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Nonlinear correlation functions are at the heart of quantum theory. The second-order correlation function
g(2)(τ ) has been a cornerstone of quantum optics for over half a century, and a myriad of quantum and classical
applications has been discovered. In contrast, higher-order correlation functions have so far been used only to
reveal the nonclassical character of the emitted fields. In this paper, we study the relation between the kth-order
correlation function g(k)(0) and the projection of the underlying quantum state of light onto the subspace of Fock
states with a photon number less than k. We show that when g(k)(0) falls below a critical value, lower bounds for
the projection on this subspace can be concluded as well as on the ratio of the subspace with one to k − 1 photons
and k to infinity. These bounds are, at face value, valid for only nonclassical quantum states. However, when the
quantum state includes a nonzero projection on the vacuum state, the value of g(k)(0) is artificially enhanced,
potentially covering these projections. We derive an effective kth-order correlation function, which accounts for
the effect of vacuum. We show that the information gained from the effective correlation function is not limited to
nonclassical quantum states and thus constitutes a quantum and classical application of higher-order correlation
functions.
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I. INTRODUCTION

One of the main features of quantum physics, which is
readily available to experiments, is the strongly nonlinear
character of higher-order expectation values and correlation
functions. Already, introductory courses on quantum me-
chanics focus on the intrinsic variance 〈(X̂ − 〈X̂ 〉)2〉 of an
observable X̂ being nonzero if the quantum state is not an
eigenstate of X̂ [1]. This induces a quantum noise in the
classically deterministic quantity. Arguably, the most famous
consequence of this variance is the Heisenberg uncertainty
relation, which shatters the classical view of a fully deter-
ministic universe. A similarly fundamental aspect is given by
single-photon sources, where no more than one photon can
be emitted or absorbed at the one time. Field correlations that
include two or more simultaneous excitations or deexcitations
vanish identically. The fluorescent emission from these sys-
tems is, in turn, nonclassical, attaining statistical properties
that are incompatible with solutions of the classical Maxwell
equations.

One of the most famous and measured correlation func-
tions is the second-order correlation function g(2)(τ ), first
applied by Hanbury-Brown and Twiss [2] in the 1950s. In
their original proposal, they looked at the classical version of
this correlation function to measure the size of distant stars.
Following the pioneering works of Sudarshan [3] and Glauber
[4], the Hanbury-Brown and Twiss measurement setup
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became a cornerstone to reveal quantum features of light, in
particular antibunching [5], and sub-Poissonian photon statis-
tics [6]. Beyond this quantum application, a spatial analysis
g(2)(d ) of two Rydberg excitons with distance d was recently
used to visualize a Rydberg blockade [7]. In solid-state optics,
g(2)(0) of a single-mode emission field is used to evaluate
the single-photon character of the source field [8,9]. If this
value falls below 1/2, the light source is considered a good
single-photon source. Some limitations of this criterion and
the proposal for using higher-order correlations have been
brought up multiple times [10,11]. It was also shown that
for sub-Poissonian light the average photon number is limited
with clear hard boundaries [12]. In a recent work [13], we
analyzed the information that can be gained from g(2)(0) <

1/2 concerning the single-photon projection of the underlying
quantum state. While this criterion, at face value, is limited to
sub-Poissonian light, using additional information necessary
to evaluate the actual projection on the single-photon Fock
state allows us to quantify some classical light fields as well.
In short, the second-order correlation function has become
a major resource for information in a plethora of different
applications in modern classical and quantum physics.

In contrast, the higher-order correlation functions g(k), first
introduced by Glauber [4], have been shunned for many
years. This is, in part, due to the complicated process of
measuring this function. Only a decade ago, experimen-
tal accessibility became possible for significantly larger or-
ders [14], thanks to a theoretical proposal developed a few
years prior [15]. Nevertheless, recently, higher-order corre-
lation functions have become relevant for different quantum
systems such as optomechanical setups [16], photon-added
and -subtracted squeezed coherent states [17], and noisy
twin beams [18]. From an experimental point of view, twin
beams combined with postselection were used to analyze
the quality of the obtained correlation functions for different
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measurement quantities such as the field intensities or the
explicit photon numbers [19,20]. In all of these applications
higher-order correlation functions were employed exclusively
to show the basic nonclassicality feature of higher-order
sub-Poissonian photon statistics [21]. To this day, this phe-
nomenon, also referred to as higher-order photon blockade,
is intrinsically linked to quantum effects [22]. Another recent
application, identifying entangled bunches of photons in the
emission of two-level arrays [23], is also intimately connected
to quantum states without a classical analog. We are still far
from the versatility known from g(2), and different applica-
tions of these functions not limited to nonclassical quantum
states are of fundamental interest.

