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Future third-generation (3G) ground-based gravitational wave (GW) detectors, such as the Einstein Telescope
and Cosmic Explorer, will have unprecedented sensitivities enabling studies of the entire population of stellar
mass binary black hole coalescences in the universe, while the A+ and Voyager upgrades to current detectors
will significantly improve over advanced LIGO and Virgo design sensitivities. To infer binary parameters from
a GW signal we require accurate models of the gravitational waveform as a function of black hole masses,
spins, etc. Such waveform models are built from numerical relativity (NR) simulations and/or semianalytical
expressions in the inspiral. We investigate the limits of the current waveform models and study at what detector
sensitivity these models will yield unbiased parameter inference for loud “golden” binary black hole systems,
what biases we can expect beyond these limits, and what implications such biases will have for GW astrophysics.
For 3G detectors we find that the mismatch error for semianalytical models needs to be reduced by at least three
orders of magnitude and for NR waveforms by one order of magnitude. We show that typical biases in units of
standard deviations for the mass-ratio and effective aligned-spin will be of order unity for 2G design sensitivity
and will reach several tens for 3G networks. In addition, we show that for a population of one hundred high
mass precessing binary black holes, measurement errors sum up to a sizable population bias, about 10–30 times
larger than the sum of 90% credible intervals for chirp mass, mass-ratio, effective aligned, and precessing spin
parameters. Furthermore, we demonstrate that the residual signal between the GW data recorded by a detector
and the best fit template waveform obtained by parameter inference analyses can have significant signal-to-noise
ratio and can lead to Bayes factors as high as 1011 between a coherent and an incoherent wavelet model for the
population events. This coherent power left in the residual could lead to the observation of erroneous deviations
from general relativity. To address these issues and be ready to reap the scientific benefits of 3G GW detectors in
the 2030s, waveform models that are significantly more physically complete and accurate need to be developed
in the next decade along with major advances in efficiency and accuracy of NR codes.

DOI: 10.1103/PhysRevResearch.2.023151

I. INTRODUCTION

Observations of gravitational waves (GWs) from coalesc-
ing compact object binaries have revolutionized our knowl-
edge about the universe and provided access to astrophysics
previously outside our grasp [1]. These observations were
made possible by the construction and operation of a network
of GW detectors, Advanced LIGO [2], Advanced Virgo [3],
and KAGRA [4]. As expected from a relatively young field
of observational astrophysics, there are still significant tech-
nological improvements within reach [5–7], increasing the
sensitivity of both current generation GW detectors over the
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next ∼5 years [8] in addition to paving the way for next-
generation ground-based facilities [9–12] as well as space-
based observatories [13,14], all planned to be operational in
the early 2030s. This will allow for direct observation of
all stellar-mass binary black hole (BBH) mergers throughout
the cosmological history of the universe [15] and will enable
unprecedented and unique science in extreme gravity and fun-
damental physics [16]. Whereas the vast majority of observed
GW signals will have originated at large cosmological dis-
tances [17,18], binaries from the currently observable volume
of the universe will, as the detector sensitivities improve (see
Fig. 1), be observable with increasing fidelity. GW models are
crucial for elucidating the astrophysical properties of compact
binaries. For this increase in the information available for
a typical BBH observation, these models need to satisfy
stricter accuracy requirements. The currently available model
waveforms, which approximates the solutions to the two-
body problem in general relativity (GR), have been shown
to be sufficiently accurate to not cause any systematic biases
in the recovered parameters (masses, spins, location in the
universe, etc.) for BBHs observed so far [19]. These “golden
binaries,” stellar-mass BBHs like GW150914 (the first direct
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FIG. 1. Evolution of sensitivity of GW interferometric detectors.
Text data files for the PSDs or amplitude spectral densitys (ASDs)
can be found in References [45,46] under the names given in this
table.

GW detection [20]) observed at high signal-to-noise ratio
(SNR) and with high fidelity, have also allowed to perform
previously inaccessible tests of GR [21] and the robustness of
the waveform models used. As the GW detectors improve, the
expected SNR for BBHs from the local universe will increase
correspondingly, thus reducing the statistical uncertainties in
the recovered source parameters. As the statistical uncertain-
ties approach the inherent systematic uncertainties of the GW
approximant models, parameter biases will eventually appear
and reduce the reliability of future GW observations.

In this study we want to investigate the appearance and
significance of these parameter biases, their connection to
the accuracy of the GW models used and what relevance the
biases will have on future astrophysical statements based on
high SNR observations of BBH systems [22]. In addition to
possible biases in the source parameters of the BBH, the use
of GW observations as means to test GR puts even more
stringent requirements on GW model accuracy [21,23–25].
If there are effects of beyond-GR theories embossed on the
“raw” GR waveform, then these effects will be scrambled by
any residual signal left by an inaccurate GW model and thus
will limit the strength of the GR test. Even worse, inaccurate
GW models may lead to erroneous results claiming deviations
from GR. Many of these analyses, both parameter estimation
(PE) studies and tests of GR, are strongly dependent on robust
observation of the two polarization states of a GW signal as
described by GR [26]. This is primarily done by requiring a
coherent observation of a given GW signal in more than one
detector [27–29], which is also crucial for accurate and reli-
able localization of the GW source in the universe. Whereas
the BBHs investigated here are not expected to produce any
observable counterpart [30–32], precise localization is crucial
for cosmology studies [33–37] as well as for inferring the
parameters of the BBHs in their source frame [38].

In addition to biases caused by inaccurate GW models,
the data generated by the detectors themselves carry inherent
uncertainties originating from the calibration process applied
to the raw detector output [39] as well as imprecise modeling
assumptions for the noise processes of a given detector system
manifesting as inaccuracies in the estimated power spectral

density (PSD) for the analysed data [40,41]. These types
of uncertainties can however already be quantified, and thus
incorporated into the PE infrastructure allowing their effects
to be marginalised out from the final inferred parameter
distributions [1,42–44]. The marginalization over calibration
uncertainties, and similarly the marginalization over eventual
uncertainties in the noise PSD estimation, is primarily ex-
pected to broaden the recovered posterior distributions thus
effectively absorbing any misestimate in the GW amplitude or
phase irrespective of whether it originated from uncertainties
in the data itself or from the assumed waveform model.

The rest of the paper presents the details of our study.
In Sec. II we describe the GW models used, together with
details on the analysis methods. In Sec. III we report our
findings on the analysis of individual “golden binary” BBH
signals, including requirements on the accuracy of the GW
models and the consequences any inaccuracies will entail. In
Sec. IV we explore a population of BBH observations, and
what effects GW model accuracy will have on the properties
of the inferred population. Finally in Sec. V we discuss our
findings and present an outlook for how to tackle the issues
we have presented.

II. METHODOLOGY

In this section we introduce the methods we use to study
the impact of waveform inaccuracies on measurements of
compact binary parameters from GWs in Secs. III and IV. We
first discuss common data analysis tools for GW waveforms
in Sec. II A and numerical relativity (NR) waveforms, the
most accurate waveforms we have available for the solutions
of the two-body problem in GR, in Sec. II B. In addition
to NR waveforms, we also use post-Newtonian–numerical
relativity (PN-NR) hybrid waveforms as described in Sec. II C
to more fully fill the band of more sensitive detectors to lower
frequencies as mock signals in this study. In Sec. II D, we
discuss fast, but approximate semianalytic models of the GWs
emitted from compact binaries. These models are crucial to
infer binary properties with Bayesian parameter estimation
methods for single events and populations of binaries, as
discussed in Sec. II E.

A. Gravitational waveforms and overlaps

Gravitational waveforms are often decomposed in a basis
of spherical harmonics −2Ylm. The two GW polarizations can
be expanded into modes as

h+ − ih× =
∑
�,m

h�m −2Ylm. (1)

We define the overlap, or match, between two waveforms
h1 and h2 as

O(h1, h2) := 〈h1|h2〉√〈h1|h1〉〈h2|h2〉
, (2)

where

〈h1|h2〉 = 4Re
∫ fhigh

flow

h̃1( f )h̃∗
2( f )

Sn( f )
df (3)
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TABLE I. Binary configurations studied in Sec. III. We indicate the SXS ID [47] of the SpEC NR simulations, the total mass and chirp
mass in the source frame, the mass-ratio q = m2/m1 � 1, the dimensionless spin vectors �χi = �Si/m2

i of the BHs, the effective aligned spin and
effective precession spin, and the inclination angle between the total angular momentum �J and the line of sight �N . Signals are hybridized with
SpinTaylorT1. Spin vectors are defined at a reference frequency of 30 Hz. We select the remaining common parameters to be ra = 1.949725,
dec = −1.261573 (radians), a luminosity distance of dL = 562.59Mpc (which corresponds to a redshift of about z = 0.115), a polarization
angle ψ = 1.4289. The GPS time at the geocenter was 1126259642.413 s and coalescence phase φcoa = 0.

Configuration Msrc
tot /M� Msrc/M� q �χ1 �χ2 χeff χp θJN

SXS_BBH_0308 66.4555 28.7443 0.8143 (−0.1407, 0.0225, 0.3053) (−0.2209, 0.3075, −0.5580) −0.0822 0.2994 2.7454
SXS_BBH_0104 66.4555 24.3406 0.3333 (−0.0550, −0.0144, 0.4966) (−0.2737, −0.4173, 0.0112) 0.3753 0.1442 1.0839

represents a noise-weighted inner product with PSD Sn, and ∗
denotes complex conjugation. We also maximize the overlap
over a time and phase-shift between the two waveforms.
We often quote the mismatch, 1 − O(h1, h2) instead of the
overlap.

B. Numerical relativity waveforms

We use two NR simulations of binary black hole coa-
lescences by the SXS Collaboration [47] using the spectral
Einstein code (SpEC) [48]. While there are now thousands
of simulations available we pick a first simulation which is
very representative of the mass-ratio and spin distribution of
BBH systems observed by LIGO and Virgo so far [1], and a
second binary with parameters that lie closer to the edge of
the measured 90% credible regions, toward higher mass-ratio
and effective spin. It is there that we expect current waveform
models to disagree with each other more strongly than close
to an equal-mass nonspinning binary. The first simulation,
SXS_BBH_0308 [47,49], was performed at parameters in-
ferred from the LIGO PE analysis of GW150914 with semian-
alytic waveform models [20,50] and was subsequently used to
study possible effects of waveform systematics on the inferred
parameters [19,51]. The waveform describes a nearly equal
mass binary with small effective aligned spin and moderate
precession (see Table I). The waveform accumulates 12.6
orbits and a length of 2822M in time before the formation
of a common horizon. The mismatch between simulations
at different resolutions at the total mass of GW150914 with
aLIGO design sensitivity is ∼2 × 10−4. We use the highest
resolution available, Lev5.

The second simulation, SXS_BBH_0104 [52,53], is at
mass-ratio 1:3 and has some effective aligned and precession
spin. Systems at this mass-ratio still lie within the popula-
tion posterior for the mass-ratio that has been found in the
LIGO and Virgo O1 and O2 analysis [1]. The waveform
accumulates 21.9 orbits and a length of 5192M before the
formation of a common horizon. There is only a single
resolution, Lev5, available for this simulation. An estimate
for the mismatch for a simulation using similar technology
(SXS_BBH_0053 [53,54]) gives ∼10−3 at the total mass of
GW150914 with aLIGO design sensitivity.

These waveforms are for quasi-circular inspirals and merg-
ers of BBHs. Since initial conditions are not exactly known,
there is a low amount of residual eccentricity in these simu-
lations. For SXS_BBH_0308 eccentricity at the relaxed time
is estimated to be ∼0.0005 while for SXS_BBH_0104 it
is ∼0.001. We do not consider the effect of eccentricity in

the waveform in this study. The relevance of eccentricity for
waveform systematics is currently not very well understood.
While a few inspiral-merger-ringdown eccentric waveform
models have been constructed so far for nonspinning [55,56]
and aligned-spin binaries [57,58], only a single parameter esti-
mation study [59] has been carried out so far. The construction
and tuning to NR simulations of the model in Ref. [57] is
unfortunately not quite up to date compared to current BBH
models. No detailed systematics study has been carried out
and it is currently not known how neglecting eccentricity
would compete with other sources of systematics in terms of
parameter bias.

