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Mesoscopic spin transport between strongly interacting Fermi gases
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We investigate a mesoscopic spin current for strongly interacting Fermi gases through a quantum point contact.
Under the situation in which spin polarizations in the left and right reservoirs are the same in magnitude but
opposite in sign, we calculate the contribution of quasiparticles to the current by means of the linear response
theory and many-body T -matrix approximation. For a small spin-bias regime, the current in the vicinity of the
superfluid transition temperature is strongly suppressed due to the formation of pseudogaps. For a large spin-bias
regime where the gases become highly polarized, on the other hand, the current is affected by the enhancement
of a minority density of states due to Fermi polarons. We also discuss the broadening of a quasiparticle peak
associated with an attractive polaron at a large momentum, which is relevant to the enhancement.
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I. INTRODUCTION

Quantum simulation with ultracold atomic gases al-
lows one to explore regimes of quantum many-body prob-
lems where conventional systems such as condensed mat-
ter and nuclear matter are hard to reach [1–3]. A strongly
interacting Fermi gas realized with the Feshbach reso-
nance is the prototype example, and revealed existences of
Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein conden-
sation (BEC) crossover and the unitarity regime in which
the typical length scale characterizing the atomic interaction
disappears [4–6]. While both theoretical and experimental
progress has deepened an understanding of the bulk phase
structure, an understanding of the nonequilibrium properties
remains challenging.

Recently, quantum transport of strongly interacting Fermi
gases is attracting increasing attention in association with
atomtronics devices where nonequilibrium properties on cir-
cuit or two-terminal systems are investigated [7]. By using
the controllable ultracold Fermi gases, quantum point contact
[8], and junction systems attached with two- [9] or three-
[10] dimensional reservoirs have experimentally been im-
plemented. In the case of the strongly interacting superfluid
regime, superfluid transport such as nonlinear current-bias
characteristics induced by the multiple Andreev reflections
[11], and the AC Josephson oscillation [10] and DC Josephson
effect [12], has been confirmed. In the case of the normal
Fermi gas with a strong attractive interaction, a conductance
beyond the quantized value has been found [13].
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In addition to controllability of the interaction, transport
systems with ultracold Fermi gases have an advantage that
spin transport can directly be measured with a tunable spin
bias [13]. We note that this is in contrast to condensed matter
systems where spin transport is normally measured in an
indirect manner [14]. In the context of the interacting Fermi
gases, while mass transport contains information both on
single-particle and collective excitations, spin transport is not
involved in Cooper pair transport [15,16]. Thus, it is expected
that the spin transport measurement becomes a sensitive probe
of single-particle excitations.

In this paper, we investigate mesoscopic spin transport in
attractively interacting two-component Fermi gases. We con-
sider the tunneling regime of a two-terminal system consisting

FIG. 1. Two terminal system considered in this paper.
(a) Schematic view of the system. Spin-up (spin-down) atoms
are transported from left (right) to right (left). (b) Chemical
potentials for atoms in the left (L) and right (R) reservoirs.
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FIG. 2. Phase diagram at unitarity in the plane of the temperature
T and the fictitious Zeeman field h (see the main text in Sec. II for
details). The superfluid transition temperature Tc (red solid line) is
obtained in the ETMA. In the dotted line, the second-order superfluid
phase transition disappears [17,18].

of two normal Fermi gases through a quantum point contact
(see Fig. 1). Spin polarizations of the Fermi gases in left
and right reservoirs are assumed to be equal in magnitude
but opposite in sign and are controlled by the parameter h.
Due to this spin imbalance, spin-up and spin-down fermions
can move in opposite directions, and therefore a nonzero spin
current without flow of a mass current is generated.

We focus on the strongly interacting regime near unitarity,
where the absolute value of an s-wave scattering length |a|
is much larger than the interatomic distance, and intercom-
ponent fermions strongly interact with each other. Figure 2
is the phase diagram of the spin-imbalanced Fermi gases at
unitarity [17,18]. Where the low temperature and small h
regime is concerned, each reservoir becomes the superfluid
where spin excitations are expected to be frozen. Therefore,
in this work, we elucidate spin transport above the superfluid
critical temperature.

One of the most remarkable features resulting from a
strong interaction is the formation of a pseudogap [19–27],
where a dip structure in the single-particle density of states
(DOS) in the normal phase near the transition temperature
appears. While this pseudogap phenomenon has indirectly
been observed with photoemission spectroscopy [28–30],
the measurement of thermodynamic quantities has showed a
Fermi-liquid-like behavior and suggested the absence of the
pseudogap near unitarity [31–33]. For a further understanding
of this system, several quantities sensitive to the pseudogap as
well as pairing fluctuations have been investigated [17,34–43],
including spin susceptibility measurements [44–47]. By look-
ing at a small h regime, we show that the pseudogap effect can
be captured with spin transport, which may be complementary
to the tunneling spectroscopy in high-Tc superconductors [48].

