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Magnetic circular dichroism versus orbital magnetization
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The magnetic circular dichroism sum rule yields an extremely useful ground-state observable, which provides
a quantitative measure of spontaneous time-reversal symmetry breaking (T-breaking) in a given material. Here
I derive its explicit expression within band structure theory, in the general case: trivial insulators, topological
insulators, and metals. Orbital magnetization provides a different measure of T-breaking in the electronic ground
state. The two observables belong to the class of “geometrical” observables; both are local and admit a “density”
in coordinate space. In both of them, one could include or exclude selected groups of bands in order to acquire
element-specific information about the T-breaking material. Only in the case of an isolated flat band do the
contributions to the two observables coincide. Finally, I provide the corresponding geometrical formula—in a
different Hilbert space—for a many-body interacting system.
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I. INTRODUCTION

Since the very popular 1992 paper by Thole et al. [1],
magnetic circular dichroism (MCD) has been widely regarded
as an approximate probe of orbital magnetization in bulk
solids. Some years later, it was clearly recognized that the
MCD sum rule Iαβ (defined below) provides insight into
the magnetic properties of solids, although such “magnetic
properties” do not coincide with orbital magnetization ex-
cept in the extreme atomic limit [2]. It must be mentioned
that at the time, no sound theory of orbital magnetization
in bulk solids was available. Orbital magnetization M is,
by definition, the derivative of the free-energy density with
respect to magnetic field (orbital term thereof, and with a
minus sign). After Ref. [2], it is then pretty clear that Iαβ

is the free-energy derivative with respect to a different T-
breaking probe: circularly polarized light, integrated over the
whole spectrum. Owing to a fluctuation-dissipation theorem,
a frequency-integrated dynamical probe becomes effectively a
static one; the said probe has the virtue of coupling to orbital
degrees of freedom only. The two observables M and Iαβ

provide two quantitatively different measures of spontaneous
T-breaking in the orbital degrees of freedom of a given mate-
rial. On the experimental side, Iαβ is naturally endowed with
core chemical specificity, at the root of its great success; while
instead only the total M value is experimentally accessible.

Condensed-matter physics adopts Born–von-Kàrmàn pe-
riodic boundary conditions (PBCs), at the root of Bloch’s
theorem, which in turn allows one to address the intensive
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electronic properties of crystalline materials. Unfortunately,
PBCs are incompatible with the presence of a generic mag-
netic field: for these reasons, the theory of orbital magneti-
zation was only established in 2006 [3,4]. Therein, M is ex-
pressed as a reciprocal-space integral; it is worth stressing that
no use is made of the angular momentum Lz, a “forbidden”
operator within PBCs. The operator Lz is only legitimate when
addressing a bounded crystallite.

Here, I thoroughly investigate the analogies and differences
between the two observables, also providing three significant
advances. (i) I give a microscopic expression for Iαβ , gauge
invariant in form, for any crystalline material (either metal
or insulator) within band structure theory. I also show that
in a Chern insulator, Iαβ is not affected by the topologically
protected edge states (while M is affected). (ii) I show that
Iαβ is a local observable, in full analogy to M [5,6]. It must
be stressed that other geometrical observables are strongly
nonlocal (most notably electrical polarization [5]). (iii) I go
beyond band structure theory and I show that even in a corre-
lated many-electron system, Iαβ is a geometrical ground-state
observable, although in a different Hilbert space. When PBCs
are abandoned, the very same geometrical formula for Iαβ

goes seamlessly into the center-of-mass angular momentum
formula of Ref. [2] (which only makes sense for a bounded
crystallite).

II. THEORY

Shortly after the theory of orbital magnetization was fully
established [3], Souza and Vanderbilt derived an explicit
expression for Iαβ in the special case of a topologically trivial
insulator [7]. It was shown that both M and Iαβ are geometrical
properties of the electronic ground state; an explicit expres-
sion for their difference was also provided.