C. Hybrid waveforms

We use an extension of the GWFrames [60,61] package to
hybridize NR with post-Newtonian (PN) waveforms. First we
read in an NR waveform and its horizon data (i.e., the spins
and orbital track data computed from the apparent horizon
finder). We generate a PN waveform at the physical parame-
ters of the NR configuration and align it by shifting in time and
attitude to match the NR waveform. The waveform modes and
the quaternions describing the motion of the inertial frame are
then blended over a hybridization region in time. More details
about the procedure and the hybrid waveforms are given in the
Appendix.

Estimates of the accuracy of hybrid PN-NR waveforms
are difficult to obtain. Hybrid errors are expected to be sig-
nificantly higher than for pure NR waveforms due to errors
in the PN part of the waveform and additional errors from
smoothly combining the PN and NR waveform modes over a
blending window in time [62–65]. We show in the Appendix
that hybridization errors are lower than NR error estimates
for the simulations considered in this study. Semianalytical
waveform models usually have good accuracy in the inspiral
and are less accurate near merger. Therefore, the PN-NR hy-
brids used as mock signals in this study should be much more
accurate than the semianalytic waveform models described in
Sec. II D which we use as template waveforms.

D. Waveform models

In this study we use two fast frequency domain
waveform models as template waveforms. These are the
IMRPhenomPv2 [66,67] and SEOBNRv4_ROM [68] inspiral-
merger-ringdown (IMR) models.

IMRPhenomPv2 uses the aligned-spin IMRPhenomD [69,70]
model as a base waveform in the coprecessing frame and
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twists up its (2,±2) modes with a PN prescription of the
Euler angles that describe the motion of the inertial frame
for precessing black hole binaries, thus generating all � = 2
modes [71,72]. The model also assumes that the opening
angle of the precession cone is small [67] which make it
most suitable for binaries with small to moderate precession
and moderate mass-ratios. The model has been shown to be
smooth [73] up to mass-ratio q ∼ 1/4.

SEOBNRv4_ROM is a frequency domain reduced order
model of the time domain SEOBNRv4 effective-one-body
model [68] using the methodology developed in Refs. [74,75].
The model describes the (2,±2) modes for nonprecessing
binaries and can be used for a wide range in mass-ratio and
BH spin magnitudes up to maximal spin.

Both IMRPhenomD which underlies IMRPhenomPv2 and
SEOBNRv4 have been tuned to NR waveforms in the non-
precessing sector. While more complete models in terms of
precession are available [76–78] we were not able to use them
for this computationally demanding study because we could
not obtain converged posterior distributions in time. Models
that also include higher harmonics [79] or are computationally
more efficient [80] are now becoming available.

In the population study described in Sec. IV we use
NRSur7dq2 to represent the population of astrophysical sig-
nals [81]. These signals were stochastically drawn and thus we
could not use NR simulations which are only available at spe-
cific points in parameter space. The NRSur7dq2 NR-surrogate
model is however a very good approximation to NR wave-
forms. It describes generic precessing systems with mass-
ratios up to q = 1/2 and spin magnitudes of 0.8. NRSur7dq2
is built from multiple surrogates that model waveform mode
combinations in the co-orbital frame, the averaged frequency
of the (2,±2) modes in the coprecessing frame, and the
frame motion through the right-hand sides of the precession
equations [82–85]. We intended to also use NRSur7dq2 as a
template waveform for the study discussed in Sec. III, but,
while being very accurate, this model has a limited length and
this severely limits the mass space that can be explored to high
mass systems and high starting frequencies.

E. Bayesian parameter estimation

The inference of the source parameters �θ of a GW signal
is expressed as a posterior probability density function (PDF)
p[�θ |d (t )] as part of a PE analysis given the data d (t ) recorded
from the detectors. Through application of Bayes’ theorem,
p[�θ |d (t )] is directly proportional to the likelihood L[d (t )|�θ ]
of observing the data given an assumed waveform model
h(t ; �θ ), in turn characterized by the source parameters �θ ,
together with the prior probability π (�θ ).

For the analysis of the “golden binaries” in Sec. III this
prior is defined to be uniform over the two-dimensional space
defining the masses of the binary objects, m1 and m2 (with
m1 � m2), as observed in the rest frames of the GW detectors.
The dimensionless spins of the BHs are assumed to follow a
prior uniform in spin magnitude (between 0 and 1) allowing
for isotropic and uncorrelated directions of the two black
hole spins. We also assume an isotropic prior for the location
of the GW on the sky, and a distance prior corresponding
to a homogenous rate density in the nearby universe. For

these analyses, we disregard any cosmological corrections to
the rate density which for the redshifts explored (z ∼ 0.1)
are expected to be negligible. The orientation of the binary
follows a prior probability uniform in the polarization angle
ψ and in the cosine of θJN , the angle between the total
angular momentum J and the line of sight N. The parameter
space defined by π (�θ ) is, for the golden binaries analysed in
Sec. III, explored stochastically using a Markov chain Monte
Carlo code implemented as part of the LALINFERENCE pack-
age [43,86] available as part of the LSC Algorithm Library
(LAL) [87].

For the analysis of the BBH population in Sec. IV
the BILBY inference package was used [88,89] exploring
the parameter space using the Nested Sampling algorithm
DYNESTY [90]. Here, similar parametrizations and prior as-
sumptions as for the analysis in Sec. III were made. The
analyses however differ in their assumptions over BH masses,
here using a prior uniform in the binary chirp mass M =
(m1m2)3/5/(m1 + m2)1/5 and the asymmetric mass ratio q =
m2/m1 as well as assuming a prior on distance that is uniform
in comoving volume. The different prior choices between
Secs. III and IV are not expected to have significant impact
on the recovered parameters, or on the conclusions about
waveform accuracy requirements based on this inference.

In a multidetector PE analysis we project the signal and
template waveforms on the interferometric GW detectors and
compute the strain from the waveform polarizations (+ and
×) and their corresponding detector antenna pattern func-
tions [91]

h(t ; �θ ) = h+(t ; �θ )F+(ra, dec, ψ ) + h×(t ; �θ )F×(ra, dec, ψ ).

(4)

As the focus of this study is on effects of accuracy of the
waveform themselves, the signal waveforms representing the
true GW signals are added to a time series containing no
noise, as the standard assumption of Gaussian noise could
introduce random biases in the recovered parameters. The true
GW strain h(t ; �θ ) as emitted by the GW source may however
differ from hM (t ; �θ ), the strain measured by the detectors, due
to uncertainties in the calibration of the detectors and their
recording of the GW strain [39,92]. We can model the relation
between the measured and true strain as

h̃M ( f ; �θ ) = h̃( f ; �θ )[1 + δA( f ; �θ cal )] exp i δφ( f ; �θ cal ) , (5)

for h̃( f ; �θ ) and h̃M ( f ; �θ ) where the tilde denotes the Fourier
transforms of the time-domain strain h(t ; �θ ) and hM (t ; �θ ),
respectively. The uncertainty in the strain amplitude and
phase, caused by uncertainties in the detector calibration, are
characterized by the terms δA( f ; �θ cal ) and δφ( f ; �θ cal ) that are
nominally expected to vary both across the bandwidth used
for the observation as well as over time from observation to
observation. The frequency-dependent correction factors are
modelled as cubic splines with nodes spaced uniformly in
log f , each with an independent δA and δφ parameter [93]
which are then numerically marginalised over. For this study,
we assume zero-mean Gaussian priors on δA with a standard
deviation of 1% (5% for the O1 analysis) and for δφ a standard
deviation of 1◦ (5◦ for the O1 analysis). The magnitude of
these amplitude and phase uncertainties are consistent with
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the performance of the LIGO detectors during O1 [44,94,95],
and the predicted calibration uncertainties for future detector
configurations [96,97].

Hierarchical inference

For the population study detailed in Sec. IV, the BILBY

inference package [88,89] was used for both the analysis
of individual BBHs as well as the subsequent inference on
their population parameters. Following the analysis of each
individual GW signal assumed to be part of the observed
population, their joint population properties, here a single
parameter α, can be inferred as a hyperposterior [98],

ptot (α| �d ) = Ltot ( �d|α) π (α)∫
dα Ltot ( �d|α) π (α)

, (6)

where Ltot ( �d|α) is the hyperlikelihood, π (α) is the hyperprior,
�d is a collection of data for N independent events drawn
from the injection distribution. We write the injection prior as
π (θ |α) and our goal is to estimate the hyperposterior which
in turn relies on a hyperlikelihood that can be written as

Ltot ( �d|α) =
N∏
i

Zø(di )

ni

ni∑
k

π
(
θ k

i

∣∣α)
π

(
θ k

i

∣∣ø) , (7)

where π (θ k
i |ø) denotes the default prior that is used to perform

single event parameter estimation, k indexes samples from the
posterior, and Zø(di ) is the evidence obtained for event i. The
integral is then approximated in a Monte Carlo sense, using
the single event posterior samples that have been obtained
previously.

III. RESULTS FOR GOLDEN BINARIES

In this section we give predictions about parameter biases
that would arise if we used current BBH semianalytic wave-
form models to infer the properties of high mass BBHs in a
sequence of past, current and future ground-based detector
networks.

We select two exceptionally loud “golden binaries”: one
binary with parameters mimicking GW150914 and one binary
at mass-ratio 1:3. Both systems contain BHs with spins mis-
aligned with the orbital angular momentum vector causing the
systems to be moderately precessing. We hold the luminosity
distance of the systems constant, so that more sensitive detec-
tor networks will observe them with higher SNRs and obtain
more precise measurements. Parameters for these systems are
given in Table I. As signal waveforms we use NR simulations
from the SXS [47] catalog computed with the SpEC code [48],
as described in Sec. II B. Since these waveforms are too short
to fill the frequency band of future interferometers which
extends well below 20 Hz, we hybridize the NR waveforms
with PN approximants in the inspiral, including higher order
modes up to � = 8. We use the effective precession spin
IMR waveform model IMRPhenomPv2 for our main results
and also quote complementary results for the nonprecessing
SEOBNRv4_ROM model. IMRPhenomPv2 includes � = 2, m =
±2 modes in the coprecessing frame, and a PN description of
the motion of the coprecessing frame with an approximation
for small precession angles [66,67,69,70].

A. Indistinguishability

We want to find an estimate that predicts beyond which
SNR a particular waveform model that is used as a template
in PE yields biased posterior distributions for the above BBH
signals. We can find the answer by calculating the posterior
distribution using Bayesian inference. However, this method
is fairly costly for the very sensitive future detectors (see
Fig. 1) where the signals have SNRs up to several thousands.
Therefore, we compare against and extend a simpler metric
for predicting the presence of biases.

If two waveforms h1 and h2 fulfill the criterion [99–102]

1 − O(h1, h2) < D/(2ρ2) (8)

for a given PSD and SNR ρ, then they are deemed indistin-
guishable, i.e., 〈δh|δh〉 < 1 and the posterior PDF should be
unbiased in the sense that systematic errors from waveform
inaccuracies are smaller than 1 − σ statistical errors.

While this criterion is simple to evaluate, there are several
problems that affect its usefulness in practice: The criterion is
only sufficient, but not necessary and as a result it tends to be
too conservative. Namely, if it is violated, then biases can but
need not arise. In addition, the prefactor D is not known pre-
cisely. It can be derived as the number of (intrinsic) parameters
whose measurability is affected by model inaccuracy [102].
The criterion also applies only in the high SNR limit as is the
case for the Fisher information matrix [103].

To enhance the usefulness of the indistinguishability crite-
rion we use the following procedure to tune the prefactor D.

(1) We compute posterior distributions for a sequence of
detector networks on the above synthetic signals.

(2) From the posterior distributions we compute statistical
and systematic errors for key parameters (chirp-mass, mass-
ratio, effective aligned spin, and effective precession spin).

(3) We estimate the network (balance) SNR ρb at which
the computed systematic and statistical errors become compa-
rable.