In contrast, excitations of a highly polarized Fermi gas
realized in the large h regime is governed by Fermi polarons,
which are mobile impurities immersed in a Fermi sea [49].
Polaronic properties such as renormalization factors, effective
masses, and polaron energies have been measured with rf

spectroscopy [50–57]. Correspondingly, a bunch of theoretical
works have been made [58–77], most of which consider
the zero-temperature and single-polaron limit by assuming
that the impurity chemical potential is equal to the polaron
energy. This single-polaron formalism has been employed to
study polaronic spin transport such as spin relaxation [78].
However, this framework is not so useful for a two-terminal
system with a given spin bias because the bias is generated
by the difference of chemical potentials between reservoirs.
To incorporate the polaronic properties in a correct fashion,
we perform the finite-temperature many-body formalism of
Fermi polarons. By using this formalism, moreover, we show
that the crossover from the pseudogap to the polarons can be
explored through spin transport.

This paper is organized as follows. In Sec. II, we present
the formalism of the tunneling Hamiltonian approach together
with the diagrammatic T -matrix approximation. Section III
is devoted to discussing how excitation properties in strongly
interacting Fermi gases in reservoirs affect spin transport. We
conclude this paper in Sec. IV.

Throughout this paper, we set h̄ = kB = 1 and the volumes
for both reservoirs are taken to be unity.

II. FORMALISM

In order to study spin transport of two-terminal systems in
normal Fermi gases with strong interaction, we begin with the
following grand canonical Hamiltonian:

K = KR + KL + HT , (1a)

Kj =
∑

p

∑
σ=↑,↓

ξp,σ, jc
†
p,σ, jcp,σ, j

−U
∑
p,p′,q

c†p+q,↑, jc
†
−p,↓, jc−p′,↓, jcp′+q,↑, j, (1b)

HT = t
∑

σ=↑,↓

∑
p,p′

c†p,σ,Rcp′,σ,L + H.c., (1c)

where left and right reservoirs are referred to as j = L, R,
respectively, cp,σ, j is the annihilation operator of a fermionic
atom with spin σ =↑,↓ in the reservoir j, and ξp,σ, j =
p2/2m − μσ, j is a single-particle energy measured from the
chemical potential μσ, j . The interaction between fermions in
the reservoir j is attractive (U > 0) and related to the s-wave
scattering length a by 1/U = ∑

p m/p2 − m/(4πa). The term
in HT denotes the tunneling of fermions from one reservoir to
the other and t characterizes the strength of the tunneling.

As mentioned above, we focus on the situation where there
is a pure spin bias shown in Fig. 1. The majority and minority
components in the left reservoir are ↑ and ↓, respectively,
and those in the right reservoirs are the other way around.
It follows that the parameter h controls not only the polar-
izations in both reservoirs but also a bias in spin transport.
We assume that both reservoirs have the same temperature
T , which is above the superfluid transition temperature. For
convenience, we define a new label α ≡ (σ, j) and, hereafter,
the majority components (σ, j) = (↑, L), (↓, R) are referred
to as “α = +,” while the minority ones (σ, j) = (↓, L), (↑, R)
as “α = −.” The chemical potentials of the majority (α = +)
and minority (α = −) are μ± = μ ± h as depicted in Fig. 1.
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FIG. 3. Feynman diagrams for �α (p, iωn) and �(q, iν
). The
double (single) line represents the dressed propagator Gα (p, iωn) [the
bare propagator 1/(iωn − ξp,α )] while the dot denotes the interparti-
cle attraction −U . The index −α denotes the component opposite
to α.

The spin-current operator in the Heisenberg representation
is given by Îspin(t ′) = −Ṅ (t ′)↑,L + Ṅ (t ′)↓,L, where Nσ, j =∑

p c†p,σ, jcp,σ, j is the particle number operator. By using the
linear response theory, the spin current to leading order in
the tunneling amplitude t can be obtained in a similar way
as for a mass current [79]. For a steady state, the spin current
is obtained as (see Appendix A)

Ispin = 4πt2
∫

dω ρ+(ω − h)ρ−(ω + h)

× [ f (ω − h) − f (ω + h)], (2)

where ρα (ω) is the DOS for the majority (α = +) [minority
(α = −)] and f (ω) = 1/(eω/T + 1) is the Fermi distribution
function. We note that, regardless of the value of h, Eq. (2) is
correct up to t2. The current in Eq. (2) flows between spatially
separated Fermi gases, so that there is no vertex correction
up to the order of O(t2). In order to take contributions of
pair correlations to ρα (ω) into account, we employ the ex-
tended T -matrix approximation (ETMA) [17,71]. The density
of states is related to an analytically continued Matsubara
Green’s function Gα (p, iωn) with ωn = (2n + 1)π T (n ∈ Z)
as follows:

ρα (ω) = − 1

π

∑
p

Im[Gα (p, iωn → ω + iδ)], (3)

where

Gα (p, iωn) = 1

iωn − ξp,α − �α (p, iωn)
, (4)

ξp,α = p2/2m − μα , and δ is an infinitesimal positive con-
stant. Within the ETMA, the self-energy �α (p, iωn) and the
many-body T matrix �(q, iν
) with ν
 = 2
π T (
 ∈ Z) are
given by Feynman diagrams in Fig. 3, leading to

�±(p, iωn) = T
∑
q,iν


�(q, iν
)G∓(q − p, iν
 − iωn), (5)

1

�(q, iν
)
= − 1

U
−

∑
p

1 − f (ξp+q/2,+) − f (ξ−p+q/2,−)

iν
 − ξp+q/2,+ − ξ−p+q/2,−
.

(6)

We note that the self-consistent program above can reduce
unphysical results. For example, the ordinary T -matrix ap-
proximation is known to suffer from a negative spin suscep-

FIG. 4. Number densities defined by n± = T
∑

p,iωn
G±(p, iωn)

and the ratio x = n−/n+ at (kF,0a)−1 = 0. Here, εF,0 = TF,0 is the
Fermi energy in the unpolarized case (h = 0).

tibility in the strong-coupling regime. However, ETMA spin
susceptibility takes a positive value in the whole crossover
regime [17].

We now discuss the choice of parameters (a, T, μ, h) in
this work. In an unpolarized case (h = 0), we fix (a, T, μ) as
follows. For a given density n0 of the total particle number
in each reservoir, the corresponding Fermi momentum and
temperature are provided by kF,0 = (3π2n0)1/3 and TF,0 =
k2

F,0/(2m), respectively, and two dimensionless parameters
(kF,0a)−1 and T/TF,0 are fixed. Then, (kF,0a)−1 → −∞ cor-
responds to the weak interaction limit and (kF,0a)−1 → +∞
to the strong interaction limit in the fermion language. The
spin-averaged chemical potential μ is determined so that the
particle number equation in the absence of h,

n0 = T
∑
α=±

∑
p,iωn

Gα (p, iωn)|h=0, (7)

is satisfied. Then, the fictitious Zeeman field h is changed with
(a, T, μ) fixed. Since we are interested in how strong correla-
tions affect spin transport, we consider the regime |kF,0a|−1 �
1 near unitarity. Figure 2 shows the phase diagram of the
Fermi gases at unitarity [(kF,0a)−1 = 0] in the (h, T ) plane.
The transition temperature is determined as the temperature
satisfying the Thouless criterion [80] given by [�(0, 0)]−1 =
0. We note that at low temperature there is the first-order
phase transition between normal and superfluid phases, in-
cluding the so-called Fulde-Ferrel-Larkin-Ovchinnikov state
[81]. To address these transitions, one has to calculate the
thermodynamic potential in each phase, which is out of the
scope of this paper. Figure 4 shows the number densities n±
of majority and minority atoms at unitarity as functions of
h. (Note that the total number density n+ + n− changes as h
increases.) The monotonic behavior of x = n−/n+ in Fig. 4
means that, as h becomes larger, the gases in both reservoirs
become more highly polarized. As shown in Figs. 10 and 11
in the next section, the polaron picture becomes valid for the
large h regime.
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FIG. 5. Spin conductance Gspin at unitarity. Here, G0
spin =

2m3t2εF,0/π
3 is the zero-bias conductance at T = 0 in the absence

of interactions (see Appendix B). The red solid line denotes Gspin in
the zero-bias limit.

III. RESULT

We now discuss spin transport properties for normal Fermi
gases with strong interparticle interactions under the configu-
ration shown in Fig. 1. Figure 5 shows the spin conductance
Gspin ≡ Ispin/(2h) at unitarity. We can see that Gspin grows
with increasing h with a fixed T . Furthermore, it is remarkable
that Gspin is largely suppressed in the low-T and low-h regime,
where the pseudogap emerges. As shown in Fig. 6, our
ETMA calculation for unpolarized (h = 0) and polarized (h =
0.25εF,0) gases at T = Tc can confirm the pseudogap struc-
tures of DOSs, being the signature of the preformed Cooper
pairs in the BCS-BEC crossover regime of an ultracold Fermi
gas.