The MCD sum rule concerns the frequency integral of the
imaginary part of the antisymmetric term in the conductivity
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tensor,

Iαβ = Im
∫ ∞

0
dω σ

(−)
αβ (ω); (1)

a kind of fluctuation-dissipation theorem relates Iαβ to a
ground-state property, both for a bounded sample (e.g., a
crystallite) within the so-called open boundary conditions
(OBCs), and for an unbounded solid within PBCs. In both
frameworks, all ground-state properties—at the independent-
particle level—can be expressed in terms of the relevant
ground-state projector P .

In the OBCs case, the projector (per spin channel) is

P =
∑
ε j�μ

|ϕ j〉〈ϕ j |, (2)

where μ is the Fermi level and |ϕ j〉 are the single-particle
eigenstates of the Hamiltonian H with eigenvalues ε j . In the
band structure case, the projector is instead

P = Vcell

∫
BZ

dk
(2π )d

∑
ε jk�μ

|ψ jk〉〈ψ jk|, (3)

where BZ is the Brillouin zone, |ψ jk〉 are the Bloch orbitals
normalized to one in the crystal cell of volume Vcell, ε jk
are the band energies, and d is the dimension; Vcell must be
understood as the area for d = 2. The reason for adopting
the same symbol P in Eqs. (2) and (3) lies in the “nearsight-
edness” principle [8]. If one evaluates P from Eq. (2) for a
large bounded crystallite, and then further projects this P onto
the inner region of the crystallite, the result asymptotically
converges to the P value provided by Eq. (3) for the same
material; the convergence is exponential in insulators and
power law in metals.

We start with a bounded sample within OBCs: the sum
rule for Iαβ has a relatively straightforward expression [7]. A
tedious calculation (see the Appendix) shows that it can be
equivalently expressed as

Iαβ = − iπe2

2h̄2V
Tr {(H − μ) [ [rα,P], [rβ,P] ]}. (4)

The virtue of this expression becomes clear when switching to
PBCs and band structure theory. In the latter case, P is lattice
periodical,

〈r|P |r′〉 = 〈r + R|P |r′ + R〉, (5)

where R is a lattice vector. The position r is instead a forbid-
den operator, incompatible with PBCs [9]. Notwithstanding,
the commutator [r,P] is an honest lattice-periodical operator
(like H and P), and hence Eq. (4) can be adopted as it is,

Iαβ = − iπe2

2h̄2Vcell
Trcell {(H − μ) [ [rα,P], [rβ,P] ]}. (6)

Therein, H is the periodic Hamiltonian and P is given by
Eq. (3).

The next step is to express Eq. (6) as a Fermi volume
integral (BZ integral in the insulating case), as customary for
any intensive ground-state observable; its geometrical nature
will also perspicuously appear. We cast Eq. (3) in terms of

the periodic Bloch orbitals |ujk〉 = e−ik·r|ψ jk〉, eigenvectors
of Hk = e−ik·rHeik·r:

〈r|P |r′〉 = Vcell

∫
BZ

dk
(2π )d

eik·(r−r′ )〈r|Pk |r′〉, (7)

Pk =
∑

ε jk�μ

|u jk〉〈u jk|. (8)

In order to establish a differential geometry in the space
of the |u jk〉 state vectors, we choose a gauge which makes
the |u jk〉 smooth (i.e., C∞) throughout the whole BZ. This
is always possible, even in topologically nontrivial materials
[10]. The integrand in Eq. (7) is periodical in k, and hence the
BZ integral of its k derivative vanishes:

0 = i(r − r′)〈r|P |r′〉 + Vcell

∫
BZ

dk
(2π )d

eik·(r−r′ )〈r| ∂kPk |r′〉,
(9)

i[r,P] = −Vcell

∫
BZ

dk
(2π )d

eik·r∂kPke−ik·r. (10)

We are now ready to replace this into Eq. (6), together with

H = Vcell

∫
BZ

dk
(2π )d

eik·rHke−ik·r. (11)

The three reciprocal-space integrals in the product contract to
one (see the Appendix), and we arrive at

Iαβ = iπe2

2h̄2

∫
BZ

dk
(2π )d

Trcell
{
(Hk − μ)

[
∂kα

Pk, ∂kβ
Pk

]}
.