(4) We compute the mismatch 1 − O(hmodel, htrue )(θtrue )
between the template waveform and the signal at signal pa-
rameters for a representative detector sensitivity.

(5) Finally, we calculate

D = 2ρ2
b [1 − O(hmodel, htrue )(θtrue )]. (9)

We present results of applying this procedure to the se-
lected golden binaries in Sec. III B. First we discuss some
assumptions we make in applying it.

When computing the balance SNR and the mismatch
we have to assume a power spectral density (PSD). We
find empirically that systematic and statistical errors be-
come comparable at network SNRs of ∼60 for the above
sources. This SNR is found at aLIGO design sensitiv-
ity for SXS_BBH_0308 and at about A+ sensitivity for
SXS_BBH_0104. The mismatch is only sensitive to the shape
of the PSD and the frequency range of the overlap integral.
We pick aLIGO design sensitivity [46] as a reference PSD
since this is close to the sensitivity where the balance SNR is
found, and it is in its vicinity that the tuned indistinguishability
criterion should be most accurate. In general, we expect that
mismatches will degrade as we approach future detectors
since they will be sensitive to lower frequencies and will have

023151-5



MICHAEL PÜRRER AND CARL-JOHAN HASTER PHYSICAL REVIEW RESEARCH 2, 023151 (2020)

significantly more waveform cycles in band. The network
SNR determines the discerning power of a network of detec-
tors since we analyze the signal coherently. We neglect that
the interferometers that make up detector networks usually
have different sensitivities and pick a representative PSD. We
use this PSD to compute the single interferometer mismatch
in the indistinguishability criterion.

We use mock signals as a proxy for the true waveform
obtained from exactly solving the two body problem in Gen-
eral Relativity. Hence we also assume that GR is the correct
theory of gravity. Ideally our mock signals would be pure
NR waveforms. This is in general not feasible since the cost
of computing BBH coalescences with NR simulations scales
very steeply with the initial frequency, so that in practice only
part of the detector band can be filled by the NR signal for
high mass BBHs. Therefore, we hybridize NR signals with
PN inspiral waveforms.

NR simulations are only approximations of true GR wave-
forms. NR accuracy depends on the choice of configuration
(e.g., more unequal mass-ratios and higher spin systems are
harder to simulate accurately as the size of the apparent
horizon of the BHs decreases) and on the size of the grid
used to discretize Einstein’s equations. In reality, NR simu-
lations use multiple domains and a particular discretization
method (finite differences [104–106], multidomain spectral
collocation methods [48], or more advanced methods, such
as discontinuous Galerkin [107,108]). While we can obtain
a good estimate of the NR waveform error by computing
mismatches for the same physical configuration but different
grid sizes to decrease the truncation error and wave extraction
errors, it is difficult to estimate the error in a hybrid waveform.
We discuss this further in the Appendix.

In the above procedure for estimating the prefactor D we
need to find the SNR at which the systematic and statistical
errors are comparable. We know that parameters are in general
correlated and thus we should take these correlations into
account when estimating these errors. The indistinguishability
criterion also makes this assumption. When quoting parame-
ter estimation results we rely on errors computed from one
and two-dimensional marginal posterior distributions, which
are straightforward to compute and present. Therefore, we
also compute the statistical and systematic errors from 1D
marginal posteriors. A more conservative measure of the
error is to compute where the injection lies in the posterior
distribution, or a marginal PDF thereof. We obtain the per-
centile of the credible level of the injected parameters in the
full posterior by performing parameter estimation with all
sampling parameters fixed, except for the time and phase of
coalescence. Detailed measurements of the latter are of no
astrophysical interest, and as they can very strongly affect the
likelihood, we prefer to marginalize over them.

We also consider a third method where we take into
account the correlations in a set of key parameters only. To
do this, we compute a kernel density estimate (KDE) of the
marginal posterior distribution in the parameters of inter-
est, compute the posterior probability value at the injection
parameters and find its credible level in the marginal pos-
terior. We compute a Gaussian KDE K(θ̃ ) = KDE[p(θ̃ |d )]
of the marginal posterior distribution p(θ̃ |d ) and then solve
numerically the equation Q[K(θ (i) ); p] = K(θs) to find at

which percentile 100p the true parameters θs of the signal
lie in the marginal posterior. Here Q is the quantile function
Q(PDF; p) = CDF−1(p) for a given PDF and its cumulative
distribution function (CDF). In practice we work with the
logarithm of the PDF to reduce the dynamic range. We discuss
results from these procedures in the next section.

B. Predicted waveform accuracy requirements

We now apply the procedure presented in Sec. III A to
posterior probability distributions and mismatches obtained
for the two mock BBH signals shown in Table I for a series of
detector networks. The networks are defined by the positions
of the detectors on the Earth and their PSDs as listed in
Table II.

Figure 2 shows the main results. According to Eq. (8) the
general takeaway is that as long as the mismatch for a given
semianalytical waveform model against the mock signal (red
lines) lies below the tuned indistinguishability curve (light
or dark blue lines) we do not expect parameter recovery to
be biased. One can think of the indistinguishability curve
showing the “acceptable error” for a waveform model for
a particular SNR. Without tuning, the predicted SNR above
which we would see biases (assuming that six intrinsic model
parameters are affected) is about 25 for the SXS_BBH_0308
NR signal (and SNR 11 for the hybrid). For SXS_BBH_0104
it is predicted to be an SNR of ∼6. As we will see in Sec. III C
these predictions are certainly way too conservative for the
hybrid signals when compared with the parameter estimation
results and the assumption that six parameters are biased is
not correct either.

A first observation is that semianalytic models (here the
representative IMRPhenomPv2 and SEOBNRv4_ROM models)
were sufficiently accurate to analyze GW150914 during
aLIGO’s first observing run. This is hardly a surprise and
has been studied in depth by comparing against NR sim-
ulations and waveform models by the LVC [19,51]. Fig-
ure 2 also predicts that semianalytical models will lead to
biased parameter recovery at and beyond HLVK sensitivity
for SXS_BBH_0308 and at and beyond the A+ network
for SXS_BBH_0104. Moreover, current NR waveforms will
not be guaranteed to be sufficiently accurate for unbiased
parameter recovery beyond the Voyager network (where the
dark blue line intersects the dark green line). Clearly then
current waveform models will not be accurate enough for
3G ground-based detectors such as ET and Cosmic Explorer
(CE), which are currently being planned. We will require
waveform models to be at least three orders of magnitude more
accurate and improvements of one order of magnitude for NR
waveforms.

Figure 2 presents a simplified picture to convey the main
message that current waveform models are not accurate
enough for planned 3G detectors. We now come back to
some of the assumptions we have mentioned in Sec. III A
and shed some light on details. The shape of the PSDs and
the range in frequency over which particular interferometers
are sensitive varies with the networks and influences the value
of the mismatch that enters the indistinguishability criterion.
The horizontal lines shown in Fig. 2 provide a simplified
representative measure of the error. For SXS_BBH_0308
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TABLE II. List of ground-based detector networks used in this study. The networks are defined by the positions of the detectors on the
Earth and their PSDs in parentheses. We also indicate the frequency flow at which we start integrating the likelihood integral and the network
SNR of the PN-NR hybrid signals in these networks (see Table I for the parameters). Detector locations are indicated by: H1, LIGO Hanford;
L1, LIGO Livingston; V1, Virgo; K1, KAGRA; I1, LIGO India; E1, E2, and E3, the interferometers of the triangular Einstein Telescope (ET)
detector [109]. Text data files for the PSDs or ASDs can be found in Refs. [45,46] under the names given in this table.

Network SNR

Network List of Interferometers and PSDs flow[Hz] 0308 0104

O1 H1, L1 (O1) 30 25.4 11.2
HLVK H1, L1 (aLIGODesign_2018_T1800044), V1 (AdVirgo), K1 (KAGRA) 10 88.9 41.6
A+ H1, I1 (A+) 10 125.7 57.5
Voyager H1, L1 (Voyager) 10 276.3 128.4
ET [E1, E2, E3] (ET_D) 5 950.9 466.3
ET-CE [E1, E2, E3] (ET_D), H1 (CE) 5 2598.8 1205.2

mismatches against IMRPhenomPv2 range from 0.002 (aLIGO
O1) to 0.02 (CE) for the pure NR signal, which is in band
from 20 Hz and above, and from 0.002 (aLIGO O1) to 0.008
(CE) for the hybrid signal. Starting frequencies are given in
Table II. Mismatches for aLIGO, AdVirgo, KAGRA, and A+
are very similar to those for the aLIGO O1 results. For the
nonprecessing SEOBNRv4_ROM model mismatches range from
0.003 (aLIGO O1) to 0.02 (CE) for the pure NR signal and
from 0.005 (aLIGO O1) to 0.03 (CE) for the hybrid signal.
For the SXS_BBH_0104 hybrid signal the mismatches against
IMRPhenomPv2 range from 0.06 (CE) to 0.09 (aLIGO O1,
aLIGO design). Here, mismatches against SEOBNRv4_ROM are
surprisingly slightly better 0.04 (CE) to 0.07 (AdvVirgo).

We want to stress that the mismatches depend very sensi-
tively on the inclination angle under which the signal is seen.
If we were to change the inclination for SXS_BBH_0308 from

near face-off, 2.7454, which is compatible with GW150914,
to π/3 which emphasizes more harmonics content beyond the
dominant (2,±2) mode, then the mismatch is about an order
of magnitude worse. If biases were to appear at the same SNR
for this changed inclination, then this would make D an order
of magnitude larger and the left panel of Fig. 2 would look
markedly different and have stronger implications for how
much waveform models need to be improved.

We have indicated in Fig. 2 the estimated accuracy of
waveform models and NR simulations for the particular bi-
nary configurations by colored regions that are independent
of the detector networks. These regions are supposed to give
a rough sense of how accurate currently available models or
codes are in the neighborhood of the BBH configurations
considered here. Similar considerations as for the mismatches
quoted above apply for the bounds of these regions. For

FIG. 2. Predicted waveform accuracy requirements for second and third generation ground-based detector networks. We show results for
two binaries: (a) SXS_BBH_0308 and (b) SXS_BBH_0104 (see Table I). Each panel shows mismatch against network SNR and on the top x
axis the detector network (see Table II) in which the signal had the SNR shown in the bottom x axis. Solid lines indicate results for pure NR
signals, while dashed lines come from NR signals hybridized against PN waveforms in the inspiral. The blue lines and data points show how
the mismatch falls with rising SNR according to the indistinguishability criterion Eq. (8) with the prefactor D tuned according to Eq. (9), as
D/(2ρ2). The dash-dotted gray line shows the prediction of Eq. (8) with D = 8. Horizontal red lines show the mismatch of the signal against the
IMRPhenomPv2 template waveform at the signal parameters (also called “unfaithfulness”) for aLIGO design sensitivity. The horizontal green
line shows the mismatch between NR waveforms obtained for different grid resolutions for the same signal configuration. Shaded regions
provide rough estimates of the accuracy of current semianalytic waveform models and current NR waveforms for the particular binary systems
and the level of expected detector calibration error in terms of mismatch. Waveform error estimates are higher for the more challenging unequal
mass spinning SXS_BBH_0104 configuration compared to SXS_BBH_0308.
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simplicity we have bounded these very rough estimates by
constant mismatch. The extents of the horizontal bands shown
in Fig. 2 are as follows. Left panel: dominant-mode semi-
analytic models [10−3, 10−2], NR: [4 × 10−6, 10−4]. Right
panel: dominant-mode semianalytic models [5 × 10−2, 0.2],
NR: [5 × 10−4, 5 × 10−3]. Finally, detector calibration error
depends on the detector network and is expected to improve
over time up to a level that is believed to be attainable from
current understanding. In Fig. 2 the estimate of the mismatch
error due to detector calibration errors uses a realistic estimate
for future detectors and assumes 1% relative error in ampli-
tude, 1◦ error in phase [96,97]. We assume that the functional
form of the dephasing from detector calibration errors can
be modeled by a polynomial of degree two or higher which
starts at 1◦ at the low frequency cutoff and decreases toward
zero dephasing in the ringdown regime. We find that detector
calibration errors only contribute below 10−5. Ultimately, the
noise floor that comes from detector calibration error will only
become problematic for 3G detector networks if we are not
otherwise dominated by waveform errors.