To make the effect of the pseudogap on spin transport
clearer, let us focus on the zero-bias limit. In this limit, major-
ity and minority DOSs become identical, ρ̄(ω) = ρ±(ω)|h=0,

FIG. 6. Densities of states at critical temperature Tc in the unitary
limit (kF,0a)−1 = 0. Here, ρ0 = m

√
2mεF,0/(2π 2) is the density of

states for an unpolarized free Fermi gas at the Fermi energy εF,0.

FIG. 7. Spin conductance Gspin in the zero-bias limit. The end-
point of each line corresponds to Gspin at T = Tc.

and the spin conductance reduces to the following form:

Gspin = 4πt2
∫

dω[ρ̄(ω)]2

(
−∂ f (ω)

∂ω

)
for h → 0. (8)

Figure 7 provides the obtained temperature dependence of
Gspin at (kF,0a)−1 = −0.5, 0, 0.5, in the zero-bias limit. We
note that the calculation of Gspin is stopped at the transition
temperature Tc. Away from Tc, Gspin increases with decreasing
T because of quantum degeneracy of fermions. On the other
hand, as shown in Fig. 6, the DOS has a dip structure around
ω = 0 near the superfluid transition. Since −∂ f (ω)/(∂ω) ∝
cosh−2(ω/2T ), the spin conductance is sensitive to ρ̄(ω)
around ω = 0. Therefore, the appearance of this pseudogap
leads to a large suppression of Gspin.

The single-particle excitation is strongly suppressed due to
the formation of spin-singlet pairs in the pseudogap regime.
This suppression leads to the so-called spin gap in the temper-
ature dependence of the spin susceptibility [20,34–37,39]. We
note that the spin-gap temperature, where the spin susceptibil-
ity starts to be suppressed due to strong pairing fluctuations, is
TSG = 0.37TF,0 at unitarity [39]. Although it is the crossover
temperature and there are ambiguities for the definition to
characterize these phenomena, the maximum temperature of
Gspin at unitarity is also close to TSG. This result indicates
that Gspin is also useful to study pseudogap physics. From
Fig. 7, we can also see the interaction dependence of Gspin.
In the weak-coupling side [(kF,0a)−1 = −0.5 in Fig. 7], Gspin

becomes larger compared to that at unitarity. However, even
at this coupling, Gspin near Tc decreases due to the pairing
fluctuation effects with decreasing temperature. As in the
case of the spin susceptibility [39], the spin conductance is
strongly suppressed with increasing strength of the pairing
interaction. At stronger couplings, the gases in both reservoirs
are dominated by tightly bound molecules and the spin degree
of freedom tends to be frozen. In this case, only the thermally
dissociated atoms contribute to the spin susceptibility as well
as spin transport.

Figure 8 represents a crossover of the spin current at
unitarity from the pseudogap regime to the polaronic regime
by shifting h. We can see that Ispin for small h is smaller
than in the noninteracting counterpart, where the current is
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FIG. 8. Bias dependence of Ispin (solid line) at T = 0.25TF,0 in
the unitary limit. The green dotted line denotes the current in the
noninteracting case, while the blue dashed line denotes the current
without self-energy corrections to ρ±(ω) [82].

analytically given by Eq. (B2) in Appendix B. As explained
in the discussion of Gspin, this suppression is caused by the
pseudogap in the region where h is small. Figure 9 shows
the calculated DOSs for both majority and minority compo-
nents at T = 0.21TF,0 for various h. When h becomes larger,
polarizations of the gases in both reservoirs grow and the
pseudogap structures of ρ±(ω) vanish since the gases go
away from Tc at a fixed temperature. The majority DOS is
enhanced in the whole energy region with increasing h due to

FIG. 9. Majority and minority DOSs at T = 0.21TF,0 in the
unitary limit for various h [83].

FIG. 10. Minority spectral function A−(p, ω) (arbitrary unit) at
T = 0.1TF,+ for n−/n+ = 0.1 in the unitary limit. The vertical
dashed line shows p = 1.17kF,+ where the velocity of an attractive
polaron reaches the Fermi velocity of medium atoms. Note that kF,+
and εF,+ = TF,+ are the Fermi momentum and the Fermi energy for
the majority component, respectively.

the increase of n+. In the large-h region, ρ+(ω) coincides with
a DOS in an ideal Fermi gas given by Eq. (B1), since under a
large population imbalance, minority atoms cause a negligible
effect to a large number of majority atoms. On the other
hand, the minority DOS shows a more complex modification
than ρ+(ω) with increasing h. In particular, in the large-h
regime, minority atoms can be regarded as the so-called Fermi
polarons. In our configuration of chemical potentials with
fixed μ = (μ+ + μ−)/2, Ispin is enhanced compared with that
without self-energy corrections [82]. This implies that the
polaronic quasiparticle excitations encoded in the self-energy
corrections play an important role in spin transport for a large
spin bias.