(12)
The sum rule Iαβ , defined in Eq. (1), is the frequency in-
tegral of a linear response function; Eq. (12) shows that it
coincides with a ground-state material property. Equalities of
this kind belong to the general class of fluctuation-dissipation
theorems [7].

Equation (12) is one of the major results of the present
work. It applies on the same ground to trivial insulators,
topological insulators, and metals. In the metallic case, the
k derivative of Pk includes a δ-like singularity at the Fermi
level, which is annihilated by antisymmetrization. When spe-
cialized to the so-called Hamiltonian gauge [4], Eq. (12)
yields the same formula as in Ref. [7] (derived therein in a
completely different way for trivial insulators only).

Intensive material properties in crystalline materials are ex-
pressed as reciprocal-space integrals, such as Iαβ in Eq. (12);
the analogous expression for orbital magnetization M was
found in 2006 [3,4]. While the observables have obviously
different dimensions, the two reciprocal-space integrals are
similar—when expressed within the present formalism—but
not equal. Preliminarily, we observe that custom dictates the
adoption of the field H in the free energy. Instead, because of
the reasons well explained in Ref. [11], first-principles theory
alternatively adopts the more fundamental field B. The (by
now classic) orbital magnetization expression, formulated in
the Hamiltonian gauge [3,4], can be shown to be equivalent to
the gauge-invariant expression [12]

M = ie

2h̄c

∫
BZ

dk
(2π )d

Trcell{|Hk − μ|(∂kPk ) × (∂kPk )},
(13)
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where |Hk − μ| = (Hk − μ)(I − 2Pk ) is the operator which
acts as (μ − Hk ) on the occupied states, and as (Hk − μ)
on the unoccupied ones. Comparing to the reciprocal-space
expression of the MCD sum rule, given by Eq. (12), the key
difference is the presence or absence of the modulus of the
operator (Hk − μ) (besides the obvious prefactor).

We stress that Pk is gauge invariant in the generalized
sense, i.e., by arbitrary mixing of the occupied |ujk〉 orbitals at
a given k [4]. Therefore, Eqs. (12) and (13) are gauge invariant
in form. Their geometrical integrands are simple modifica-
tions of the Berry curvature, whose known expression is

�αβ (k) = iTrcell
{
Pk

[
∂kα

Pk, ∂kβ
Pk

]}
. (14)

Therein, the band projector Pk is the sole ingredient, while the
Hamiltonian enters Eqs. (12) and (13) as well. It enters both
formulas via (Hk − μ) for aesthetical reasons, i.e., to explic-
itly display their invariance by translation of the energy zero.
Nonetheless, the μ dependence can be dropped in Iαβ since
the μ-dependent term is annihilated after antisymmetrization.
In this regard, M is different: it is μ independent in trivial
insulators, while it actually depends on μ (in the gap) in
Chern insulators [13]. Remarkably, this means that—in a
bounded sample—the topologically protected boundary states
contribute to M, but not to Iαβ .

Finally, I point out another major appealing feature of
Eqs. (6) and (12): both show the locality of the observable.
If we define the (real) lattice-periodical function Xαβ (r) as

Xαβ (r) = πe2

2h̄2 Im 〈r| (H − μ)[ [rα,P], [rβ,P] ] |r〉, (15)

the sum rule reads

Iαβ = 1

Vcell

∫
cell

dr Xαβ (r). (16)

The function Xαβ (r) assumes then the meaning of a MCD
“density” and provides spatial resolution, although such res-
olution is not expected to be microscopic, only macroscopic.
Previous experience with other local geometrical observables,
mostly based on model Hamiltonians, has shown—when deal-
ing, e.g., with a heterostructure—that the “density” separates
the contributions from the different regions of the sample
[14–16]. Obviously, the k-space formula in the supercell
formalism lacks spatial resolution even at the macroscopic
level.