Balancing accuracy using the full posterior

The above results used 1D marginal posterior distributions
to calculate statistical and systematic errors and find the SNR
at which they are comparable. We now discuss results where
we take into account correlations between binary parameters
and how they compare to the above. Irrespective of how many
parameters we choose to include in the marginal posterior
distribution we can always ask the question at which credible
level the injection lies in the posterior distribution. We want
to estimate when this is close to the 68th percentile. Since
we only have data for fixed networks we need to interpolate
the percentile values to estimate the SNR at which errors are
balanced.

For the SXS_BBH_0308 PN-NR hybrid signal we find the
injection in the full posterior at the 2nd percentile for the O1
network and at the 100th percentile for HLVK, marginalizing
over relative time and phase. For the marginal posterior in
(M, q, χeff , χp) we find the injection at the 12th and 100th
percentile in O1 and HLVK, respectively. For the 1D marginal
distributions in these parameters we find that the injection lies
between the 4th to 50th percentile for O1 and between the 78th
and 99th percentile in HLVK. Therefore, for this configuration
we find a similar balance SNR of 60 for these different ways
of computing the error balance. This estimate is somewhat
uncertain, since we do not have any datapoints in between
the O1 and HLVK networks. In terms of the prefactor D, we
would expect to have D ∼ 8 if the key parameters are biased,
but we find D ∼ 20 if the errors are balanced at SNR 60. We
note that the chirp mass and the effective precession spin are
quite biased for this signal. For the NR only signal we find
D ∼ 30 because the mismatch is worse in the late inspiral and
merger part. For this signal the rapid increase of the percentile
at which the signal is found in the posterior with increasing
detector sensitivity is mostly due to the strong bias in χp that
appears when going from O1 to HLVK sensitivity as can be
seen in Fig. 3.

For the SXS_BBH_0104 source we find the injection in
the full posterior at the 7th and 100th percentiles for the O1

and HLVK networks, respectively. For the marginal posterior
in (M, q, χeff , χp) we find the injection below the 40th per-
centile for O1, HLVK, A+, and Voyager, and it lies at the
100th percentile for the ET and ET-CE networks. For the 1D
marginal distributions in these parameters we find that the
injection lies between the 3rd to 43rd percentile for O1 and
between the 12th and 40th percentile in HLVK. The balance
SNR is then estimated to be ∼250. In combination with the
large mismatch between the signal and template waveforms,
it results in an enormous prefactor of D ∼ 104. The reason
is that there is almost no bias in (M, q, χeff , χp), as can be
seen in Fig. 4 discussed in Sec. III C. If we add inclination
and distance parameters, then there is a noticeable bias and
we find the injection at the 50th percentile for O1 and at
the 100th percentile for the HLVK network and beyond. This
results in a more reasonable balance SNR of ∼22 and a
prefactor of D ∼ 90. Using the 1D marginal errors we find
a balance SNR of roughly 50 and a prefactor of D ∼ 450. The
naive indistinguishability criterion with D = 8 predicts biased
recovery at SNR 10, which is close to the SNR of the signal
in the O1 network.

C. Parameter estimation results

We now turn to looking directly at posterior distributions
for the analysis of the two mock BBH signals from Table I for
a series of detector networks. Histograms and 90% credible
regions for key parameters are shown in Figs. 3 and 4 for the
SXS_BBH_0308 and SXS_BBH_0104 sources, respectively.
Here we show IMRPhenomPv2 posteriors since this model
includes approximate precession effects, in contrast to the
nonprecessing SEOBNRv4_ROM model.

1. Results

The posterior distributions of the detector-frame chirp
mass shown in the top left panel of Figs. 3 and 4 become
progressively tighter as we go to more sensitive networks,
their widths scaling roughly inversely with the SNR. This is
the expected behavior for a multimodal Gaussian which the
posterior distribution is expected to follow in the high SNR
limit, although the 90% credible regions for some marginal 2D
posteriors shown in the other panels are clearly not Gaussian.
Only part of the chirp mass posterior is shown for O1 sensitiv-
ity so that we can more clearly see the posteriors for networks
operating at higher sensitivities. The measurement precision
in chirp mass in terms of the width of the 90% credible
interval increases from ∼5M� (O1), to 0.4M� (HLVK), and
0.004M� (ET+CE). The massive increase in precision for 3G
detectors is expected due to the improved sensitivity and the
significantly larger number of waveform cycles in the detector
frequency band. For instance, for SXS_BBH_0308 there are
64 cycles in band from 10 Hz, compared to 217 cycles from
5 Hz and 1025 cycles from 2 Hz. For SXS_BBH_0308 the
O1 posterior is unbiased, with the true chirp mass value (red
dashed line) near its peak. For the HLVK network and beyond
the posteriors peak away from the true chirp mass. The true
chirp mass is found at the 98th percentile for HLVK and for
the Voyager network and beyond at the 100th percentile. For
ET and ET-CE the chirp mass is underestimated by 0.18M�.
For SXS_BBH_0104, there is again no visible bias at O1
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FIG. 3. Posterior PDFs for the SXS_BBH_0308 PN-NR hybrid signal (see Table I) using IMRPhenomPv2 as the template waveform for a
sequence of detector networks (see Table II). We show either histograms of one-dimensional PDFs or contours indicating 90% credible regions
for 2-dimensional PDFs. (a) Histograms for detector-frame chirp mass, (b) contours for chirp-mass and mass-ratio, (c) contours for effective
precession spin χp and effective aligned spin χeff , (d) contours for inclination angle θJN and luminosity distance dL . True parameter values of
the source binary are indicated as red dashed lines or a red asterisk.

sensitivity. For HLVK, the true value lies at one sigma away
from the peak, and at the 92nd percentile for the Voyager
network. Recovery is very accurate for the ET and ET-CE
networks with a bias of −0.01M�.

In the remaining panels of Figs. 3 and 4 we show 90%
credible regions for marginal 2D posteriors for several key
parameters, to give a sense of the correlations between binary
parameters, starting with chirp mass and mass-ratio. Com-
pared to chirp mass, the mass-ratio is much more difficult
to measure, resulting in very wide posteriors. This is espe-
cially true for the near equal mass SXS_BBH_0308 source.
There, the one-sided 10% percentile of the mass-ratio PDFs is
roughly at 0.7 for 2G detectors. For 3G detectors the measure-
ment is much more precise, again due to more inspiral cycles
being observable, but in this case the mass-ratio is estimated to
be too close to equal-mass with a bias qtrue − qMAP ≈ −0.15.
For the unequal mass SXS_BBH_0104 source, the mass-ratio
is much better measured. The measurement precision in terms
of the 90% interval increases from 0.5 (O1) to 0.1 (HLVK)
and 0.01 (ET-CE). Biases only appear for 3G detectors, where
they are about −0.05.

While there are 6 spin degrees of freedom in a generic
precessing BBH, most of them are very difficult to measure.
The aligned-spin degrees of freedom, in particular a mass-
weighted linear combination called χeff is the best measured
spin parameter which is also degenerate with the mass-
ratio [19,28,91,110–115]. For SXS_BBH_0308 the 90% in-
terval for χeff shrinks from 0.26 (O1) to 0.05 (HLVK), and
0.003 (ET-CE), while for SXS_BBH_0104 it shrinks from
0.45 (O1) to 0.05 (HLVK), and 0.004 (ET-CE). Beyond O1
sensitivity the biases are below 0.05 for SXS_BBH_0308 and
0.02 for SXS_BBH_0104, only becoming significant for 3G
detectors.

During LIGO and Virgo’s O1 and O2 observing runs pre-
cession effects have so far eluded measurement from compact
binaries [1]. In terms of the effective precession spin param-
eter χp [66,72] the posterior distributions shown in GWTC-1
have not provided new information compared to the prior dis-
tribution. We expect this situation to change with the improved
sensitivity of future detectors [27,28] and the analysis of these
sources is a case in point that we will be able to measure
precession effects with future detectors. For SXS_BBH_0308
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FIG. 4. Posterior PDFs for the SXS_BBH_0104 PN-NR hybrid signal (see Table I) using IMRPhenomPv2 as the template waveform for a
sequence of detector networks (see Table II). We show either histograms of one-dimensional PDFs or contours indicating 90% credible regions
for two-dimensional PDFs. (a) histograms for detector-frame chirp mass, (b) contours for chirp-mass and mass-ratio, (c) contours for effective
precession spin χp and effective aligned spin χeff , (d) contours for inclination angle θJN and luminosity distance dL . True parameter values of
the source binary are indicated as red dashed lines or a red asterisk.

the 90% interval for χp shrinks from 0.7 (O1) to 0.5 (HLVK),
0.2 (Voyager) and 0.04 (ET-CE), while for SXS_BBH_0104 it
shrinks from 0.6 (O1) to 0.4 (HLVK), 0.2 (Voyager) and 0.004
(ET-CE). Beyond O1 sensitivity where the measurement is un-
informative, SXS_BBH_0308 posteriors are severely biased,
overestimating χp by about 0.6. The system is thus seen as
close to maximally precessing while the averaged in-plane
spin is only ∼0.3. For SXS_BBH_0104 the χp measurements
are much more reliable and only offset by ∼0.1.

Finally we show results for the marginal posteriors in
luminosity distance dL and the inclination angle θJN between
the total angular momentum J of the binary and the line
of sight vector N under which the binary is seen from
the detector network. These two parameters are especially
degenerate in how they affect the amplitude of the source
and the 2D posteriors are in general not Gaussian which
limits the usefulness of 1-dimensional interval estimates and
biases. The inclination posterior can have a single mode
as for SXS_BBH_0308 which is seen close to the face-off
inclination of the source, with some overestimation in θJN

and underestimation in the distance, or it can be bi-modal as
for SXS_BBH_0104 for networks with (close to) colocated
detectors (O1, ET) which have a harder time constraining it

to the correct mode. Networks with better coverage of the
Earth (HLVK, A+, Voyager, ET-CE) obtain the correct mode,
but the inclination angle is substantially underestimated along
with overestimating the distance by a factor of about 2. The
only network to recover the inclination and distance with good
accuracy is the ET-CE network.

2. Discussion

In this section we provide a comparison between results
obtained from two different waveform models, the agreement
between these models and the source PN-NR waveforms
and discuss the importance of limitations of the models in
interpreting the parameter estimation results.

In this study we perform parameter estimation on signals
in zero noise. This is a particular noise realization that can
be interpreted as the average over all possible Gaussian noise
realizations. It is an appropriate choice when one wants to
focus on the effect of waveform systematics on posterior
distributions. Therefore, any discrepancy we see between the
posterior estimates and the true source parameters of the mock
signals must be due to disagreements between the source and
template waveforms or due to prior effects. Given that we use
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TABLE III. Medians and 90% credible intervals for selected source parameters for the O1 network (top), the HLVK network (middle),
and the the ET-CE network (bottom). We show the detector-frame chirp mass Mdet, the mass-ratio q = m2/m1 � 1, the effective aligned spin
χeff , effective precession spin χp, the luminosity distance dL , and the inclination angle θJN between the total angular momentum of the binary
and the line of sight. Only IMRPhenomPv2 provides a posterior for the effective precession spin χp, since SEOBNRv4_ROM is a nonprecessing
model.