In order to discuss the contributions of the polaronic trans-
port to Ispin for large h, we start with the investigation of the
single-particle spectral functions defined by

Aα (p, ω) = − 1

π
Im[Gα (p, ω + iδ)]. (9)

In the literature on the Fermi polarons, the Fermi momentum
kF,+ = (6π2n+)1/3 and the Fermi energy εF,+ = k2

F,+/(2m)
for majority atoms are conventionally taken as units of energy
and momentum. Thus we use these units to discuss Aα (p, ω)
in the large spin-bias regime. For large h, the majority spectral
function can be replaced by that for free fermions A+(p, ω) =
δ(ω + μ+ − p2

2m ). On the other hand, Fig. 10 shows that the
minority spectral function near unitarity is distinct from its
non-interacting counterpart. In particular, there are two types
of characteristic excitations: a sharp peak at low energy corre-
sponding to an attractive polaron and a broad peak around ω +
μ− ≈ εF,+ associated with a repulsive branch or repulsive
polarons. Since A−(p, ω) at low energy is dominated by the
attractive polaron, it is well approximated by

A−(p, ω) ≈ Zaδ

(
ω + μ− − p2

2m∗
a

− Ea

)
, (10)

where Za, m∗
a , and Ea are the renormalization factor, the

effective mass, and the energy of the attractive polaron, re-
spectively. By integrating this approximated form over p, the
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FIG. 11. Minority DOS for a highly polarized gas at unitarity.
The blue dashed line denotes the fitting curve by using Eq. (11),
while the green chain line denotes a noninteracting DOS in Eq. (B1).
For usual convention in polaron studies, we use the majority Fermi
energy εF,+ = (6π 2n+)2/3/(2m) and a noninteracting majority DOS
ρ0,+ = m

√
2mεF,+/(2π 2) at the Fermi energy εF,+ [83].

contribution from the polaron to ρ−(ω) is found to be

ρ
(att)
− (ω) = m∗

aZa

2π2

√
2m∗

a (ω + μ− − Ea) (11)

for ω > −μ− + Ea.
Figure 11 shows the minority DOS at unitarity numerically

calculated in the ETMA. The obtained ρ−(ω) for ω + μ− �
εF,+ is found to be enhanced compared to a DOS without
self-energy corrections. Fitting the calculated DOS at low
energy by using Eq. (11), we obtain Za(m∗

a/m)3/2 = 0.945 and
Ea = −0.627εF,+. These results are in good agreement with
the zero-temperature results in the single-polaron limit, where
Za = 0.78, m∗

a/m = 1.17, and Ea = −0.606εF,+, leading to
Za(m∗

a/m)3/2 = 0.987 [59,64]. This means that the effects
of finite T and x on ρ−(ω) are not so important in this
temperature and bias range [71]. For 0 � ω + μ− � εF,+,
ρ−(ω) deviates from Eq. (11). In this energy range, the

enhancement of ρ−(ω) comes from not only the attractive
polaron at high momentum, whose lifetime is finite, but
also the repulsive branch. In particular, the broadening of
the peak associated with the attractive polaron in Fig. 10
can intuitively be understood as follows. The polaron is a
quasiparticle consisting of a minority atom surrounded by
majority atoms. This quasiparticle picture is valid when the
velocity of a dressed minority atom v− ≈ p/m∗

a is smaller
than a typical velocity of the majority atoms vF,+ = kF,+/m.
When v− � vF,+, the majority atoms can no longer follow
the fast-moving minority atom and thus the attractive polaron
tends to be unstable. At unitarity, this unstable regime is
estimated as p � (m∗

a/m)kF,+ ≈ 1.17kF,+ and is consistent
with the region where the peak associated with the attractive
polaron becomes broad (see Fig. 10). This mechanism of the
broadening is analogous to the Cherenkov instability in Bose
polarons [84,85], where a minority atom undergoes the super-
sonic regime associated with the Bogoliubov phonons. Actu-
ally, this intermediate energy range of polaron spectra plays
a significant role in understanding polaronic spin transport
as discussed below. For sufficiently large ω, ρ−(ω) becomes
close to its noninteracting counterpart, which is consistent
with the asymptotic behavior derived by the operator product
expansion [86].