The concept of orbital magnetization density has been pro-
posed and validated in Refs. [5,6,13]. Its macroscopic average
coincides, by definition, with (minus) the B derivative of the
orbital free-energy density (spin magnetization is obviously
local as well). As said in Sec. I, the apparently analogous
case of electrical polarization is instead strongly nonlocal: no
density can be defined [4,5].

III. CONTRIBUTION FROM AN ISOLATED FLAT BAND

Whenever the band spectrum comprises an isolated band,
its contribution to both observables can be evaluated by
including that band only in the ground-state projector. This
parallels the spectral selectivity naturally provided by the sum
rule, and largely exploited by MCD experimentalists. The

single-band expressions for the two observables are, in the
case of full occupancy [3,4,7],

Iαβ = πe2

h̄2 Im
∫

BZ

dk
(2π )d

〈
∂kα

uk
∣∣ (Hk − εk )

∣∣∂kβ
uk

〉
, (17)

Mγ = e

2h̄c
εγαβ Im

∫
BZ

dk
(2π )d

〈
∂kα

uk
∣∣ (Hk + εk )

∣∣∂kβ
uk

〉
,

(18)

where summation over repeated indices is implicit, and εγαβ

is the antisymmetric tensor (in the case of M, the argument
of “Im” is purely imaginary after antisymmetrization). For a
flat core band, the difference between the two integrals is a
constant times the Chern invariant, which in turn vanishes by
assumption.

We remind the reader that in the general case, the orbital
moment per cell as such is an ill-defined quantity: both M
and Iαβ have the primary meaning of a free-energy derivative.
Only in the extreme case of an isolated flat band can they both
be alternatively expressed as the core orbital moment per cell.

Switching to vector notations, Eq. (18) becomes

M = − ie

2h̄c

∫
BZ

dk
(2π )d

〈∂kuk|Hk × |∂kuk〉. (19)

If ϕ(r) is the core orbital in the Schrödinger representation,
the zero-hopping assumption yields

〈r|uk〉 =
∑

R

eik·(R−r)ϕ(r − R), (20)

〈r|∂kuk〉 = i
∑

R

(R − r)eik·(R−r)ϕ(r − R), (21)

where R are the lattice vectors. Exploiting the zero-overlap
assumption, and the fact that Hk commutes with eik·R, we get

〈∂kuk|Hk × |∂kuk〉 =
∫

cell
dr

∑
R

ϕ∗(R − r)eik·rHk

× e−ik·r(R − r)ϕ(r − R). (22)

Since Hk = e−ik·rHeik·r, the above expression is k indepen-
dent. Then,

M = − ie

2h̄cVcell
〈∂kuk|Hk × |∂kuk〉 = ie

2h̄cVcell
〈ϕ|H × r |ϕ〉.

(23)

Finally, using r × r = 0 and v = i[H, r]/h̄, we obtain

M = ie

2h̄cVcell
〈ϕ| [H, r] × r |ϕ〉 = − e

2cVcell
〈ϕ| r × v |ϕ〉,

(24)

thus retrieving the magnetic analog of the popular Clausius-
Mossotti model polarization in electrostatics. Such an expres-
sion makes sense only because the electron distribution is
confined in disconnected core regions, separated by empty
interstitial space; and therefore the unbounded nature of r
does no harm [9].

