. 2. A schematic diagram of our CNN showing the Input, Middle, and Final layers; the details of each one of these layer are given in
the supplemental material [36].
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FIG. 3. Pseudocolor plots of (left panel) V , showing broken-spiral waves, and (right panel) the heatmap H for the image in the left panel.

Even though we train our CNN with single spiral-wave
patterns, it manages to identify patterns with broken-spiral
waves as belonging to the class S : We have checked that
this CNN classifies 10 000 broken-spiral wave patterns (see
the pseudocolor plot of V in Fig. 3) as S , with an accuracy
of 99.6%. This is especially useful when we carry out the
mathematical analog of defibrillation, i.e., the elimination of
all spirals, unbroken or broken. We can indeed utilize our
trained CNN to examine pseudocolor plots of V during our
numerical simulation of a mathematical model for cardiac
tissue; the moment this CNN detects a pattern of type S ,
we can eliminate it by the application of suitable currents.
Here, we discuss a scheme for eliminating both broken and
unbroken spiral waves; this relies on developing a heatmap,
from a pseudocolor plot of V , which is identified by our
CNN to lie in the class S . The heatmap is the normalized
sum of the outputs of our CNN; the inputs to this CNN are
multiple subimages of different sizes at different positions.
We obtained these inputs from a given image (see Fig. 3).
Mathematically, we define the heatmap as

H(i, j) = Np

N

N/N p∑
r=1

CNN
(
χ r

i, j{V }), (4)

∀i, j ∈ {1, 2, . . . , N}; for the images used, N = 512 grid
points and Np = 32 grid points.

χ r
i, j{V } is a standard matrix resizing function in MATLAB.

The argument of the matrix-resizing function is a square
matrix V of size 32r centered at the point (i, j), with 1 �
i, j � N and 1 � r � (N/Np).

The resized χ r
i, j , an image with Np × Np pixels, is the input

into our CNN (Fig. 2), and its output, 0 (for N S ) or 1 (for
S ), is summed over r to obtain H(i, j) for a given input
pseudocolor plot of V . Clearly, H(i, j) ∈ [0, 1], and it is large
if there is a spiral core near the point (i, j). In the left and
right panels of Fig. 3 we show a broken-spiral-wave pattern,
and the corresponding heatmap.

Our heatmap method is based on the detection of spi-
ral cores by our trained CNN. Therefore, we compare our
heatmap method with earlier works on phase-singularity-
detection studies in optical images from ex vivo [9,10] and
in vivo [39,40]. The above-cited experimental studies obtain
activation maps, phase maps, and APD- and CV-distribution
maps, and they also detect phase singularities (PSs) in ac-
tivation patterns by using fluorescence data; defibrillation
strategies are not their goal. The training of our CNN also
requires similar images (we use pseudocolor images of Vm).
PS detection is not the main goal of our study; we concentrate

on using our CNN to develop a heatmap, which we then use
to develop a low-amplitude defibrillation scheme.

Optical images in experimental studies are noisy
(Refs. [9,10,41]). We discuss here the performance of
our trained CNN on the experimental data. We have checked
that our trained CNN successfully generates heatmaps of
the experimental images in Refs. [41–44]. The experimental
image data are noisy and unclear about the type of patterns
present (see, for example, Fig. 8 in [10] and Fig. 1 in [41]).
For example, in Figs. 8(e) and 8(f) of Ref. [10], one of the
spirals is clearly apparent, but it is not clear whether the
other patterns are spirals or other excitations. This difficulty
can be overcome by performing wavelet denoising on the
image and by using Gaussian smoothening filters. After
performing wavelet denoising [41] and applying a Gaussian
filter, the number of spirals is clearly apparent (we have
not shown this here). Such methods also work for the noisy
image in Fig. 1 of Ref. [41]. We do not have access to raw
experimental data; therefore, we have mimicked experimental
noisy images by using data from our simulations, and we
have then used our trained CNN to generate the heatmap. In
Fig. 4(a) we present an image from our simulations; Fig. 4(b)
shows the same image after we have added noise [with a
signal-to-noise ratio (SNR) = 0.369] by randomly picking
grid points and replacing the values of Vm to −86 mV using
uniform distribution to mimic the experimental data.