Event Waveform model Mdet/M� q χeff χp dL/Mpc θJN

IMRPhenomPv2 31.959+1.838
−2.043 0.842+0.141

−0.216 −0.072+0.116
−0.145 0.37+0.45

−0.29 514+132
−191 2.698+0.337

−1.365
SXS_BBH_0308

SEOBNRv4_ROM 31.524+2.077
−2.290 0.831+0.151

−0.237 −0.076+0.122
−0.163 N/A 469+160

−200 2.501+0.469
−1.242

IMRPhenomPv2 26.703+3.599
−3.427 0.352+0.425

−0.120 0.330+0.209
−0.236 0.30+0.38

−0.21 1040+485
−452 0.815+2.083

−0.640
SXS_BBH_0104

SEOBNRv4_ROM 27.897+4.086
−3.622 0.406+0.423

−0.154 0.390+0.249
−0.209 N/A 1088+591

−516 0.939+1.899
−0.732

IMRPhenomPv2 31.845+0.169
−0.182 0.894+0.095

−0.174 −0.113+0.027
−0.027 0.75+0.17

−0.31 540.6+21.0
−29.8 2.970+0.109

−0.224
SXS_BBH_0308

SEOBNRv4_ROM 32.060+0.136
−0.132 0.793+0.141

−0.102 −0.071+0.021
−0.017 N/A 519.8+66.7

−109.3 2.636+0.359
−0.339

IMRPhenomPv2 27.083+0.188
−0.184 0.331+0.056

−0.047 0.383+0.026
−0.027 0.23+0.27

−0.14 1038+93
−215 0.407+0.417

−0.271
SXS_BBH_0104

SEOBNRv4_ROM 27.045+0.165
−0.175 0.374+0.046

−0.044 0.389+0.038
−0.065 N/A 949+188

−328 0.607+0.435
−0.442

IMRPhenomPv2 31.874+0.002
−0.002 0.939+0.010

−0.010 −0.114+0.001
−0.001 0.86+0.02

−0.02 569.6+3.8
−3.6 3.008+0.004

−0.005
SXS_BBH_0308

SEOBNRv4_ROM 31.894+0.002
−0.002 0.770+0.005

−0.005 −0.100+0.001
−0.001 N/A 461.2+44.6

−23.0 2.405+0.152
−0.074

IMRPhenomPv2 27.154+0.002
−0.002 0.369+0.005

−0.004 0.394+0.002
−0.002 0.036+0.002

−0.002 639+17
−16 1.025+0.014

−0.016
SXS_BBH_0104

SEOBNRv4_ROM 27.179+0.002
−0.002 0.415+0.003

−0.003 0.421+0.002
−0.002 N/A 179+3

−3 1.731+0.003
−0.003

high accuracy NR or PN-NR waveforms as the signal, which
are good approximations of GR waveforms, and we analyze
high SNR events these disagreements are assumed to come
from approximations to GR waveforms made in the waveform
models we use as templates.

We performed the parameter estimation analyses with the
IMRPhenomPv2 and SEOBNRv4_ROM IMR models. The as-
sumptions made in these models are described in Sec. II. In
Sec. III C 1 we presented results from the effective precess-
ing IMRPhenomPv2 model. Here we juxtapose these results
against the posterior distributions obtained for the aligned-
spin SEOBNRv4_ROM model. In Table III we show medians
and 90% credible intervals for selected source parameters
and the two BBH sources for the O1, HLVK, and ET-CE
networks. To gauge measurement accuracy we show absolute
biases divided by the standard deviation in Table IV. We
find that the two models give overall similar results for the
parameter estimates. Noticeable differences are as follows:
The chirp mass for the HLVK network is recovered more
accurately for SEOBNRv4_ROM for SXS_BBH_0308 compared
to IMRPhenomPv2. Similarly, SEOBNRv4_ROM recovers the
mass-ratio, effective aligned spin, luminosity distance, and
inclination angle with better accuracy than IMRPhenomPv2 for
SXS_BBH_0308 in the HLVK network. For SXS_BBH_0104
in the HLVK network, SEOBNRv4_ROM does not recover the
chirp mass very accurately, but finds the other selected source
parameters with better accuracy than IMRPhenomPv2. For
the O1 network all parameters except distance and inclina-
tion are unbiased. At HLVK sensitivity several parameters
exceed unity in the modulus of the normalized bias, which
indicates that the difference between true and MAP param-
eter value is larger than one standard deviation. The largest
biases are found in the luminosity distance and inclination

for SXS_BBH_0104 recovered by the IMRPhenomPv2 model
and for the effective precession spin χp for SXS_BBH_0308
found by IMRPhenomPv2.

Turning toward the ET-CE network we see in the size of
the 90% intervals that measurement precision has increased
dramatically, for instance the chirp mass is measured to
±0.002M�, two orders of magnitude more accurately than
for HLVK. The precision for the mass-ratio has increased
by about one order of magnitude to roughly ±0.005 and
similarly the effective aligned spin is measured to ±0.002
and the effective precession spin better than ±0.02. In the
ET-CE network all parameters shown here have normalized
biases exceeding unity in their absolute value. All of these
parameters are estimated to lie outside one standard deviation
for the two waveform models employed here, making it clear
that waveform models need to be improved for analyses with
3G detectors.

The PN-NR signal waveforms we used to represent the
GWs emitted by the source binaries contain higher harmonics
beyond � = 2, but the waveform models used as templates
only include the dominant quadrupolar modes. In fact, the
models do also not include all of the m modes at � = 2,
but merely the � = 2, m = ±2 contributions in the coprecess-
ing frame. This begs the question how much the missing
higher modes affect the analyses. In terms of SNR ρ for
SXS_BBH_0308, 99.5% of ρ2 is found in the (2,±2) mode
(ignoring precession), while for SXS_BBH_0104 95.6% of
the total ρ2 is found in the (2,±2) mode, and 3.8% in the
(3,±3) mode. The above percentages are stated in terms of
ρ2 as SNR adds in quadrature. The overlap between a signal
with and without higher harmonics at the signal parameters is
0.9997 for SXS_BBH_0308 and 0.96 for SXS_BBH_0104,
which illustrates that higher modes only become important
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TABLE IV. Normalized biases from 1D marginal posteriors for selected source parameters for the O1 network (top), the HLVK network
(middle), and the ET-CE network (bottom). We show the bias θs − θMAP in the binary parameter θ divided by the standard deviation of p(θ |d )
s refers to the value for the mock source and maximum a posteriori (MAP) is the maximum a posteriori value of the posterior distribution, i.e.,
maxθ p(�θ |d ).

Event Waveform model Mdet q χeff χp dL θJN

IMRPhenomPv2 −0.16 −0.05 −0.23 −0.47 −0.63 −0.38
SXS_BBH_0308

SEOBNRv4_ROM −0.34 0.27 −0.55 N/A 1.04 0.09

IMRPhenomPv2 0.80 0.02 0.76 −0.88 −2.19 0.88
SXS_BBH_0104

SEOBNRv4_ROM −0.25 0.09 0.05 N/A −2.39 1.12

IMRPhenomPv2 2.21 −1.28 2.73 −4.32 1.10 −2.30
SXS_BBH_0308

SEOBNRv4_ROM 0.98 −0.23 0.62 N/A −0.02 −0.37

IMRPhenomPv2 −0.08 0.93 −1.09 −1.29 −5.91 3.91
SXS_BBH_0104

SEOBNRv4_ROM 1.37 −0.82 0.18 N/A −1.52 1.10

IMRPhenomPv2 154.80 −20.21 39.16 −45.78 −2.73 −98.98
SXS_BBH_0308

SEOBNRv4_ROM 153.90 15.59 55.09 N/A 4.56 4.26

IMRPhenomPv2 −10.34 −13.23 −13.51 83.57 −7.23 6.02
SXS_BBH_0104

SEOBNRv4_ROM −30.67 −42.55 −48.59 N/A 215.28 −333.11

for higher mass-ratios. To compute these numbers we used
the SEOBNRv4_ROM [68,74,75] and a SEOBNRv4HM_ROM [116]
waveform models and aLIGO design sensitivity with a start-
ing frequency of 10 Hz. Computing the detector response
Eq. (4) and optimizing over the polarization angle for the
template waveform while keeping sky location fixed yields
overlaps of 0.9993 and 0.96, instead. For SXS_BBH_0308
(SXS_BBH_0104), the overlap between an NR waveform that
includes all � = 2 modes versus a waveform that only includes
the (2,±2) modes in the coprecessing frame is 0.99996
(0.99992) or 0.9992 when optimizing over the polarization
angle. This shows that the for these configurations the (2,±1)
modes in the coprecessing frame are very weak.

In Sec. III B we quoted a range of overlaps between the
PN-NR signals and the waveform models IMRPhenomPv2
or SEOBNRv4_ROM at the signal parameters. For aLIGO
design sensitivity they are as follows: 0.97 (0.91) for
the SXS_BBH_0308 hybrid signal and 0.91 (0.94) for
SXS_BBH_0104 using IMRPhenomPv2 (SEOBNRv4_ROM). In
contrast, the overlaps between signals with and without higher
harmonics which we just computed above are 0.9997 and
0.96 for SXS_BBH_0308 and SXS_BBH_0104, respectively,
for the SEOBNRv4_ROM and SEOBNRv4HM_ROM models. From
this we see that the overlaps between the PN-NR hybrids
and IMRPhenomPv2 or SEOBNRv4_ROM are significantly lower
than the ones the ones between signals with and without
higher harmonics. This indicates that the a sizable part of
the disagreement between the signal and template wave-
forms comes from modeling error in the coprecessing frame
(�, m) = (2,±2) mode. Some disagreement could also come
from the approximate description of precession.

For all analyses presented in this study, we have assumed
that the zero noise data still carries an inherent uncertainty
in its calibration, as described in Sec. II E. This uncertainty

is modelled as a cubic spline, enforcing a smooth variation
across the bandwidth of the analysis. In principle, by allowing
this additional degree of freedom which could absorb some of
the mismatch between the PN-NR hybrids and the approxi-
mate waveform models used in the PE analysis the observed
biases could be expected to be reduced. Comparing the 1D
posterior distributions shown in Fig. 3 to distributions from
analyses where the marginalization over calibration uncertain-
ties has been disabled, the observed biases remain. It should
be noted that the analyses which includes marginalization over
calibration uncertainties systematically recovers a slightly
higher SNR accumulated over the detector network, but as this
increase is of order �1/1000 this is not expected to affect the
conclusions with any significance.

IV. POPULATION STUDY

We have seen in Sec. III that in the HLVK design network
we already expect biases with current waveform models for
loud BBHs such as GW150914. Even small biases found for
weaker single events could still manifest themselves when
estimating properties of the population of BBHs [117–120].
In this section we perform a PE analysis for a population
consisting of one hundred high mass precessing BBH events.
On the one hand, we study the distribution and correlation
of parameter biases and compute the overall bias over the
population. On the other hand, we analyze the residual be-
tween the signal and the best matching template waveform, in
terms of its SNR, power in the time frequency plane, and in
terms of Bayes factors between analyses assuming coherent
and incoherent signals across the detector network as imple-
mented with BAYESWAVE [121,122]. Finally, we compute the
population posterior for the power law index of the primary
mass of the source binaries.
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FIG. 5. Absolute biases θs − θMAP between chirp-mass M/M� and effective aligned-spin χeff (blue circles) and chirp-mass and mass-ratio
q (red pentagons). (a) NRSur7dq2 signals recovered with IMRPhenomPv2. The Pearson correlation coefficients are RM,χeff ∼ 0.8 and RM,q ∼
0.5. (b) IMRPhenomPv2 signals recovered with IMRPhenomPv2. The Pearson correlation coefficients are RM,χeff ∼ 0.8 and RM,q ∼ 0.3. We
indicate the signal chirp mass by the luminosity of the symbol colors and the absolute value of the effective aligned-spin and mass-ratio of
the signal by the symbol area to give a sense of how the biases are distributed over the parameter space. The symbol area was calculated as
200

√|χeff | and 100
√

q.

A. Setup

The events in this population study were drawn from
the following distribution of source parameters: The pri-
mary mass has a PDF p(m1) ∝ m−α

1 with α = 1.3 and m1 ∈
[45, 50]M� and the mass-ratio is distributed as q ∼ U (0.5, 1).
The chirp mass M = Mtotη

3/5 is computed from (m1, q),
where Mtot = m1 + m2 and η = q/(1 + q)2. The remaining
parameters are distributed as follows: spin magnitudes ai ∼
U (0, 0.8), spin tilts cos ti ∼ U (−1, 1), the azimuthal angle
between the spin vectors φ12 ∼ U (0, 2π ), the angle between
the total and orbital angular momentum φJL ∼ U (0, 2π ), the
inclination angle cos θJN ∼ U (−1, 1), the polarization angle
ψ ∼ U (0, π ). The luminosity distance, geocenter time, sky
location, and phase were fixed at the parameters given in
Table I.