In most cases—such as for d levels in transition metals—
the band is not flat, not isolated, and/or composite. Nonethe-
less, most of the MCD literature [1,17,18] assumes that Iαβ

provides an approximate measure of orbital magnetization.
The identification of the two integrals in Eqs. (17) and (18)
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is not justified, not even approximately: the Berry curvature
is known to be a weird function of k (see, e.g., Fig. 5.8 in
Ref. [4]).

IV. CORRELATED GROUND STATE

At this point, we abandon band structure theory altogether
and we switch to dealing with an interacting system. The
formula was provided by Kunes and Oppeneer in 2000 [2]
for a bounded crystallite (or even a noncrystalline sample); it
cannot be adopted within PBCs, given that one of its entries
is the position operator r, forbidden within PBCs [9]. Here
we provide the many-body formula in terms of a many-body
ground state, and we show that even in this case, Iαβ is a
geometrical observable, although in a different Hilbert space.
For the sake of simplicity, we deal with the simple case where
a purely orbital Hamiltonian can be established for each spin
channel (same as above for the band structure case).

We consider, following a milestone paper by Kohn [19], a
system of N interacting particles in a cubic box of volume L3,
and the family of many-body Hamiltonians parametrized by
the parameter κ:

Ĥκ = 1

2m

N∑
i=1

[
pi + e

c
A(ri ) + h̄κ

]2
+ V̂ , (25)

where V̂ includes one-body and two-body potentials. The
vector potential A(r) summarizes all T-breaking terms, as,
e.g., those due to spin-orbit coupling to a background of
local moments. We adopt Born–von-Kàrmàn PBCs over each
electron coordinate ri independently, whose Cartesian com-
ponents ri,α are then equivalent to the angles 2πri,α/L. The
potential V̂ and the vector potential A(r) enjoy the same
periodicity. The vector κ, having the dimensions of an inverse
length, is called “flux” or “twist.” Setting κ �= 0 amounts to
a gauge transformation; since PBCs violate gauge invariance,
the eigenvectors |�nκ〉 and the eigenvalues Enκ have a non-
trivial κ dependence [19].

In order to simplify notations, we define Ĥ0 ≡ Ĥ , |�n0〉 ≡
|�n〉, En0 ≡ En, and ω0n = (En − E0)/h̄. If we further define
the κ = 0 many-body velocity operator as

v̂ = 1

m

N∑
i=1

[
pi + e

c
A(ri )

]
= 1

h̄
∂κĤ , (26)

the Kubo formula for the imaginary part of the conductivity
straightforwardly yields the sum rule:

Iαβ = πe2

h̄L3
Im

∑
n �=0

〈�0| v̂α |�n〉〈�n| v̂β |�0〉
ω0n

; (27)

the task is now to convert this expression into a ground-state
property.

The many-body analog of the k · p expansion yields

|∂κ�0〉 = −
∑
n �=0

|�n〉 〈�n| v̂ |�0〉
ωn0

, (28)

(Ĥ − E0)|∂κ�0〉 = −
∑
n �=0

|�n〉〈�n| v̂ |�0〉. (29)

By comparing these expression to Eq. (27), we find our final
geometrical formula,

Iαβ = πe2

h̄2L3
Im

〈
∂κα

�0

∣∣ (Ĥ − E0)
∣∣∂κβ

�0
〉
. (30)

The correspondence with the single-band formula of Eq. (17)
is self-evident; a gauge-invariant expression can be easily
obtained from the ground-state projector P̂κ = |�κ〉〈�κ|. At
variance with the band structure case, the many-body formula
for Iαβ unfortunately cannot be compared with a correspond-
ing formula for M. To this day, such a formula does not exist:
the orbital magnetization of a correlated many-body wave
function within PBCs is currently an open (and challenging)
problem. The corresponding problem for electrical polariza-
tion has been solved long ago [9].