The noisy image in Fig. 4(b) mimics the noisy experimen-
tal image of Fig. 1 of Ref. [41]. We smoothen this noisy image
by using a Gaussian filter; we then feed the output to our
trained CNN to generate the heatmap that is shown in Fig. 5.
Figure 6 shows the noisy images for different values of the
SNR and their corresponding heatmaps, which are generated
by our trained CNN.

FIG. 4. (a) Image from simulation data, (b) noisy image obtained
from simulation data.
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FIG. 5. Schematic diagram showing the process of generating a heatmap for a noisy image. The SNR value of a noisy image in this
particular case is SNR = 0.369.

We discuss below the fundamental idea of our defibrillation
scheme. Spiral-wave excitations emanate from the spiral core,
so we might expect that the elimination of this core could lead
to the removal of the spiral-wave. However, when we apply
a current pulse on a disk centered at the spiral core, we find
that it leads to the formation of multiple spiral cores along
the boundary of the disk. We prevent the formation of such
multiple spiral cores by applying a current pulse with a spatial
profile that is a symmetrical, 2D Gaussian (centered at the
spiral core, with equal widths in both the x and y directions,
σx = σy = σ , and with a peak intensity of Idef), and we can
remove the core and the wavefronts without forming multiple
spiral cores (Fig. 7). We refer to such a current profile as a
2D-Gaussian current with width σ or simply as a Gaussian
current.

We note that our defibrillation scheme does not use pac-
ing protocols (of the type that are used, e.g., in the anti-
tachycardia-pacing protocol of Refs. [45,46]).

Our heatmap can be used to eliminate broken-spiral waves.
We now consider a pattern with broken-spiral waves (see the
left panel of Fig. 3), where we observe multiple spiral waves
with different (spiral-arm) wavelengths. We have mentioned
above that a single spiral wave can be eliminated by the appli-
cation of a 2D-Gaussian current profile. Therefore, for many
broken-spiral waves, we require multiple Gaussian-profile
currents to eliminate these waves, hence we construct a lattice
of Gaussians, which we define as follows: On a square lattice
of points, labeled by (i′, j′), with 0 � i′, j′ � NG, i.e., the
side of the unit cell a = NG	x (cm), we impose a Gaussian
G(i′, j′) of width σ ; the total, normalized contribution of

these pulses at the point (i, j), with 0 � i, j � (N − 1), in the
original image is

G̃(i, j) =
NG∑

l,m=0

G

(
i − l

N

NG
, j − m

N

NG

)
,

G(i, j) = G̃(i, j)/G̃max; (5)

G̃max = max(i, j)[G̃(i, j)],

G(i, j) = exp

(−(i2 + j2)

σ 2

)
. (6)

This lattice of Gaussians can be considered to be an array
of contact electrodes that apply local currents. The heatmap
H determines which electrodes have to be activated to apply
local currents and the strengths of these currents. The external
defibrillation current that we apply, Iext, for a time tdef ms and
with amplitude Idef, is

Iext = Idef(H o G). (7)

The symbol “o” denotes the Hadamard product, which is the
element-wise multiplication of two matrices. Multiple spiral
waves are eliminated by the application of external defibrilla-
tion current Iext (henceforth, the Gaussian-control scheme) in
Eqs. (1) and (2).

In Figs. 8(a) and 8(b), we show, respectively, V and its
heatmap H [Eq. (4)] for an image with a broken-spiral wave
in the TP06 model. Figures 8(c) and 8(d) depict, respectively,
the summed and normalized 2D Gaussians [G in Eq. (6)] and
the external defibrillation current Iext [with Idef = 5 pA/pF

FIG. 6. Top row: Images of Vm with added noise and different values of the SNR. Bottom row: The corresponding heatmaps generated
from our trained CNN.
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FIG. 7. Pseudocolor plots that show (a) the defibrillation current as Iext (single 2D-Gaussian centered at the spiral core), whose Idef = 0.5
pA/pF, σ = 0.375N	x (cm), and N = 256. (b)–(d) V of the Aliev-Panfilov model (Ref. [32]). (b) The spiral wave at the time of application,
and (c),(d) after the defibrillation current is applied.

in Eq. (7)]. Our Gaussian-control scheme is illustrated in
Figs. 8(e)–8(h); these show the spatiotemporal evolution of
V after the application of Iext, which is turned off at t = tdef

(for the complete spatiotemporal evolution, see the video
V1 in [36]). In Figs. 8(i)–8(l) we show the counterparts of
Figs. 8(e)–8(h) for the control scheme in which a current pulse
is applied on a square mesh to eliminate broken-spiral waves
(Ref. [20] and the video V2 in [36]); we refer to this as the
mesh-control scheme.