The aim of this work is to generalize [13] to higher-order
correlation functions k > 2 and thus provide such a set of
information gained from g(k)(0). The main focus is on deriving
generalized formulas for the following results from the case
where k = 2: (a) When g(k)(0) falls below the value attained
for the Fock state |k〉, there is a nonzero lower bound for
the projection of the state onto the subspace spanned by the
Fock states with a photon number less than k. We will refer
to this subspace as the sub-k space from now on. (b) A
nonzero vacuum projection artificially enhances g(k)(0) for
a state with otherwise fixed ratios of Fock-state projections.
We derive an effective correlation function g̃(k)(0) to account
for these vacuum effects. (c) With g̃(k)(0), we are able to
determine a lower bound for the ratio of one-to-(k − 1) Fock-
state projections relative to k-or-more Fock-state projections.
(d) The effective correlation function also yields information
for some classical states of light. This shows that the criteria,
while, at face value, implying kth-order sub-Poissonian fields,
are actually independent of nonclassicality conditions. (e) It
is possible to obtain g̃(k)(0) directly by combining balanced
homodyne correlation measurements with postselection. Be-
yond the generalization from k = 2 we also present a large-k
approximation, which serves as a valid lower bound for all k.

This paper is organized as follows. In Sec. II, we provide
the notation used throughout this work and give a brief
summary of the major results of [13]. After that, we give
the generalized proof that having g(k)(0) lower than a specific
minimum guarantees a nonzero projection onto the sub-k
space in Sec. III. In Sec. IV we give lower bounds for both the
absolute projection onto the sub-k space and the projection of
the subspace spanned by Fock states from 1 to k − 1 photons
(the sub-k̃ space) relative to the subspace from k to infinity
(the super-k space). Each of these results is a generalization
of the previous special analysis for k = 2, meaning there are
explicit states for which the bounds are reached. Then in
Sec. V we compute an analytical large-k approximation of the
bounds. All these results will be applied to known states in
Sec. VI. Section VII is dedicated to a measurement scheme for
the effective kth-order correlation function. Finally, we give
conclusions in Sec. VIII.

II. NOTATION AND THE CASE WHERE k = 2

The general form of a kth-order correlation function is
given by

g(k)(0) = 〈(Ê (−) )k (Ê (+) )k〉
〈Ê (−)Ê (+)〉k

, k ∈ N � 2, (1)

where Ê (+) and Ê (−) = [Ê (+)]† are the positive and negative
frequency field amplitudes, usually evaluated in the steady
state of the system, respectively. Obviously, for no projection
on k or more photons, g(k)(0) = 0, but in general, already,

g(k)(0) < 1 (2)

proves the nonclassicality of the underlying quantum state of
light [21], called kth-order sub-Poissonian light. Moreover, as
all operators are normally ordered in g(k)(0), one can connect
these field correlation functions to the source fields emitted
from their origin and in turn to the system operators (usually
atomic or atom-like) of that source [24]. Likewise, as the
intensity is scaled out in this function, for a single-mode field
we can write g(k)(0) only in terms of creation (annihilation)
operators â† (â) as

g(k)(0) = 〈â†kâk〉
〈â†â〉k

. (3)

We will analyze this function throughout the paper.
For the sake of clarity and brevity, we introduce the fol-

lowing notation to be used from now on. The order k of
the correlation function will be arbitrary but fixed, unless
otherwise stated; the index k is thus always meant to represent
the kth-order correlation function g(k)(0). We will consider
only the correlation function at time delay zero; hence, g(k) =
g(k)(0) for any state. Furthermore, when explicitly calculating
g(k) for a given state �̂, we use the form g(k)[�̂] or g(k)[|ψ〉] for
a pure state |ψ〉. The Fock states are denoted |n〉, n ∈ N, and
the photon statistics are pn = 〈n|�̂|n〉. For later purposes we
define g(k)

min = g(k)[|k〉].
The photon statistics are split into projections onto the

sub-k and super-k space as defined in Sec. I, rationalizing the
introduction of the shorthand

P =
k−1∑
n=0

pn, Q =
∞∑

n=k

pn = 1 − P. (4)