Since NR waveforms are only available at isolated points
in parameter space and thus cannot well represent the above
distribution we choose the NRSur7dq2 NR surrogate model
for the signal waveforms [81]. This choice implies restric-
tions to mass-ratio q � 1/2, spin magnitudes ai � 0.8 and,
due to the relatively short waveform length, the constraint
on the primary mass m1 � 45M�, so that waveforms rep-
resenting the BBH population start at or below 20 Hz. We
perform PE analyses with the BILBY code [88,89] with signals
in zero noise and IMRPhenomPv2 templates for the HLVK
network.

B. Bias

We can learn about how population parameters will be
affected by studying correlations between biases in key source
parameters for events drawn from a population and to what
degree single event biases average out over the population.
In Fig. 5 we show absolute biases, defined as the difference
between the true source parameters θ i

s and a point estimate of

the posterior distribution θ i
p for event i,

Bi := θ i
s − θ i

p. (10)

As a default we use the MAP value of the posterior distribu-
tions as the point estimate.

We see that biases are large when the signal is repre-
sented by NRSur7dq2 waveforms and the template by the
IMRPhenomPv2 model. In contrast, when the signal and tem-
plate are represented by the same IMRPhenomPv2 waveforms
there is only a small discrepancy between the MAP and the
true signal parameters which is expected to arise from stochas-
tic sampling and prior effects. Here the posterior distribution
is dominated by the likelihood since the signal SNRs are
high. We find that log-likelihood values come close, but are
a bit lower than, the peak value of the log-likelihood at the
signal parameters. While the MAP (or equivalently maxL)
parameters are a bit different than the signal parameters,
the deviations in the waveform are tiny and the SNR in the
residual is on the order of one. The spread is a factor 7 smaller
in chirp mass, a factor 4 smaller in effective aligned spin and
a factor 2 smaller in mass-ratio. For both types of signals we
observe pronounced correlations between these parameters
which we expect on physical grounds due to how these
parameters enter the inspiral waveform [19,28,91,110–115].
We find Pearson correlation coefficients of RM,χeff ∼ 0.8(0.8)
and RM,q ∼ 0.5(0.3) for NRSur7dq2 (IMRPhenomPv2) sig-
nals. For NR-surrogate signals the chirp mass shows a clear
tendency to be overestimated. This is also true for effective
spin and mass-ratio. In contrast, for IMRPhenomPv2 signals
the distribution of the single event biases is more symmetrical.
We also see that for NR-surrogate signals heavy binaries are
prone to overestimation of χeff as indicated by the luminosity
of the red pentagons.

To get a better sense of how much these biases matter we
discuss the distribution of the ratio R of absolute biases and
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FIG. 6. Ratio of absolute biases and 90% credible intervals R(θ, d ) as defined in Eq. (11) between chirp-mass M/M� and effective
aligned-spin χeff and chirp-mass and mass-ratio q. R = ±1/2 when the true value is found at the boundaries of the 90% interval. (a) NRSur7dq2
signals recovered with IMRPhenomPv2. (b) IMRPhenomPv2 signals recovered with IMRPhenomPv2.

90% credible intervals

Ri := θ i
s − θ i

MAP

CI90[p(θ i|di )]
(11)

shown in Fig. 6, where we divide the bias by the extent of the
90% credible interval for each event and parameter. For NR-
surrogate signals |R| reaches unity for the chirp-mass, takes
values up to 2 for the effective aligned spin, and about 1.5 for
the mass-ratio which indicates that the parameter recovery is
strongly biased. The choice of comparing to the 90% interval
is more conservative than to 1 − σ which is assumed in the
indistinguishability criterion. In contrast, for IMRPhenomPv2
signals |R| is smaller than 0.4 for all parameters and the
majority of events are found with very good accuracy |R| �
0.1.

In Fig. 7 we see that bias in the luminosity distance tends
to be negative, and with the definition in Eq. (10) this implies
that the distance is overestimated in inference as a rule. The
distance bias is reduced by about half for IMRPhenomPv2
signals, compared to NRSur7dq2 signals, but it is still sizable.
In contrast we find relatively small biases of about 10◦ in the
inclination angle.

We show the overall bias over the population in Table V.
For NR-surrogate signals the largest population bias is seen

for the MAP. Using the mean or median as a point estimate
the overall bias is significantly lower than when using the
MAP. This is not the case for IMRPhenomPv2 signals, where
the largest bias is found for the mean. We also show the sum
of ratios of the biases over the 90% intervals,

∑
i Ri. The

size of this quantity shows more clearly how severe the biases
are overall averaged over the population. Again the sum of
the biases is much larger for the NR-surrogate signals, about
10–30 times larger than the sum of 90% credible intervals
for key astrophysical parameters. The magnitude of

∑
i Ri for

IMRPhenomPv2 signals is about ∼2, indicating that there is no
significant bias when combining all events in the population.
We will revisit the question of how population estimates are
affected in Sec. IV D.

C. Residuals

We previously discussed biases found for events in the
BBH population study. The biases stem from a disagree-
ment between the signal NR-surrogate waveforms hs(t ; θs)
and IMRPhenomPv2 template waveforms hm(t ; θs) used in the
analysis at the source parameters θs. This disagreement will
also lead to some residual power being left over after subtract-
ing the data containing the signal from the best fit template
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FIG. 7. Absolute biases θs − θMAP between luminosity distance and the cosine of the inclination angle. (a) NRSur7dq2 signals recovered
with IMRPhenomPv2. (b) IMRPhenomPv2 signals recovered with IMRPhenomPv2. As in Fig. 5 we indicate the signal chirp mass by the
luminosity of the symbol colors.
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TABLE V. Population biases
∑

i Bi, and
∑

i Ri [see Eqs. (10) and (11)] for chirp mass, mass-ratio, effective aligned spin, and effective
precession spin. The point estimate θp is either the mean, median, or MAP. We show biases for NRSur7dq2 and IMRPhenomPv2 signals.

Quantity Signal waveform Point estimate Mdet/M� q χeff χp

Mean 17.22 4.36 0.49 5.49∑
i Bi NRSur7dq2 Median 16.45 4.67 0.41 6.20

MAP 34.01 7.78 1.12 5.37

Mean −4.68 −0.44 −0.26 −0.38∑
i Bi IMRPhenomPv2 Median −3.87 −0.25 −0.25 0.02

MAP 0.90 −0.13 0.04 −1.27

Mean 9.92 18.94 3.36 27.73∑
i Ri NRSur7dq2 Median 9.58 20.18 2.79 30.19

MAP 17.89 30.82 7.39 28.78

Mean −2.39 −1.80 −2.56 −1.33∑
i Ri IMRPhenomPv2 Median −2.30 −1.23 −2.78 0.20

MAP 0.86 −0.24 0.31 −5.10

waveform, hm(t ; θMAP). Here we discuss how this residual
power can be characterized in terms of SNR and power in
the time frequency plane. We also perform an analysis with
BAYESWAVE.

In Fig. 8 we show the network SNRs found in the
signal strain hs(t ; θs) and in the residual strain hs(t ; θs) −
hm(t ; θMAP). In each detector of the network we compute
the strain by projecting the waveform polarizations on the
detector as defined in Eq. (4). We observe that residuals reach
SNRs of about 12, expect for one event with residual SNR
∼18.37. Parameters for this event are shown in Table VI. We
find residual SNRs up to 30% of the signal SNR. The log-
likelihood at MAP is highest for events where the agreement
between the signal and template waveforms is good and thus
the residual is small, and it drops substantially for events
where the residual contains a sizable fraction of the signal
SNR. For the event with the highest residual SNR the biases
are only moderate 
M = −0.27M�, 
q = 0.11, 
χeff =
−0.02, and 
χp = −0.04, but it has a high signal SNR 87.91.

Next we take a look at the power in the time frequency
plane and compare the loudest residual against a chirp signal.
In Fig. 9 we plot the Q transform [123] using PyCBC [124]
of the residual with the highest SNR. As shown in the left
panel, the power in the residual in LIGO Hanford traces out a
chirp signal and agrees well with the overlaid time frequency
evolution of the waveform emitted by the source. The right
panel shows that the coherent power in the residual (taking
into account time-shifts for each detector) is about a factor 5
larger than the power of the loudest single detector residual.
Most of the coherent residual power is concentrated near
merger where the GW signal is most nonlinear.

Finally, we analyze the residual strain across the detector
network using the BAYESWAVE [121] code, assuming no pre-
defined signal model apart from constraining signals coherent
across the detector network to an elliptical polarization. Here,
the waveform is reconstructed directly, through a superposi-
tion of Morlet-Gabor, or sine-Gaussian, wavelets [121,125],
where the number, placement, and properties of the wavelets

FIG. 8. Fractional network SNR in strain residuals hs(t ; θs ) − hm(t ; θMAP ) between the NRSur7dq2 signal strains hs(t ; θs ) and
IMRPhenomPv2 MAP template strain hm(t ; θMAP ) for each detector in the HLVK network compared to the SNR of the respective signal
strain. (a) Residual SNR as a function of signal (injection) SNR with fractional SNR indicated by color for the events in the population study.
(b) Delta log-likelihood 〈d|h〉 − 0.5〈h|h〉 at MAP against fractional SNR colored by the mass-ratio bias. The bias in mass-ratio is indicated
by color. The event with the highest residual SNR is indicated by a red circle around the marker. The parameters for this event are given in
Table VI.
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TABLE VI. Source parameters for BBH with the loudest residual, shown in Fig. 9.

Msrc
tot /M� Msrc/M� q �χ1 �χ2 χeff χp θJN

81.35 34.64 0.68 (−0.23, −0.64, 0.31) (0.21, 0.53, 0.30) 0.31 0.68 2.63

are themselves variables in the analysis. For this study, we
compare two competing models for the observed residual
data [122]. The coherent model assumes a common waveform
across the entire network, as originating from a point in
the sky and projected onto each detector assuming standard
antenna pattern functions for the two tensorial polarization
modes as defined in Sec. II E [126]. The incoherent model
assumes complete independence between the observed signals
across the network. Instead of the data being represented
through a common set of wavelets projected onto the de-
tectors this model constructs a separate waveform for each
detector where the placement and structure of the wavelets
is independent from other detectors and no phase and time
coherence across the network is required. The two mod-
els [127] can then be directly compared through a Bayes
factor for each set of residual strains as shown in Fig. 10.
As BAYESWAVE is constructed, it has a strong dependance
on signal complexity, as opposed to simply depending on
signal strength only, to make observational claims such as
for example preferring a coherent description of the signal
over an incoherent one [128]. This means that the Bayes’
factors inherently incorporate the Occam factor between the
two models, where the incoherent model can require a larger
number of wavelets (and hence a larger number of signal pa-
rameters) to reconstruct the data across the network as it does
not need to consider extrinsic parameters (sky position and
two angles describing the polarization and ellipticity of the
gravitational wave). For the set of residual strains in this study,
we often find the incoherent model incapable of capturing the
signal in an individual detector, with a median number of 0
wavelets per detector. The coherent signal, however, always
captures the common signal, but even here the median number
of wavelets is “only” 1. We interpret this as BAYESWAVE

being consistently able to determine that there is something

originating from a common coherent source in the data, but
due to the relatively low SNR we are not generally able to
make strong inference on the physical description of what this
coherent signal would be. Even so, we argue that this type
of analysis will be a valuable tool in determining the power
and accuracy of future modelled inference [21,129], and can
ensure that all of the observable signal can be captured and
characterized. Note that the analysis here is performed in a
noise-free set of data, assuming a known and fixed set of
detector sensitivities shown in Fig. 1. For “real” data, the
presence of time-varying random Gaussian noise [130], as
well as actual detector glitches [131], is expected to reduce
the fidelity of this category of tests, however BAYESWAVE is
already capable of accounting for such variance [40,128]. The
level to which variations in data will affect a study of residual
recovery will be left for future investigation.