We now discuss the mechanism underlying the elimination
of pathological waves of electrical activation by our defibrilla-
tion scheme. We have already explained the fundamental idea
behind the elimination of a single spiral wave. To eliminate
broken-spiral waves, we build on the idea of single spiral-

wave elimination, but we must go beyond this because we
also need the locations of the small spiral waves and their
associated wavefronts, which can engender new excitations
or spirals in the next instant of time (for examples, see the
regions with wavefronts, which we have encircled by black
lines in Fig. S6 of the supplemental material [36]). Hence, the
elimination of spiral cores must also accompany the elimina-
tion of wavefronts, and we should target both the spiral cores
and the wavefronts. If certain wavefronts yield nonzero values
in the heatmap, then the local currents, which are applied
along these wavefronts, make the adjoining regions refractory
and stop incoming excitations. We observe in Figs. 3 and
8 (and also Fig. S4 in [36]) that our trained CNN not only
detects spiral cores, but it also detects the wavefronts that yield

FIG. 8. Pseudocolor plots of (a) V of a broken-spiral wave, (b) the corresponding heatmap H [Eq. (4)], (c) the summed and normalized
2D Gaussians [G(i, j) in Eq. (6)], and (d) the Hadamard product Iext(i, j) [with Idef = 5 pA/pF in Eq. (7)]. (e)–(h) Pseudocolor plots of V , at
different representative times, showing the elimination of the broken spiral waves after the application of Iext(i, j) for a time of t = tdef = 120
ms. (i)–(l) The analogs of (e)–(h) for the current-mesh control scheme of Ref. [20] (see the videos V1 and V2 in [36]).
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TABLE I. The parameter values that we use for our Gaussian-
control (GC1 and GC2) and mesh-control (MC) schemes in our
illustrative simulations.

Control a σ Idef tdef

scheme NG (cm) (cm) (pA/pF) (ms)

GC1 64 1.6 0.37 a 5 120
GC2 96 2.4 0.37 a 5 120
MC 64 15 120

nonzero values in the heatmap. Hence the detection, by our
CNN, of wavefronts that belong to S helps our defibrillation
scheme.

The efficacy of our Gaussian-control scheme depends on
a, σ, Idef, and tdef. We list these parameters (Table I) for
two illustrative Gaussian-control runs—GC1 and GC2—and
one run, MC, in which we use a mesh-control scheme for
the TP06 model. By comparing the results of such runs, we
find that, for large values of a, our Gaussian-control scheme
is not successful in removing spiral waves; e.g., in the TP06
model, broken-spiral waves are suppressed for the value of
a that we use in run GC1, but not for the value of a in run
GC2 (Table I). For the parameters in run GC1, Figs. 9(a)–9(d)
show phase diagrams in the (tdef, σ ) plane with fixed lattice
constant a = 1.6 cm and for representative values of Idef,
with parameter regions in which our Gaussian-control scheme
succeeds (red) and does not succeed (blue) in controlling
broken-spiral waves. Furthermore, we show in Figs. 9(e)–9(h)
the phase diagrams in the (tdef, a) plane for different values
of σ with fixed Idef = 10 (pA/pF). We observe that, for high
values of lattice constant a, the scheme fails to eliminate the
broken-spiral waves. Nonetheless, we observe that there is

a regime of parameters where the scheme is successful for
the given broken-spiral pattern. This Gaussian-control scheme
also eliminates broken and unbroken-spiral waves in all the
other cardiac-tissue models that we have studied (see Figs. S3
and S4 in [36]).