Furthermore, as the vacuum contributions will become rel-
evant, we also use P̃ = P − p0. For the sake of avoiding
pathologies, we will always assume to have states with P, Q �=
0. With the split of the Hilbert space into these two subspaces,
we introduce corresponding states

�̂P = 1

P

k−1∑
n=0

pn|n〉〈n|, �̂Q = 1

Q

∞∑
n=k

pn|n〉〈n|, (5)

as well as their average photon number NP(Q) = Tr{n̂�̂P(Q)}
with the obvious condition NP � k − 1, NQ � k. Note that,
as in the case for k = 2, all the information gathered from
measuring g(k) is contained within pn, and thus, we can use
�̂P(Q) for a general description of arbitrary quantum states.
In the same way as NP(Q), we define kth-order correlation
functions g(k)

P = g(k)[�̂P] = 0 and g(k)
Q = g(k)[�̂Q] > 0.

With the above-introduced notation, let us shortly review
the main results and steps taken within [13], i.e., the case k =
2. Starting from the well-known result for Fock states having
the property g(2)[|n〉] = 1 − 1/n, n � 1, we showed that g(2)

is quasiconcave (but not quasiconvex),

g(2)[s�̂1 + (1 − s)�̂2] � min{g(2)[�̂1], g(2)[�̂2]} (6)
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for arbitrary quantum states �̂1,2 and s ∈ [0, 1]. This yielded,
in general, the statement that for

g(2) < 1/2 = g(2)[|2〉] = g(2)
min, (7)

we have P̃ = p1 > 0. The absolute amplitude of P̃ does not
follow from g(2) alone, but the relative amplitude

P̃

Q
� 2

√
1 − 2g̃(2)

1 −
√

1 − 2g̃(2)
, (8)

g̃(2) =(1 − p0)g(2). (9)

The only variable on the right-hand side of Eq. (8), g̃(2), is
called the effective second-order correlation function. The
scaling incorporates the effects of the vacuum contribution
p0, thus generating a vacuum-independent lower bound for
P̃/Q. In the case when we have no information on vacuum we
must assume p0 = 0. Equality of (8) is given if no more than
two-photon projections are present, i.e., Q = p2. The result
can also be given as a lower bound for the sum of vacuum and
single-photon projection, which is P for k = 2, and reads

P � 2
√

1 − 2g̃(2)

1 +
√

1 − 2g̃(2)
. (10)

Finally, we note that as weakly excited states have large
vacuum contributions p0, we can also analyze coherent and
thermal states in this regime, showing the independence of
the original criterion from the sub-Poissonian light condition.

It has to be stated in this context that large vacuum con-
tributions are not a goal in single-photon research. Quite the
opposite, they not only cover potential single-photon projec-
tions; in experiments the corresponding low signal intensity
also diminishes the signal-to-noise ratio, rendering quantita-
tive analysis impossible. Due to this problem, a scheme was
proposed [25] and later realized [26] to detect nonclassicality,
using click detectors and building correlations only from large
vacuum contributions, i.e., from the condition of no click in
the detectors. In contrast, we used the additional information
given by p0 to evaluate the actual value of the single-photon
projection p1, which was impossible from just g(2).

III. NONZERO PROJECTION ON SUB-k SPACE

We prove the nonzero projection on the sub-k space in
a two-step process. In the first step we show that for Fock
states g(k) is monotone increasing with the photon number, i.e.,
g(k)[|n〉] � g(k)[|n + 1〉]. The kth-order correlation function
for Fock states reads

g(k)[|n〉] = 1

nk

n!

(n − k)!
, n � k,

g(k)[|n〉] = 0, n < k.

(11)

Consider the ratio of g(k) for consecutive Fock states

g(k)[|n〉]
g(k)[|n + 1〉] =

(
1 + 1

n

)k(
1 − k

n + 1

)
. (12)

This positive function should remain lower than or equal to 1
for all combinations 2 � k � n. Obviously, for n → ∞, this
ratio becomes 1. Let us, for the moment, extend the range of

n to real numbers larger than or equal to a fixed k. In that case
the derivative with respect to n reads

d

dn

[
g(k)[|n〉]

g(k)[|n + 1〉]
]

=
(

1 + 1

n

)k−1 −k

n2

(
1 − k

n + 1

)

+
(

1 + 1

n

)k k

(n + 1)2
(13)

= k(k − 1)

n2(n + 1)

(
1 + 1

n

)k−1

> 0. (14)

The function is thus positive and always increasing with n
and goes to 1 for n → ∞, from which we can conclude that
g(k)[|n〉] is monotone increasing.