D. Population inference

We follow the hierarchical Bayesian inference method
described in Sec. II E 1. We show the hyperposterior for α, the
power-law index of the primary BH mass in Fig. 11, where
we assumed a hyperprior π (α) ∼ U (1, 2). Unfortunately, the
PDFs of the power-law distribution for the true value and
the boundary values of α are rather similar over the narrow
mass interval considered here. This is probably due to the
rather tight lower mass bound which is set by the finite length
of the NRSur7dq2 waveform model. Given that there is not
much information in the hyperposterior we ask the question
whether we prefer α = 1 or α = 2. Clearly, α = 1 is preferred
by the hyperposterior. This agrees with the observation that in
the single event posterior PDFs we overestimate the masses
(see Fig. 5).

FIG. 9. Q transform of strain residuals for the event with the loudest residual (optimal network SNR 18.372). The parameters for this event
are given in Table VI. The strain residuals were computed by subtracting the IMRPhenomPv2 MAP template from the NRSur7dq2 signal for
each detector. Gaussian colored noise was added to the residual before computing the Q transform. (a) Residual in the interferometer where
the residual is loudest: LIGO Hanford, SNR 11.5. (b) Coherent sum of the time-shifted residuals in LIGO Hanford, LIGO Livingston, Virgo,
and KAGRA. The normalized power is shown in color. The chirp-trace of the injected NRSur7dq2 signal is shown in crimson.
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FIG. 10. Histogram of the Bayes factors, for all residuals (except
the event highlighted in red in Fig. 8 and Table VI), between a
coherent (assuming the same incoming signal in all participating
detectors) and an incoherent (where the signal in each detector is
assumed independent) model [122]. Both the coherent and incoher-
ent models are constructed from a superposition of Morlet-Gabor
wavelets, where the number of wavelets is in itself a variable,
as implemented in BAYESWAVE [121]. This shows unequivocally
that although the modelled analysis, where a known GR waveform
approximants attempts to match the signal that best matches what is
observed across the detector network, there is a significant fraction of
observable coherent signal left. The properties of this left-over signal
are not strongly constrained by this analysis however, as expected by
the typical SNR ∼12 for these residual signals. The excluded event,
with properties listed in Table VI, has a Bayes factor of ∼4 × 1011.

V. DISCUSSION

A. Summary of results

In this study we have looked at the impact of inaccuracies
in models of the GW waveform on inferring parameters for
single loud events and for populations of binary black holes
BBH. In Sec. III we presented results from parameter estima-
tion analyses with current waveform models (IMRPhenomPv2,
SEOBNRv4_ROM) for two simulated PN-NR signals at fixed
luminosity distance for a series of detector networks. These
“golden binaries” are therefore observed with increasingly
high SNR as we look toward future detectors which are about
a hundred times more sensitive than the current ones. From the

posterior distributions we calculated systematic and statistical
errors and produced a tuned version of the indistinguishability
criterion [see Eqs. (8) and (9)]. In Fig. 2 we show the resulting
“acceptable error” as a function of SNR. The main result
of this paper shows that current waveform models used as
templates in our PE analyses need to be improved for aLIGO
design sensitivity and beyond: For 3G detectors such as
Cosmic Explorer and the Einstein Telescope, the mismatch
error for semianalytical models needs to be reduced by three
orders of magnitude and by one order of magnitude for NR
waveforms.

In Sec. III C 2 we saw that waveform inaccuracies can
come from a combination of factors: errors in the dominant
(2,±2) modes in the coprecessing frame, approximate mod-
eling of the precessing reference frame of the binary, and
from missing higher harmonics in the waveform. Better semi-
analytical models that include more physics are becoming
available [79,80,116,132–135].

It stands to reason that if inferred binary parameters for sin-
gle events are affected by inaccuracies in waveform models,
then these deficiencies will also impact the analysis of popu-
lations of compact binaries. In populations, many events will
be significantly weaker than the loud “golden binaries” we
have considered before. Still, many small errors may sum up
to give a sizable effect that can impact analyses. Therefore, in
Sec. IV we presented a study for one hundred high mass BBHs
mock signals (either NRSur7dq2 or IMRPhenomPv2) drawn
from an astrophysically motivated distribution in the intrinsic
parameters. We again performed PE with the semianalytical
IMRPhenomPv2 model for the aLIGO-Virgo-KAGRA design
sensitivity network.

In Fig. 6 we find that parameter biases between key pa-
rameters such as chirp mass, mass-ratio, and effective spin
are strongly correlated, the population sum of these biases
is nonzero for the NRSur7dq2 signals, and the largest pa-
rameter biases lie outside 90% credible intervals. Posteriors
for IMRPhenomPv2 signals still show the correlations, but as
shown in Table V the population sum of their biases is close
to zero.

The residual between the GW data recorded by a detector
and the best fit template waveform obtained from PE can be
analysed further. If the waveform template cannot capture all

(a) (b)

FIG. 11. (a) Hyperposterior ptot (α| �d|) for power-law index α for m1. (b) Power-law PDFs for m1 for α = 1.3 (true value), and the bounds
of the uniform hyperprior on α: α = 1, 2.
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the features in the signal, then the residuals (for the detectors
in a network) will contain some coherent power (i.e., the
residuals are not just due to random noise fluctuations in each
detector). We show that this is the case for a NRSur7dq2
event in our population study which has significant SNR in
its residual (see Fig. 8), and significant power in the time
frequency plane (see Fig. 9). We have also carried out a
BAYESWAVE analysis and show in Fig. 10 the Bayes factors
between a coherent and an incoherent wavelet model for the
population events. Most events have a residual SNR of about
12 and Bayes factors of about 60 in favor of the coherent
model while the event with the loudest residual has a residual
SNR of 18 and BF of 4 × 1011.

We have computed the population hyperposterior of the
power-law index of the larger BH, the only free parameter in
the distribution of source parameters. Due to the shortness of
the signals in time, the hyperposterior is not very informative,
but it shows preference for the lower bound of the prior α = 1
over then upper bound α = 2, and is thus closer to the true
value α = 1.3.

B. Outlook

Let us discuss several further implications of systematic
errors in measured binary parameters caused by inaccuracies
in waveform models. They concern the astrophysical rele-
vance of biases. the future of waveform modeling and NR
simulations, and how tests of GR will be affected.

In this study we have reported extensively about biases in
inferred binary parameters. How much should we care about
these biases? Beyond the simple statement that parameter
biases will matter more when they are large, we would like
to point out particular situations when biases are especially
important and can severely impact the interpretation of GW
observations. Severe biases could cause a misidentification of
the class of a compact binary, e.g., confusing BNS, NSBH,
and BBH sources near the lower mass gap [136,137]. Large
biases in spin parameters such as the effective precession spin
χp could lead to a misidentification of formation channel of
a binary. This could also happen if the effective aligned spin
parameter χeff was heavily biased, but in general χeff measure-
ments are a lot more robust since this parameter is connected
with the length of the inspiral signal [115]. We have seen
in Fig. 3 that χp can indeed be significantly underestimated,
especially if the precession modulations are suppressed when
the binary is viewed nearly face-on or face-off.

Extrinsic parameters are in general less affected by wave-
form systematics and we do not expect their measurement
errors to have a big impact. Sky location parameters enter
in the detector pattern functions and should not be affected.
We expect luminosity distance measurements to be affected
mainly through their correlation with the binary’s inclination
angle. The latter can be better measured [132,133,138–140]
when the waveform includes higher harmonics beyond the
dominant (2,±2) modes. Amplitude errors should play a
lesser role than phase errors, which could lead to us to
misestimate M and thus bias the recovered distance. If we
misestimate M due to phase errors, then that will also bias the
recovered distance. Through this correlation mis-estimation
of distance can lead to additional bias on the source-frame

masses. This can be significant for very distant binaries.
Finally, based on the discussion in Sec. IV B we expect that
for population analyses parameters characterizing the mass
and spin distributions will be affected to some degree since
the events making up the population will suffer some amount
of parameter biases.

How can waveform models be improved and made ready
for the planned future 3G detectors, such as Cosmic Explorer
and Einstein Telescope? On the one hand, the accuracy in
the inspiral regime needs to be improved. This requires a
higher order and more complete PN description and fur-
ther work on re-summation and effective-one-body theory
to extend the validity of the inspiral to higher frequencies.
The inclusion of self force terms into effective-one-body
(EOB) could help accuracy for large mass ratios [141]. Post-
Minkowskian results obtained with modern scattering am-
plitude methods could be useful to improve the accuracy,
if pushed to higher order [142,143]. PN calculations have
being made at 4PN order for nonspinning BBHs [144–147]
and were recently extended to 5PN order [148,149]. Practical
semianalytic inspiral-merger-ringdown waveform models for
BBHs, whether they are phenomenological or EOB models,
require more NR waveforms covering larger parts of the
binary parameter space and ultimately higher NR accuracy.
Especially for unequal mass-ratios we will also require longer
NR simulations in time to be able to combine NR wave-
forms with PN or EOB inspirals to form highly accurate
hybrid waveforms [62–64], and to better determine inspiral
coefficients in the construction of EOB models [68]. So
far semianalytic models have been tuned only in the non-
precessing sector. Extending calibration as more precessing
NR simulations are becoming available will be essential to
improve their accuracy. In addition, a novel NR-independent,
analytical approach for modeling the merger has been put
forward [150]. The accuracy of this approach beyond NR
accuracy could be assessed with constraints on waveforms
obtained from balance laws at future null infinity [151].

Surrogate and reduced order models of NR
waveforms [81,152–155] and of EOB waveform
models [68,74,75,156,157] have come to prominence in
the past several years. They preserve the accuracy of the
training set waveforms they are constructed from and are
orders of magnitude faster to evaluate making them crucial
for data analysis applications. They depend on their input data
and so their accuracy is limited by the accuracy of the training
set waveforms, and the requirement that the training data is
sufficiently dense in the parameter space, since they need to
fit or interpolate waveform coefficients over parameter space.

Waveform models should also include all physical effects
that will leave a measurable trace in the emitted GW signal.
This includes spin effects (aligned and precessing spins),
higher harmonics beyond the dominant (2,±2) modes in the
waveform, imprints of eccentricity, and tidal effects if the
binary contains at least one neutron star. As the number of
waveform parameters increases it becomes harder to carry out
enough NR simulations to accurately tune models. A further
desirable improvement for waveform models is to also model
internal errors in waveform models and marginalize over these
parameters in PE, which can be achieved with Gaussian pro-
cess regression (GPR) [55,158–162]. Posterior distributions
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obtained with such models should be more accurate (reduced
bias) but somewhat less precise.

We have seen that NR waveforms are central for IMR
waveform modeling. According to our results, NR waveforms
will have to be improved in the future along three different
dimensions: First, accuracy; second, length; third improved
parameter space coverage. It turns out that each of these
aspects will make simulations more expensive. Regarding
length, the cost of an NR simulation is at least propor-
tional to the time-to-merger; hence, the cost will increase as
1/η (M�i )−8/3, so that starting at one half the initial (orbital)
frequency M�i increases cost by at least a factor of 5. This
scaling of the time-to-merger already indicates that making
the mass-ratio more unequal will also increase the computa-
tional cost: The time-to-merger (and this computational cost)
will increase at least as 1/η. In addition, current NR codes
use explicit time integration and are therefore limited by
the Courant–Friedrichs–Lewy condition [163], so that each
time-step can cover at most a time-interval ∝q (for q � 1),
giving a second power of the mass-ratio. Regarding accuracy,
it is difficult to predict how the achieved accuracy scales
with computational cost; one estimate for SpEC is that the
cost goes as ε−1/3 [164], where ε is the NR error. Therefore,
reducing the mismatch-error by a factor of 10—at the same
parameters and length of the simulation—increases computa-
tional cost by about 50% for SpEC since the mismatch error
goes as the square of the NR error [99,101,165]. Finally,
both higher spins and higher mass-ratio make NR simula-
tions more expensive, with the mass-ratio dependence most
pronounced.