By comparing rows two and three of Fig. 8, we contrast the
effectiveness of our Gaussian-control scheme with that of the
mesh-control scheme of Ref. [20]. We find that our Gaussian-
control scheme eliminates broken-spiral waves with Idef = 5
pA/pF; by contrast, the mesh-control scheme requires Idef =
15 pA/pF for such elimination. Thus, the Gaussian-control
scheme leads to the elimination of spiral waves with lower
local currents than the mesh-control scheme, with all other
parameters held fixed.

Another method that is used for the control of spiral waves
is anti-tachycardia-pacing (ATP). Consider, e.g., the ATP of
Refs. [45,46]; this technique is not always successful in elimi-
nating spiral waves (see Refs. [45–47]). The pacing frequency
should also be greater than the spiral-wave frequency [47].
This technique is mainly applicable for the unpinning of
spirals attached to an obstacle, and this method is inadequate
for the removal of high-frequency waves and spatiotemporally
chaotic patterns; by contrast, our method is successful in the
elimination of all such waves.

III. CONCLUSIONS

Our method of defibrillation using CNN uses the image;
therefore, the detection of spiral waves is crucial for the
success of our defibrillation scheme. We have checked that our
CNN can be used to detect scroll waves in three-dimensional
(3D) simulation domains (see Fig. S5 in [36]). The elimination
of such 3D scroll waves by the application of currents on a

FIG. 9. Pseudocolor plots from (a) to (d) show phase diagrams in the (tdef, σ ) plane showing parameter regions in which our Gaussian-
control scheme succeeds (red) and does not succeed (blue) for different values of the current. Pseudocolor plots from (e) to (h) show another
set of phase diagrams from in the a, tdef plane showing parameter regions in which our Gaussian-control scheme succeeds (red) and does not
succeed (blue) for different values σ .
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2D surface of a 3D domain remains a significant challenge
[16–18,20].

We provide below stepwise suggestions for the adaptation
of our defibrillation scheme to experiments, especially those
that study waves of excitation in in vitro cardiac-monolayer
experiments:

(i) Data acquisition and heatmap generation:
(a) Spiral waves or broken-spiral waves can be initiated

through controlled protocols in cardiac monolayers, e.g., as in
Ref. [6].

(b) We use pseudocolor images of V for our CNN, which
then generates the heatmap. In experiments, the activation-
map image can be used as the input data for our CNN.

(c) Experimental data are noisy. Let us assume that
the noisy image is obtained at a time instant t . This noisy
image can be denoised by using Gaussian or wavelet filters,
and then it can be fed into the trained CNN. In turn, this
CNN can scan the image, with a square scanning window
of side s or with a range of scanning window sizes, and can
then output the heatmap. The heatmap is generated at a later
instant of time, namely t + 	t , where 	t is the time duration
required to generate the heatmap (in our heatmap calculations,
	t � 300 ms).

(ii) Defibrillation by using the heatmap:
(a) We propose the use of an array of contact electrodes

on the layer of cardiac myocytes or tissue (this can be realized
as shown in Fig. 1 in Ref. [10] and Fig. 6 in [38]); this can be

the experimental analog of the 2D lattice of Gaussians in our
defibrillation scheme.

(b) The heatmap can then dictate the strength of the
local currents to be applied at these electrodes on the layer
of cardiac myocytes.

We hope that our CNN-based detection of spiral waves and
our Gaussian-control scheme will be tested in in vitro cardiac-
myocyte-monolayer experiments [6–8,15,22,48,49].

Our deep-learning-assisted Gaussian-control method is
an important step in the detection and elimination of both
broken- and unbroken-spiral waves. Machine-learning tech-
niques have been used, e.g., in Refs. [50–53] for the effective
detection of anomalies in electrocardiograms, which can then
be eliminated by the controlled delivery of electrical signals
via automated defibrillators. No machine-learning method has
been employed so far for the detection of spiral waves in,
e.g., pseudocolor plots of V . Our study uses the complete
spatial information in patterns of V to develop an efficient
Gaussian-control scheme for the elimination of unbroken- and
broken-spiral waves, which are the mathematical analogs of
life-threatening VT and VF [16–18].
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