In the second step we make use of the ability to have a
unified treatment for coherent and incoherent superpositions
as all expectation values in our calculation concern only diag-
onal entries on the density matrix when written in Fock-state
basis (see the argument for k = 2 in [13]). Hence, we need to
show only that g(k) is quasiconcave, i.e.,

g(k)[s�̂1 + (1 − s)�̂2] � min{g(k)[�̂1], g(k)[�̂2]} (15)

for every �̂1,2, s ∈ [0, 1]. Denoting for the two states gi =
g(k)[�̂i] and ni = Tr{�̂iâ†â}, with i = 1, 2, we find

g(k)[�̂ = s�̂1 + (1 − s)�̂2] = snk
1g1 + (1 − s)nk

2g2

[sn1 + (1 − s)n2]k
. (16)

Without loss of generality, we can set r = n2/n1 � 0 and g2 =
tg1, t ∈ [0, 1] and rewrite the formula as

g(k)[�̂] = g1
s + (1 − s)rkt

[s + (1 − s)r]k
. (17)

Varying s from 0 to 1, g(k) shifts from g2 to g1; that is, it does
not decrease overall. The derivative with respect to s reads

d

ds
g(k) = g1

[1 − rkt][s + (1 − s)r] − k(1 − r)[s + (1 − s)rkt]

[s + (1 − s)r]k+1
.

(18)

It has a positive denominator and a numerator linear in s,
indicating no more than one extreme point. Consequently, in
order to not be quasiconcave g(k) needs to be decreasing at the
beginning, that is,

d

ds
g(k)

∣∣∣∣
s=0

= g1

rk
[1 + (k − 1)rkt − krk−1t] � 0. (19)

Possible negativities depend on the roots of the square bracket
in Eq. (19), which can be rewritten as

1 − trk

(
1 − k + k

r

)
, (20)

yielding as a condition for a decreasing slope

1 � 1

t
� rk

(
1 − k + k

r

)
. (21)

As k � 2, the right-hand side of Eq. (21) is positive only in
the interval 0 � r � k/(k − 1) and zero at its boundaries. The
maximum in between is at r = 1, yielding t = 1 as the only
solution, where g(k) does not increase at s = 0. For this case
with n1 = n2 and g1 = g2, g(k)[�] is constant, as it cannot
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FIG. 1. The kth-order correlation function for the incoherent
mixing of two coherent states (gi = 1) with r = 10 (solid lines) and
r = 1/10 (dashed lines). From top to bottom, each pair of inverted
lines represents k = 4, 3, 2.

distinguish between the two states and thus also does not
decrease. Thus, for all cases g(k)[�] is quasiconcave, and there
is a nonzero projection on the sub-k Fock space if

g(k) < g(k)
min = k!

kk
. (22)

Note that we can also conclude that g(k)
Q � g(k)[|k〉] = g(k)

min.
A few comments are in order. While we have technically

shown only that P �= 0 so far, in comparison to P̃ in [13], the
extension to this case follows simply from setting �2 = |0〉〈0|
in Eq. (16), which leads to

g(k)[�̂ = s�̂1 + (1 − s)|0〉〈0|] = g1

sk−1
. (23)

Vacuum itself increases only the value of g(k), whereas the
decrease below g(k)

min requires a nonzero projection on a Fock
state between 1 and k − 1. We observe that g(k) is not quasi-
convex, as there is no general upper bound to g(k)[�̂]. For two
states �̂i with equal gi (t = 1) but different average photon
numbers (r �= 1), g(k) has a maximum value of

g(k) = g1
1

rk−1(r − 1)

(rk − 1)k

kk

(k − 1)k−1

(rk−1 − 1)k−1
. (24)

One can easily deduce for r � 1 that

g(k) ≈ g1
(k − 1)k−1

kk
rk−1 (25)

and, correspondingly, for r 
 1 there is a limit with r−(k−1).
As an example, we plot the result for the incoherent mixing of
two coherent states in Fig. 1.