Let us now come back to Ispin for a large spin bias.
Figure 12(a) shows functions in the integrand of Eq. (2) at
T = 0.25TF,0 and h = εF,0. We can see that ρ+(ω − h) is
almost consistent with that without self-energy corrections.
Because of the existence of f (ω − h) − f (ω + h) reflecting
the Fermi-Dirac statistics and of a threshold energy ω = −μ

for ρ+(ω − h), ρ−(ω + h) contributes to Ispin only over the
region where the attractive polaron at finite momentum and
the repulsive branch appear. We note that in the absence
of the pairing interaction, both curves coincide with each
other. Thus, the enhancement of the spin current in the highly
polarized regime originates from the polaron excitations in the
intermediate-energy range (0 � ω + μ− � εF,+ in Fig. 11).

Figure 12(b) compares Ispin with and without self-energy
corrections at (kF,0a)−1 = −0.5, 0, and 0.5. While the

(a) (b)

FIG. 12. (a) Densities of states in the integrand of Eq. (2) at T = 0.25TF,0 and h = εF,0. The solid lines (chain lines) show the minority
(majority) DOSs and the thin dashed lines show the DOSs ρ±(ω ∓ h) = m

√
2m(ω + μ)/(2π 2) without interaction corrections. Note that, for

each color, the three lines have the same μ. The black dotted curve shows f (ω − h) − f (ω + h). (b) Spin currents at (kF,0a)−1 = −0.5, 0, and
0.5. The dashed lines show currents without self-energy corrections to the DOSs at each interaction strength.
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enhancement of Ispin is large in the weak-coupling side, it is
small in the strong-coupling side. Since the magnitude of Ispin

depends on μ obtained by solving Eq. (7) at each (kF,0a)−1 in
our configuration, Ispin becomes larger in the weak-coupling
side where μ is positively large compared to that in the strong-
coupling side. In this sense, the polaron properties appear
as the ratio given by Ispin with and without the self-energy
corrections. This ratio is still larger in the weak-coupling side.
The enhancement of Ispin is associated with the overlap of
ρ+(ω + h) and ρ−(ω − h) around ω = 0 shown in Fig. 12(a).
While these two DOSs in the unitary limit as well as the
weak-coupling side have a relatively large overlap due to the
small polaron energy, such an overlap becomes smaller in the
strong-coupling side due to the large polaron energy. Phys-
ically, the large polaron energy indicates the strong binding
of Fermi polarons. Since there is no single-particle state of
majority atoms in the energy range corresponding to low-
energy attractive polarons, these polaronic states are irrelevant
to spin transport. While the minority DOS at (kF,0a)−1 = 0.5
is enhanced in the low-energy region (ω < 0) due to the
polaron binding effect, that around the energy region where
majority DOS ρ+(ω + h) starts to be finite (ω � 0.2εF,+) is
relatively insensitive to the interaction. In addition, the strong
attraction makes Za of the attractive polaron smaller compared
with that at unitarity [64], which is expected to reduce the
enhancement of spin transport. Therefore, one can find that
the nonequilibrium spin transport in the highly polarized
regime is enhanced by the broadened polaron spectra in the
intermediate energy region, and suppressed by the polaron
binding effect.

IV. CONCLUSION

In this paper, we elucidated mesoscopic transport proper-
ties of spins for strongly interacting Fermi gases connected
via a quantum point contact. The tunneling Hamiltonian for-
malism was used to investigate a steady spin current between
two spin-polarized Fermi gases. By employing the linear
response theory combined with the diagrammatic approach,
the spin current Ispin and spin conductance Gspin in the normal
phase were computed for a wide range of parameters. We
found that the emergence of the pseudogap results in a large
suppression of spin transport in the low-T and low-h regime
as shown in Figs. 5–8. On the other hand,the gases become
highly polarized for a large spin bias h. In this case, both the
attractive polarons at finite momenta and the repulsive branch
play significant roles and they lead to the enhancement of Ispin

compared with the current without self-energy corrections.
As mentioned in previous studies on the spin susceptibility

for a strongly interacting Fermi gas [17,34–37,39–42], spin
properties are sensitive to the formation of a pseudogap.
Mesoscopic spin transport with a small spin bias studied here
provides a probe to experimentally examine the pseudogap
phenomenon. We also clarified that the spin current for a
large spin bias is affected by excitations including both the
attractive polarons at finite momenta and the repulsive branch.
At the same time, a set of chemical potentials μσ, j considered
in this paper (see Fig. 1) has a limitation to examining
the properties of polarons in the whole energy range. Such
polaronic properties are considered to be accessible in a two-

terminal system under another choice of μσ, j with the use of
the spin filter, which has been recently realized in an ultracold
atom experiment [87]. By assuming μ↓,L = μ↓,R � μ↑,L =
μ↑,R + V↑ and filtering out the majority (σ =↓) component,
the fully polarized current for a small bias V↑ encodes infor-
mation of attractive polarons at low energy.