The accuracy and number of NR simulations have
improved dramatically since the breakthrough in
2005 [104,166,167]. What improvements can we expect
for the future that can deliver the simulations needed
to be ready for 3G science? We can no longer rely on
Moore’s law to deliver massive improvements of CPU
clock speeds. Instead advances in CPU development have
shifted to increasing the number of cores and to exploit
that NR codes need better parallelization and scaling. New
codes are being developed to address these accuracy and
performance issues. The SpECTRE code [168,169] from the
SXS Collaboration uses task-based parallelism combined with
the discontinuous Galerkin method to significantly increase
the efficiency and scalability of relativistic astrophysics
simulations. Work to significantly reduce computational cost
for NR simulations is also under way for finite difference
codes [170]. These approaches could lead to a two order of
magnitude improvement in efficiency and bring us closer to
solving the problems we have pointed out here. In addition
to the truncation error which results from the finite degree
polynomial approximations to continuum derivatives in
Einstein’s equations, errors are made when extracting the
GW waveform on computer grids extending finite distances
away from the merging binary. Traditionally, the waves are
extracted (ideally on spherical shells) at several radii as far
away from the origin as possible and the ideal waveform at
future null infinity is extrapolated from that data. The Cauchy
characteristic extraction method [171–174] can compute the
emitted GWs with higher accuracy and should be available
for future NR simulations. Combining waveforms from SpEC

and finite difference codes by hybridization is a promising
technique for especially challenging configurations [175].

Our study on the impact of waveform inaccuracies should
be extended to tests of GR which we expect to be especially
susceptible to systematic effects which could be misinter-
preted as genuine deviations from GR. All of the current
tests of GR [21] should be scrutinized. This includes tests
on the distribution of the SNR of residuals in detector noise,
testing whether the final mass and spin inferred from the low
and high frequency parts of the GW signal are consistent,
computing posterior distributions of deviations in, e.g., PN
waveform coefficients, computing posteriors on parameters
in phenomenological dispersion relations and tests that put
constraints on alternative GW polarizations. Ultimately, tests
of GR should be done by estimating parameters of waveform
models for alternative theories of gravity, along with Bayesian
model comparisons. Work is under way to identify well-posed
alternative theories of gravity [176–180] and to numerically
compute what the emitted GW will look like in the strong field
regime [181].

Finally, we expect that LISA analyses of massive BBHs,
which are should have SNRs of hundreds to thousands, will
be affected in similar ways as demonstrated here for 3G
ground-based detectors [22]. Updated estimates for current
IMR waveform models will need to be explored in future
studies.

ACKNOWLEDGMENTS

This work was stimulated by the Gravitational Wave In-
ternational Committee (GWIC) 3G science-case study [182].
The authors thank Harald Pfeiffer, Katerina Chatziioannou,
Will Farr, Sergei Ossokine, John Veitch, Alessandra Buo-
nanno, Mark Hannam, Salvatore Vitale, Frank Ohme, Sascha
Husa, Badri Krishnan, and Bruce Allen for useful discussions.
We thank Patricia Schmidt for help with the LVC NR injection
infrastructure, Tito dal Canton for help with PyCBC’s qscans,
and Sergei Ossokine and Stas Babak for the code to compute
the max-max overlap. C.-J.H. acknowledges support of the
MIT physics department through the Solomon Buchsbaum
Research Fund, the National Science Foundation, and the
LIGO Laboratory. The authors acknowledge usage of LIGO
Data Grid clusters and AEI’s Slarti computer. LIGO was
constructed by the California Institute of Technology and
Massachusetts Institute of Technology with funding from the
National Science Foundation and operates under Cooperative
Agreement No. PHY-0757058. This is LIGO Document No.
DCC-1900377.

APPENDIX A: HYBRIDIZATION PROCEDURE

We construct hybrid waveforms by combining multimodal
precessing PN and NR waveforms using the GWFrames [60]
code. The code first reads the NR waveform data and trans-
forms it to the corotating frame [61] and shifts it in time so
that the merger lies at t = 0. Data for the evolution of the
positions, masses, and spin vectors of the BHs as determined
by locating their apparent horizons in the NR code is read in
as well. Next, the separation vector between the two BHs and
the orbital frequency are computed, along with the rotor of the
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(a) (b)

(c) (d)

(e) (f)

FIG. 12. PN-NR hybrid for SXS_BBH_0308 with the SpinTaylorT1 approximant. For each quantity we show the PN, NR, and hybrid
data as a function of retarded time before merger. The waveforms have been blended together in the gray shaded hybridization region. (a) Real
part of the (2, 2) and (b) (2, 1) modes in the inertial frame. (c) (Wrapped) phase of the (2, 2) mode in the inertial frame. (d) Cartesian
components of the Newtonian orbital angular momentum unit vector in the inertial frame (e) and (f) dimensionless spin vectors of the BHs.

reference frame at the relaxed time (after the junk radiation
has passed).

We compute a PN waveform from the PNWaveform pack-
age included in the GWFrames code. The PN implementation
includes nonspinning orbital binding up to 4 pN [183]. The
5 pN term is set to zero. Spin-orbit terms in the angular
momentum are included up to 3.5 pN [84]. Nonspinning
flux terms are included up to 3.5 PN [183], and higher-order
terms from [184] up to 6 PN along with absorption terms
from [185]. Spin-spin and spin-orbit squared terms at 2 PN
order are included [83,186,187] and spin-orbit terms in the
flux are included up to 4.0 PN [188]. Precession of the orbital
angular velocity and spins follows [83,84,189]. Expressions

for waveform modes are taken from [190–193]. We use the
SpinTaylorT1 and SpinTaylorT4 implemented in this code
which are simply called TaylorT1 and TaylorT4 there, but
we add the prefix Spin to make it clear that they support
precession.

Initial data for the PN integration is set at the NR relaxed
time and the PN equations are also evolved backwards in
time to the desired starting orbital frequency M�i. The PN
waveform is then transformed to the corotating frame. To
prepare for hybridization, the PN and NR waveforms are
aligned by minimizing the distance between their rotors in
their corotating frames. The aligned waveforms are then
blended and hybridized.
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FIG. 13. PN-NR hybrid for SXS_BBH_0104 with the SpinTaylorT1 approximant. For each quantity we show the PN, NR, and hybrid
data as a function of retarded time before merger. The waveforms have been blended together in the gray shaded hybridization region. (a) Real
part of the (2, 2) and (b) (2, 1) modes in the inertial frame. (c) (Wrapped) phase of the (2, 2) mode in the inertial frame. (d) Cartesian
components of the Newtonian orbital angular momentum unit vector in the inertial frame (e) and (f) dimensionless spin vectors of the BHs.

In this study we choose M�i = 0.002 due to computa-
tional restrictions. This corresponds to fGW ≈ 1.74 Hz for the
(2,2) mode. Higher (�, m) modes in the waveform enter the
frequency band at m/2 times the frequency at which the (2,2)
mode enters. Therefore, some of the higher harmonics are
truncated at low frequencies but this effect is minor because
they are very small compared to the dominant modes.

To use the LVC NR-injection infrastructure [194] we also
hybridize dynamics quantities, namely the spin vectors, or-
bital frequency, the Newtonian orbital angular momentum
vector, the vector n̂ pointing from one BH to the other, and
the position vectors of the BHs. This allows us to define the
spin vectors at a particular reference frequency and to output
the result in “LVC NR” format.

Figures 12 and 13 show selected waveform modes, the
phase of the (2,2) mode, the orbital angular momentum vector

and the spin vectors for the two configurations used in this
study. These plots demonstrate the good blending between
the PN and NR data in the hybridization time region (gray
shaded). The absolute value of inertial and coprecessing frame
modes for the hybrids are shown in Fig. 14. Higher harmonics
are stronger for the more unequal mass SXS_BBH_0104
configuration, whereas precession effects that give rise
to modes like the (2,1) and (3,2) mode are stronger
for SXS_BBH_0308.

For SXS_BBH_0308 there is a disagreement in the coro-
tating frame (2,1) mode between PN and NR. This mode
is weak since the system is almost equal mass which likely
exacerbates the disagreement. In contrast, we find excellent
agreement in the same mode for SXS_BBH_0104. The effect
of this discrepancy for SXS_BBH_0308 is very small. The
mismatch between the hybrid with and without the corotating
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FIG. 14. Selected modes for PN-NR hybrids with the SpinTaylorT1 approximant. Waveform modes are shown in the inertial frame
[panels (a) and (b)] and coprecessing frame [panels (c) and (d)]. The hybrids start at an orbital frequency of M� = 0.002. Results are
shown for configurations SXS_BBH_0308 (left column) and SXS_BBH_0104 (right column). Modes in the coprecessing frame are close
to nonprecessing waveforms, while inertial modes are modulated by the precession of the orbital plane.

frame (2,±1) modes is on the order of hybridization error and
NR error, about ∼10−5.

To study the error introduced by hybridizing PN and
NR waveforms the optimal test would be to compute the

mismatch of a hybrid against a very long high accuracy NR
waveform that fills the detector band. Since this is in practice
not possible we perform the following experiments to make
sure that hybridization errors are subdominant. We compute

FIG. 15. Mismatch between PN-NR hybrid waveforms, shown for (a) SXS_BBH_0308 and (b) SXS_BBH_0104. The mismatch is
computed as one minus the max - max overlap including higher modes up to � = 8 in the NR waveforms. Here, hybrids are constructed from
an orbital frequency of M� = 0.01 and the overlap integral starts at 10 Hz and uses the aLIGO design PSD. (Therefore, higher harmonics
will be incomplete in the frequency band, but in a consistent manner. Degradation of the mismatch will come from high frequencies close to
merger.) The blue curves show mismatches between SpinTaylorT1-NR hybrids constructed with a 100M hybridization window as a function
of the start time t1 of this window before merger against a reference hybrid with a broader window at t = [200, 800]M measured from the
beginning of the NR waveform, and after the relaxation time. The binaries merge at 2822.24M and 5196.2M from the beginning of the NR
simulations, respectively, for SXS_BBH_0308 and SXS_BBH_0104. The orange curves show mismatches between SpinTaylorT1-NR and
SpinTaylorT4-NR hybrids constructed with the same 100M hybridization window as a function of the start time t1.
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overlaps between (a) a reference hybrid in the time window
t = [200, 800]M, measured from the beginning of the NR
waveform, and “sliding hybrids,” a series of hybrids blended
with 100M long time windows that approach the merger
in discrete steps. We also compute (b) overlaps between
sliding hybrids for the same window starting time between
the SpinTaylorT1 and SpinTaylorT4 PN approximants.
The reference hybrids are used as a signal waveforms for PE
in the main study of the paper. We compute the max-max
overlaps as defined in Appendix B of Ref. [77]. We show the
resulting overlaps for SXS_BBH_0308 and SXS_BBH_0104
in Fig. 15. Both curves show that if one hybridizes early the
mismatch is small and noisy. These mismatches are lower
than the mismatches between different NR resolutions quoted
in Sec. II B. Therefore hybridization errors are subdominant
for these configurations. For SXS_BBH_0308 the mismatch
only rises beyond 10−4 for windows that start within 500M
of the merger, while for SXS_BBH_0104 the mismatches ap-
proach 10−3 already 1000M before merger. In this regime PN

waveforms become inaccurate compared to NR and differ-
ences between PN approximants grow.

We also want to briefly mention additional sources of
errors. Spin vectors are defined differently in PN and
NR [195–197], and therefore, using the same spin values
for both waveforms at the same time as we do in the hy-
brid construction will introduce an additional error that we
do not quantify here. The m = 0 “memory” modes may
not be accurate without using Cauchy characteristic ex-
traction (CCE) [172]. The waveforms used in this study,
SXS_BBH_0308 and SXS_BBH_0104 do not use CCE.

The configurations considered in this study are fairly
easy to hybridize and one should not infer a general be-
havior of hybridization errors from them. For more chal-
lenging configurations (higher mass-ratios and spins) PN
and NR are expected to show discrepancies further away
from merger. How long NR waveforms need to be so
that hybridization errors are subdominant requires detailed
study [62–65].
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