Finally, one corollary should be mentioned. As we have
shown the general quasiconcave property of g(k) and the
monotonicity of g(k)[|n〉], we can also generalize the lower
bound argument to any n � k. That means that whenever
g(k) < g(k)[|n〉]. with n � k, a nonzero projection of the sub-n
space exists. As

lim
n→∞ g(k)[|n〉] = 1, (26)

we conclude that for any state with g(k) < 1, that is, for all
states for which kth-order sub-Poissonian statistics are found,

there exists a number n � k with a nonzero projection on the
sub-n space. All subsequent results can be modified for this
generalized result, but for the sake of brevity and clarity we
stick to the case with n = k. This is directly connected to
the results of [12], in which the authors analyzed the relation
between a low g(2) and the average photon number of the
underlying quantum state. As a major result, it was shown
that for sub-Poissonian light (g(2) < 1), there exists an upper
bound on the average photon number, as well as upper bounds
on pn (n � 2) above a certain threshold. Hence, when the
maximum projection Q for all the states above n falls below
1, there must be a nonzero projection P. In short this means
that sub-Poissonian light (to any order k), originally connected
to low variance of photon statistics, also implies a limit on
the average photon number; see also the very recent work on
sub-Poissonian fields in microlasers [27].

IV. LOWER BOUNDS OF P AND P̃/Q

With the knowledge of the existence of a nonzero P, this
section is aimed at deriving different bounds on the amplitude
of the sub-k projection. Splitting g(k) into two sums at k, we
obtain

g(k) =
∑∞

n=k nk png(k)[|n〉][ ∑k−1
n=0 npn + ∑∞

n=k npn
]k

, (27)

k−1∑
n=0

npn = k

√√√√ 1

g(k)

∞∑
n=k

nk png(k)[|n〉] −
∞∑

n=k

npn. (28)

In terms of the above-defined states �̂P(Q) this is equivalent to

NPP =NQ

⎡
⎣ k

√
g(k)

Q

g(k)
Q − Q

⎤
⎦. (29)

So far this equation is exact. It connects the projection on
the sub-k space, namely, P, to the projection on the super-k
space, namely, Q. Applying the monotonicity of g(k)[|n〉] and
the average photon number of Fock states in order to get a
lower bound on P yields

P � k

k − 1

⎡
⎣ k

√
g(k)

min

g(k)
Q − Q

⎤
⎦. (30)

It should be noted that these inequalities have tight bounds.
They become equations for the only nonzero projections being
on the Fock states |k − 1〉 and |k〉.

With P = 1 − Q, Q is the only unknown quantity in
Eq. (30). We know Q ∈ [0, 1], and one can easily prove
that due to the monotonicity of the terms in Eq. (30) with
respect to Q only one solution Qmax exists. For k = 2, Qmax

was determined analytically. In the general case, it can be
computed numerically. For P it follows the solution

P � Pmin = k

k − 1

⎡
⎣ k

√
g(k)

min

g(k)
Qmax − Qmax

⎤
⎦, (31)

with the minimal sub-k space projection Pmin = 1 − Qmax.
This equation is a generalized version of Eq. (10) for arbitrary
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FIG. 2. The probability P of sub-k photon numbers as a function
of g(k)/g(k)

min � 1. From top to bottom the solid functions represent
k = 2, 3, 4, 5. The dashed line represents k = 100, showing the
large-k asymptotics.

k. It states that for g(k) < g(k)
min the projection on the sub-k

space has a nonzero lower bound. We have visualized P
for different k in Fig. 2. One can see that the probabilities
are smooth functions of the ratio g(k)/g(k)

min and decrease for
increasing k. Moreover, the functions appear to stabilize for
large k, indicating the existence of a general lower bound
to be determined later. It should be noted that the difference
between the low-k and large-k boundaries is very small; the
maximum deviation between the probability P for k = 2 and
k = 100 is 0.09.

Like in [13], we can also easily determine an analytic
approximation for low g(k) 
 g(k)

min. Assuming in Eq. (31) that
Qmax 
 1, we obtain

Pmin ≈ 1 − (k − 1)k

k!
g(k). (32)

Expanding Eq. (10) for low g̃(2) gives the exact same formula
except for the effective correlation function, indicating that we
so far avoided discussing the effect of vacuum.