Our method can be generalized to fermionic superfluids
[88]. Unlike the mass-current case, the Josephson current
is expected not to contribute to the spin current. Another
generalization is the study beyond the linear response theory
to discuss the good-contact regime. While such an analysis
is generically complicated, the quasiparticle current takes the
form of Eq. (2) up to a prefactor in some situations (see
Appendix C). Our formalism also predicts the noise of the
spin current. Within the linear response theory, the noise at
zero frequency is related to Ispin by S(ω = 0) = coth(h/T )Ispin

as derived in Appendix A. We expect such a noise to be
accessible in future ultracold atom experiments [89].
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APPENDIX A: LINEAR RESPONSE AND NOISE

This Appendix is devoted to the linear response theory
to the tunneling amplitude t . For convenience, we introduce
Cσ ≡ t

∑
p,p′ c†p,σ,Rcp′,σ,L and Îσ (t ′) ≡ −dNσ,L (t ′)/dt ′. The

mass- and spin-current operators are given by Îmass = Î↑ + Î↓
and Îspin = Î↑ − Î↓, respectively. The tunneling Hamiltonian
in Eq. (1c) is rewritten as HT = ∑

σ=↑,↓(Cσ + C†
σ ). Using

the Heisenberg equation combined with {cp,σ, j, c†p′,σ ′, j′ } =
δpp′δσσ ′δ j j′ and {cp,σ, j, cp′,σ ′, j′ } = 0, we obtain Îσ (t ′) =
i[Nσ,L, H] = −iCσ + iC†

σ .

First, we review the linear response of the current for the
spin-σ component. We follow the procedure in Ref. [79].
Hereafter, 〈· · · 〉 denotes the expectation value for a given
nonequilibrium state. According to the Kubo formula, Iσ ≡
〈Îσ (t ′)〉 for a steady state is given by

Iσ = −i
∫ t ′

−∞
dt ′′〈[Î (H0 )

σ (t ′), H (H0 )
T (t ′′)

]〉
eq + O(t3), (A1)

where 〈· · · 〉eq is a thermal average for the Fermi gases
in both reservoirs, and O(A)(t ′) ≡ eiAt ′

Oe−iAt ′
has been de-

fined. Operators in the right-hand side are in the Heisenberg
representation for H0 = KL + KR + ∑

σ, j μσ, jNσ, j . Using the
Baker-Campbell-Hausdorff formula, we can find C(H0 )

σ (t ′) =
e−i�μσ t ′

C(K0 )
σ (t ′), where K0 = KL + KR and �μσ = μσL −

μσR. [Henceforth, the shorthand notation Cσ (t ′) = C(K0 )
σ (t ′) is

used only for the operator Cσ .] By employing this as well as
the expressions of Îσ and HT in terms of Cσ , Eq. (A1) in the
normal phase can be rewritten as

Iσ = 2Im
[
χ ret

Cσ
(−�μσ )

]
, (A2)
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where

χ ret
Cσ

(ω) = −i
∫ ∞

0
dt ′eiωt ′ 〈[Cσ (t ′),C†

σ (0)]〉eq (A3)

is a retarded correlation function. By using the commutability
of KL and KR in Eq. (1) as well as an interrelation between re-
tarded and Matsubara Green’s functions, Ispin can be rewritten
as Eq. (2) in terms of DOSs.

Let us now turn to a noise in mesoscopic transport. The
noise is defined as a spectral density of current fluctuations.
In the case of the spin current, this is given by

S(ω) =
∫

dt ′eiωt ′ 〈δÎspin(t ′)δÎspin(0)〉, (A4)

where δÎspin = Îspin − 〈Îspin〉. Since 〈Îspin〉 = O(t2), the expec-
tation value in Eq. (A4) to leading order is equivalent to an
equilibrium current correlation. In addition, cross correlation
functions between currents with opposite spins vanish in the
normal phase. Therefore, Eq. (A4) reduces to

S(ω) =
∑

σ

∫
dt ′eiωt ′ 〈

Î (H0 )
σ (t ′)Î (H0 )

σ (0)
〉
eq + O(t3). (A5)

As shown above, we have Îσ = −iCσ + iC†
σ and

C(H0 )
σ (t ′) = e−i�μσ t ′

Cσ (t ′). Furthermore, the thermal averages
of Cσ (t ′)Cσ (0) and its Hermitian conjugate vanish in the
normal phase. As a result, Eq. (A5) reads

S(ω) =
∑

σ

[
χ>

Cσ
(ω − �μσ ) + χ<

Cσ
(−ω − �μσ )

]
, (A6)

where greater and lesser correlation functions are given by

χ>
Cσ

(ω′) =
∫

dt ′eiω′t ′ 〈Cσ (t ′)C†
σ (0)〉eq, (A7)