From now on, we adopt the same Kohn Hamiltonian of
Eq. (25), but we switch from PBCs to OBCs, thus addressing
a crystallite (or any bounded sample). In this case, the flux κ

can be easily “gauged away”: the energies are κ independent,
while the state vectors are

|�nκ〉 = e−iκ·r̂|�n〉, OBCs, (31)

where r̂ = ∑
i ri is the many-body position, a trivial multi-

plicative operator within OBCs. Therefore,

|∂κ�0〉 = −ir̂|�0〉, (32)

Iαβ = πe2

h̄2L3
Im 〈�0| r̂α (Ĥ − E0)r̂β |�0〉

= − iπe2

2h̄2L3
Im 〈�0| r̂α[Ĥ, r̂β] |�0〉

= − πe2

2h̄L3
〈�0| (r̂α v̂β − r̂β v̂α ) |�0〉. (33)

Not surprisingly, this is identical to the center-of mass angular
momentum formula, first derived in Ref. [2].

By expanding the many-body operators r̂ and v̂, Eq. (33)
is seen to be proportional to the ground-state expectation
value of

∑
ii′ ri × vi′ , while the orbital moment of a bounded

sample is proportional to the ground-state expectation value
of

∑
i ri × vi. The two coincide only in the single-electron

case, consistently with Eq. (24) above: the case of an isolated
flat band amounts, in fact, to considering one electron per cell
(and per spin channel).

V. CONCLUSIONS

I have presented a microscopic expression for the MCD
sum rule Iαβ within band structure theory and compared it
to the analogous formula for orbital magnetization M. Both
geometrical formulas are gauge invariant in form and very
general: they address trivial insulators, topological insulators,
and metals on the same footing. In a Chern insulator, the
topologically protected edge states contribute to M. I prove
here that they do not contribute to Iαβ . I have also proved
the locality of Iαβ , i.e., its spatial-resolution capability (M
is known to be local [5,6]). In agreement with common
wisdom, the present formulation confirms that the contribu-
tions to Iαβ and to M by an isolated flat band of nonover-
lapping core states coincide, and also coincide with the
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intuitive—Clausius-Mossotti inspired—definition of M as the
core orbital moment over the cell volume. I have also pre-
sented the many-body version of Iαβ , which is a geometri-
cal ground-state observable as well, although in a different
Hilbert space.

It is difficult to say anything about to which extent the two
observables could provide similar results in some classes of
materials (and perhaps very different in others), for the good
reason that few first-principles calculations of M exist [20,21],
and none of the sum rule (to the best of my knowledge).
A further drawback is that “first-principles” is regarded as
a synonym of density functional theory, whose accuracy in
addressing T-breaking properties and materials is known to be
poor [20].

With respect to magnetization measurements, the MCD
sum rule Iαβ has two great virtues, at the root of its enormous
success. The first one is that Iαβ is a purely orbital property,
while in magnetization measurements the spin contribution
has to be subtracted; further complications arise from shape
issues and demagnetization coefficients. The second major
virtue is that the frequency integral can be (and routinely
is) performed over selected spectral ranges, thus isolating the
T-breaking contributions from selected orbital shells, and pro-
viding element- and/or site-specific information. The MCD
sum rule Iαβ is an outstanding ground-state observable per
se; there is no compelling reason for identifying it (even
approximately) with some form of orbital magnetization.
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APPENDIX

1. MCD sum rule in a bounded sample

Besides P , here we need its complementary Q = I − P ,

Q =
∑
ε j>μ

|ϕ j〉〈ϕ j |. (A1)

Following Ref. [7], the MCD sum rule reads

Iαβ = πe2

2h̄V
Tr {PrαQvβ} − (α ↔ β )

.= πe2

2h̄V
Tr {PrαQvβ}

.= iπe2

2h̄2V
Tr {PrαQ [H, rβ]}, (A2)

where the symbol
.= means “equal after antisymmetrization”,

and vβ = i[H, rβ]/h̄ has been used. We then switch to a P-
only formula:

Tr {PrαQ [H, rβ]} .= Tr {PrαQHrβ} − Tr {PrαQrβH}
.= Tr {PrαHrβ} − Tr {PrαPHrβ}

+ Tr {PrαPrβH}, (A3)

where a symmetric term has been dropped. Using then the
cyclic invariance of the trace and the fact that H commutes

with P , Eq. (A3) is recast as

Tr {PrαQ [H, rβ]} .= Tr {HrβPrα} − Tr {HPrβPrα}
+ Tr {HPrαPrβ}

.= Tr {H(2P − I )rαPrβ}. (A4)

It is then easy to verify that

Tr {H(2P − I )rαPrβ} .= −Tr {H[rα,P] [rβ,P]}, (A5)

where again a symmetric term has been dropped.
We thus arrive at

Iαβ = − iπe2

2h̄2V
Tr {H [ [rα,P], [rβ,P] ]}. (A6)

One further aesthetical improvement is desirable. We observe
that any bulk observable (except the energy itself) must be
invariant by translation of the energy zero, and hence must be
a function of H − μ; and, in fact, P can be formally written
as P = θ (μ − H), where θ is the step function. We, therefore,
rewrite

Iαβ = − iπe2

2h̄2V
Tr {(H − μ) [ [rα,P], [rβ,P] ]}. (A7)

2. Products of lattice-periodical operators

We start with a simple lemma: if f (r) is a lattice-periodical
function, then its Fourier transform is∫

eik·r f (r) = (2π )d

Vcell
δ(k)

∫
cell

dr f (r). (A8)

Any two lattice periodical operators can be written in
Schrödinger representation as

〈r|A |r′〉 = Vcell

∫
BZ

dk
(2π )d

eik·(r−r′ )〈r|Ak |r′〉,

Ak =
∑

j j′
|u jk〉〈ψ jk|A |ψ j′k〉〈u j′k|. (A9)

〈r|B |r′〉 = Vcell

∫
BZ

dk
(2π )d

eik·(r−r′ )〈r|Bk |r′〉,

Bk =
∑

j j′
|u jk〉〈ψ jk|B |ψ j′k〉〈u j′k|. (A10)

Their products obtain as

〈r|AB |r′〉 =
∫

dr′′〈r|A |r′′〉〈r′′|B |r′〉, (A11)

〈r|AkBk′ |r′〉 =
∫

cell
dr′′〈r|Ak |r′′〉〈r′′|Bk′ |r′〉. (A12)

Notice that the integral in dr′′ is over Rd in the case of AB,
and over the crystal cell in the case of AkBk′ ; notice also that
Ak and Bk′ are lattice periodical in r and r′ independently.

We now address the diagonal term 〈r|AB |r〉: a lattice-
periodical function. Its expression is

〈r|AB |r〉 =V 2
cell

∫
BZ

dk
(2π )d

∫
dk′

(2π )d
ei(k−k′ )·r

×
∫

dr′′ei(k′−k)·r′′ 〈r|Ak |r′′〉〈r′′|Bk′ |r〉.
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By exploiting the above lemma, in the last line, one gets

〈r|AB |r〉 =V 2
cell

∫
BZ

dk
(2π )d

∫
dk′

(2π )d
ei(k−k′ )·r

× (2π )d

Vcell
δ(k′ − k)

∫
cell

dr′′〈r|Ak |r′′〉〈r′′|Bk′ |r〉

=Vcell

∫
BZ

dk
(2π )d

〈r|AkBk |r〉.

This process is associative and can be extended to the product
of three operators:

〈r|ABC |r〉 = Vcell

∫
BZ

dk
(2π )d

〈r|AkBkCk |r〉. (A13)

In the main text, we identify A, B, and C with the
lattice-periodical Hermitian operators (H − μ), i[rα,P], and
i[rβ,P], respectively. Correspondingly, they enter the Fermi
volume integral as (Hk − μ), −∂kα

Pk, and −∂kβ
Pk.
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