In order to better understand the influence of vacuum, we
first note that on the left-hand side of Eq. (29), the vacuum
term p0 does not contribute directly, as the average photon
number was calculated and NPP � (k − 1)P̃. Thus, we can
write

P̃ � k

k − 1

⎡
⎣ k

√
g(k)

min

g(k)
Q − Q

⎤
⎦, (33)

with P̃ = P − p0, connecting the sub-k̃ space, spanned by the
Fock states with photon number 1 to k − 1, to the super-k
space of Q. However, p0 becomes an additional free parameter
that shifts both Qmax and P̃ down, making their absolute am-
plitudes indeterminable from only g(k). For k = 2, solving this
equation for P̃/Q yielded automatically the effective second-
order correlation function g̃(2) = (1 − p0)g(2). The origin of
this term became clear only in hindsight as compensating the
effect of vacuum, which itself enhances g(2) for fixed P̃/Q.
In order to generalize the influence of vacuum to higher k, we

will give its physical explanation first. Consider a state �̂0 with
no vacuum (p0 = 0) and a given ratio P̃/Q > 0. Now we can
include vacuum in the state as

�̂p0 = p0|0〉〈0| + (1 − p0)�̂0. (34)

The ratio P̃/Q stays fixed, but g(k) gets scaled as

g(k)[�̂p0 ] = (1 − p0)Tr{�̂0â†kâk}
[(1 − p0)Tr{�̂0â†â}]k

= g(k)[�̂0]

(1 − p0)k−1
. (35)

Vacuum artificially enhances the value of g(k), motivating the
definition of an effective kth-order correlation function

g̃(k) = (1 − p0)k−1g(k), (36)

which in turn gives a vacuum-independent assessment of the
sub-k and sub-k̃ spaces.

With the knowledge of the effective kth-order correlation
function in mind let us return to Eq. (30) and its solution Qmax.
If we write out Q on the left-hand side of Eq. (33) and define
Q = (1 − p0)Q̃, we obtain

1 − Q̃ � k

k − 1

⎡
⎣ k

√
g(k)

min

g̃(k)
Q̃ − Q̃

⎤
⎦. (37)

The result is structurally identical to Eq. (30), just for Q̃ and
g̃(k). That means Q̃ has the same solution as Q but for g̃(k)

instead of g(k), yielding

Qmax[p0, g(k)] = (1 − p0)Qmax[0, g̃(k)]. (38)

Note that the case p0 = 0 ↔ g̃(k) = g(k) is included in
this generalization. Furthermore, inserting this solution into
Eq. (33), we find

P̃

Q
� k

k − 1

⎡
⎣ k

√
g(k)

min

g(k)

1

Qk−1
max[p0, g(k)]

− 1

⎤
⎦ (39)

= k

k − 1

⎡
⎣ k

√
g(k)

min

g̃(k)

1

Qk−1
max[0, g̃(k)]

− 1

⎤
⎦. (40)

The right-hand side of Eq. (40) does not contain p0 or g(k)

individually, only g̃(k). Hence, we have proven that the relevant
quantity for the lower bound of P̃/Q is the effective kth-order
correlation function g̃(k), in accordance with the main result
of [13]. Again, we plot the results in Fig. 3 for the same cases
as in Fig. 2. In the logarithmic scaling the variation with k
appears even less significant, emphasizing the necessity to
consider the large-k approximation.

Two important conclusions can be drawn. First, we can
also use Eq. (40) to further optimize the lower bound
of P. Therefore, we use the exact same argument as in
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FIG. 3. Relative probability P̃/Q as a function of g̃(k)/g(k)
min � 1.

The curves are the same as in Fig. 2.

Eqs. (8)–(10), now with the right-hand side of Eq. (40),
yielding

P �
k

√
g(k)

min
g̃(k)

1
Qk−1

max [0,g̃(k)]
− 1

k

√
g(k)

min
g̃(k)

1
Qk−1

max [0,g̃(k)]
− 1

k

(41)

= kPmin[0, g̃(k)]

(k − 1) + Pmin[0, g̃(k)]
. (42)

Herein Pmin[0, g̃(k)] = 1 − Qmax[0, g̃(k)]. Note that while
Eq. (42) gives a larger lower bound than Eq. (31), its effect
is negligible for g̃(k) 
 g(k)

min or k � 1.
Second, even with the effective kth-order correlation func-

tion, we can determine only a lower bound P̃/Q, not P̃,
consistent with the observation in [13] that the single-photon
projection itself requires additional information. However,
with explicit knowledge of the vacuum projection p0 and
Eq. (42), absolute lower and upper bounds can easily be
established as

1 − p0 � P̃ � kPmin[0, g̃(k)]

(k − 1) + Pmin[0, g̃(k)]
− p0. (43)

As a consequence of this necessary addition, we will see in
Sec. VI that determining the amplitude P̃ from g(k) constitutes
an application of the higher-order correlation function, which
is not bound by nonclassical quantum states.