χ<
Cσ

(ω′) =
∫

dt ′eiω′t ′ 〈C†
σ (0)Cσ (t ′)〉eq, (A8)

respectively. The Lehmann representations of Eqs. (A3), (A7),
and (A8) provide the following relation:

χ>
Cσ

(ω′) = eω′/T χ<
Cσ

(ω′) = 2Im
[
χ ret

Cσ
(ω′)

]
e−ω′/T − 1

. (A9)

Combining this with Eqs. (A2) and (A6), we obtain

S(0) =
∑

σ

coth

(
�μσ

2T

)
Iσ . (A10)

In the case of the chemical potentials shown in Fig. 1, we have
�μ↑ = −�μ↓ = 2h. Therefore, the noise is related to Ispin by
S(0) = coth(h/T )Ispin.

At the end of this Appendix, we will comment on the
noise of the mass current, which is given by replacing δÎspin

in Eq. (A4) with δÎmass = Îmass − 〈Îmass〉. As mentioned above,
cross correlation functions between currents with opposite
spins vanish in the normal phase. As a result, both mass- and
spin-current noises have the same form of Eq. (A6). When
a bias is spin independent (μσ, j = μ j, �μ = μL − μR �= 0),
there is no spin current and the noise is related to the mass
current by S(0) = coth[�μ/(2T )]Imass.

APPENDIX B: Ispin AND Gspin FOR FREE FERMIONS

Here, the spin current [Eq. (2)] in the absence of interpar-
ticle interactions is considered. We assume μ+ = μ + h > 0
and h > 0. In this case, the density of states in Eq. (3) reduces
to

ρ±(ω) = m

2π2

√
2m(ω + μ±)θ (ω + μ±), (B1)

where θ (ω) is the Heaviside step function. Substituting this
into Eq. (2), we obtain

Ispin = I0
spin ≡ 2m3t2T 2

π3

∑
α=±

(−α)Li2(−eμα/T ), (B2)

where Lin(z) ≡ ∑∞
k=1

zk

kn is the polylogarithm. The zero-bias
spin conductance in Eq. (8) reads

Gspin|h→0 = 2m3t2T

π3
ln(1 + eμ/T ). (B3)

On the other hand, the large-h behavior of I0
spin with μ and T

fixed is

I0
spin = m3t2T 2

π3

(
μ2

+ + π2T 2

3
+ O(e−h/T )

)
. (B4)

At T = 0, we find I0
spin = m3t2[μ2

+ − μ2
−θ (μ−)]/π3 and

Gspin|h→0 = G0
spin ≡ 2m3t2εF,0/π

3. Note μ = εF,0 at zero
temperature in the noninteracting case.

APPENDIX C: NONLINEAR RESPONSE

Here we discuss how nonequilibrium properties beyond
the linear response affect the spin transport and show that
our analysis in this work is not largely affected by them. By
collecting the single-particle tunneling process, the nonlinear
quasiparticle spin current Ispin is obtained as [15]

Ispin = 4πt2
∫

dω
ρ+(ω − h)ρ−(ω + h)

|1 − 4π2t2g+(ω − h)g−(ω + h)|2
×[ f (ω − h) − f (ω + h)]. (C1)

The definition of gα (ω) is given by

gα (ω) =
|p|<�∑

p

Gα (p, iωn → ω + iδ), (C2)

where � is the momentum cutoff of the tunneling term. The
real part of gα (ω) involves the ultraviolet divergence. When
the momentum cutoff � is large enough, the self-energy
corrections in the denominator of Eq. (C1) are irrelevant. In
the absence of the self-energy, we obtain

gα (ω) = − m

π2

[
� + i

π

2

√
2m(ω + μα )

]
. (C3)

We note that the real part is proportional to � and the
imaginary part gives the single-particle density of states.
When the term proportional to the cutoff gives the dominant
contribution, the denominator of the nonlinear spin-current
equation (C1) gives

|1 − 4π2t2g+(ω − h)g−(ω + h)|2 �
∣∣∣∣1 − 4m2t2�2

π2

∣∣∣∣
2

. (C4)
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Therefore the nonlinear spin current reads

Ispin � 4πt2∣∣∣1 − 4m2t2�2

π2

∣∣∣2

∫
dω ρ+(ω − h)ρ−(ω + h)[ f (ω − h) − f (ω + h)], (C5)

which is the same form of the linear response except for the coefficient. The current expression requires that t is small such that
mt� � 1. These parameters would be chosen to reproduce the detailed experimental setup of the quantum point contact. If �

is comparable to the imaginary part, namely, DOS, we have to seriously consider the corrections from both real and imaginary
parts of gα (ω). It will be left as an important future work.
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