V. LARGE-k APPROXIMATION

As can be seen from the dashed curves in Figs. 2 and
3, for large k the probability P and the relative amplitude
P̃/Q stabilize at a smooth function. This function serves as
a general lower bound, depending only on the ratio g̃(k)/g(k)

min,
which, from now on, we will denote as R, with 0 � R � 1. In
order to analyze this case, let us first turn back to Eq. (30) in
the form

1 − Qmax = k

k − 1

(
k

√
Qmax

R
− Qmax

)
. (44)

As k/(k − 1) > 1, the root must be smaller than or equal to
1, with equality given only for Qmax = R = 1. Thus, we can
rewrite the root and make a series expansion as

k

√
Qmax

R
= k

√
1 −

(
1 − Qmax

R

)
= k

√
1 − x (45)

= 1 − 1

k
x − 1

k

(
1 − 1

k

)
x2

2
− · · · . (46)

For large k the term 1/k in parentheses of the form n − 1/k,
n ∈ N, can be neglected, leaving the Taylor expansion of the
natural logarithm as

k

√
Qmax

R
≈ 1 + 1

k

[
−x − x2

2
− x3

3
− · · ·

]
(47)

= 1 + 1

k
ln(1 − x) = 1 + 1

k
ln

(
Qmax

R

)
. (48)

Inserting this result back into Eq. (44), the explicit k depen-
dencies cancel, yielding

1 − Qmax = ln

(
R

Qmax

)
or Pmin = ln

(
R

1 − Pmin

)
. (49)

Thus, we have a large-k behavior, where the only k depen-
dence is given via g(k)

min in R, yielding a general lower bound
of Pmin(R). To formulate this implicit solution with explicit
functions, we calculate the derivative P′

min(R) to obtain

P′
min(R) = −exp[−Pmin(R)]

Pmin(R)
. (50)

Including the boundary condition Pmin(0) = 1, this differential
equation has the unique solution

Pmin(R) = 1 + W0

(
−R

e

)
, (51)

with W0(x) being the Lambert W function with the upper
branch for x ∈ [−1/e, 0]. Finally, the large-k approximation
for the relative amplitude follows as Pmin/(1 − Pmin).

VI. APPLICATION

The inclusion of vacuum effects allows us to describe
the projection on the sub-k space not just for the case of
sub-Poissonian light. To illuminate this thought consider a
coherent state |α〉 with average photon number 〈n̂〉 = |α|2.
As a classical state, it fails to qualify for any criterion of the
form g(k) < g(k)

min < 1. However, we have found for k = 2 that
the effective second-order correlation function g̃(2) falls below
this boundary for 〈n̂〉 < ln(2) ≈ 0.63. Thus, we concluded
that the single-photon criterion is actually independent of the
nonclassicality criterion g(2) < 1 for sub-Poissonian light, as
additional information is required to quantify the projection,
and this information in turn makes it possible to describe this
projection for some classical states.

In general we note that g(k)[|α〉] = 1 for all k and

g̃(k) = (1 − e−|α|2 )k−1 <
k!

kk
(52)

is the condition for a nonzero sub-k projection with our
criteria. Using Stirling’s approximation for the factorial, we
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also find a large-k approximation of

|α|2 < 1 − ln(e − 1) ≈ 0.46. (53)

This is again a lower bound for all k, meaning that also
the general statement of a nonzero sub-k̃ projection is not a
definite nonclassicality criterion and just lies within the range
of the nonclassicality criterion g(k) < 1. All coherent states
with average photon number below 0.46 can be analyzed by
our refined criterion.

In comparison, for a thermal state

�̂th = (1 − λ)
∞∑
j=0

λ j | j〉〈 j|, λ ∈ [0; 1], (54)

with 〈n̂〉 = λ/(1 − λ) and g(k) = k!, we easily deduce as a
condition for applying our conditions

λ <
1

k
k− 1

k−1 <
1

k
. (55)

While there exists a nonzero lower bound for the excitation of
the state, it goes to zero for large k, indicating only very low
excited thermal states allow an analysis via our criteria.

VII. MEASUREMENT ISSUES

Setups to determine higher-order correlation functions
based on balanced homodyne correlation measurements were
proposed in 2006 [15]. Their experimental validation, per-
formed with the help of waveguide delay lines, established
this proposal as a viable method for determining up to g(6)

[14]. Additionally, the vacuum projection of a light field can
be directly obtained from click detectors, recording the ratio
between no clicks and clicks [28]. Yet, at least for lower
average photon numbers, arrays of click detectors already give
sufficient information to obtain the photon-number statistics
and, consequently, all g(k) and g̃(k) [29,30]. Combining bal-
anced homodyne correlation measurements with click detec-
tors is a versatile method to obtain g(k) and p0. Using advanced
click-detector arrays may then serve to validate the predictions
of this work.

A way to determine g̃(2) directly was proposed in [31].
Therein, the authors considered a one-to-one optomechanical
coupling between an optical photon and a mechanical phonon.
Thus, single-phonon states could be detected via single-
photon measurements, which in turn could be found from
Hanbury-Brown–Twiss measurement of g(2). To circumvent
the problem of strong vacuum components and low signal-
to-noise ratio, the authors employed postselection methods.
By first detecting the emission of a photon before actually
applying the g(2) measurement they effectively cut out all
cases of zero photons. From a theoretical point of view,
this generates the effective second-order correlation function
g̃(2) instead of g(2). The method can be adapted directly for
higher-order correlations functions to determine g̃(k) without
knowledge of the vacuum itself. One major drawback, how-
ever, is that we lose the information about the vacuum pro-
jection of the original quantum state. Hence, the connection
to sub-Poissonian light, which was previously drawn, is no
longer given. As shown in the applications, even coherent
or thermal states may be (correctly) identified as states with

sub-k̃ projection but not show any nonclassical properties. If
such a connection is intended to be established, the original
g(k) has to be determined, either by not removing the vacuum
or by additionally measuring p0 and computing g(k) from that.

To estimate p0, we may use the knowledge of multiple g(k).
Assume that we have no direct information on p0 and that
for one k we find g(k+1) = 0 but g(k) �= 0. Hence, the space of
Fock states cuts off after |k〉. Consider again Eq. (29). Due to
the limitation of the super-k space, we know that NQ = k and
g(k)

Q = g(k)
min. This leaves us with the exact equation

NPP = k

⎡
⎣ k

√
g(k)

min

g(k)
Q − Q

⎤
⎦. (56)

In this case we can use the lower bound on the left-hand side
as NPP � P̃ to find an upper bound on the sub-k̃ space as

P̃ � k

⎡
⎣ k

√
g(k)

min

g(k)
Q − Q

⎤
⎦. (57)

As Q has the upper bound Qmax, there is a nonzero lower
bound for p0 if P̃ + Qmax < 1. This allows us then to find an
even smaller Qmax due to a nonzero vacuum and iteratively
approach the correct value for p0. On the one hand, the
connection to the necessity of more information than g(k) to
determine the sub-k̃ projection is obvious. On the other hand,
this also ties into the notion of the alternative measure for
single-photon sources based on the detection filtering in [11].
There, the authors combined information on different g(k)

(k � 2) to define a norm which analyzes the sub-Poissonian
character to different orders simultaneously.

VIII. CONCLUSIONS

We have studied the relation between the kth-order correla-
tion function g(k) and the projection of the underlying quantum
state of light onto different subspaces. g(k) is a quasiconcave
function, from which we conclude that for 0 < g(k) < g(k)[|k〉]
there is a nonzero projection on the sub-k space, the sub-
k̃ space, and the super-k space. It is possible to give an
explicit nonzero lower bound for the first one but not the
latter two. The value of g(k) gets artificially enhanced by
vacuum. By introducing the effective kth-order correlation
function g̃(k) we account for this vacuum effect. With g̃(k), a
lower bound for the ratio of the sub-k̃ projection to super-k
projection follows, along with an optimized version of the
lower bound for the sub-k projection. Including the vacuum
projection as additional information allows us to quantify also
the sub-k̃ projection. However, this approach reveals that the
connection between the kth-order correlation function and
sub-k̃ space is independent of nonclassicality. We showed that
there is a large-k approximation which is a valid lower bound
for all k. Finally, we presented some examples of states to
which to apply our criteria and discussed the measurability
of g̃(k).

Our results open up a different view and possibly a dif-
ferent field in optical physics. Up to this point, higher-than-
second-order correlation functions have been used exclusively
for identifying quantum phenomena. In contrast, g(2) has
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already been established as a source for various information
beyond just detecting sub-Poissonian or antibunched light.
This work gives insight into an application of higher-order
correlation functions which at face value appears quantum
but in hindsight is independent of nonclassical phenom-
ena.
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