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Quantifying entanglement of parametric down-converted states in all degrees of freedom
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The amount of entanglement that exists in a parametric down-converted state is investigated in terms of all
the degrees of freedom of the state. We quantify the amount of entanglement by the Schmidt number of the
state, represented as a pure bipartite state by tagging the down-converted photons in terms of orthogonal states
of polarization with the aid of type-II phase matching. To facilitate our calculations, we use a Wigner functional
approach, which allows the incorporation of the full infinite dimensional spatiotemporal degrees of freedom.
A quantitative example with reasonably achievable experimental conditions is considered to demonstrate that
extremely large Schmidt numbers are achievable.
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I. INTRODUCTION

Parametric down-conversion [1] is a nonlinear optical
process that is widely used in the preparation of entangled
quantum states for photonic quantum information systems. It
is used to produce correlated photons for remote clock syn-
chronization [2,3], in quantum ghost imaging [4], in quantum
teleportation [5], in protocols for quantum key distribution [6],
and it is also used to prepare squeezed states for multiphoton
applications [7,8], including their use for sub-shot-noise ob-
servations of gravitational waves [9]. While some applications
focus on the spatiotemporal degrees of freedom of individual
photon pairs in the parametric down-converted state (PDCS),
others harness its multiphoton properties with less emphasis
on the spatiotemporal degrees of freedom.

Higher dimensional states allow more entanglement; they
provide more information capacity and more security in quan-
tum cryptology [10,11]. For a pure state, one can quantify the
dimensionality of the entangled state by the Schmidt number,
the average number of modes in the Schmidt decomposition
of the state. Orbital angular momentum modes [12,13] are
often used to represent the PDCS as a high-dimensional state
with a relatively large model Schmidt number [14–17]. But it
captures only the spatial degrees of freedom.

The particle-number degrees of freedom in the PDCS are
also entangled, with the corresponding Schmidt basis being
the Fock basis. One can expect that the total entanglement in
terms of all the degrees of freedom in the PDCS would be
much higher than estimates solely based on the spatiotemporal
degrees of freedom in the state would indicate. However,
the calculation of such a full Schmidt number is severely
challenging, as evident from recent attempts [18–22]. These
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studies impose restrictions on the degrees of freedom, for
example by considering only a finite number of discrete
modes.

Here, we determine the entanglement of the PDCS in
terms of the full Schmidt number, including the infinite-
dimensional, spatiotemporal, and particle-number degrees of
freedom. This calculation is facilitated by a Wigner functional
formalism [23,24]. We apply the semi-classical approxima-
tion where the pump is assumed not to be significantly af-
fected by the process. Thus, the parametric down-conversion
process becomes equivalent to a squeezing operation on the
vacuum state. Being interested in the maximal potential entan-
glement in the state prior to any processing or measurement,
we will assume that the PDCS is a pure state, ignoring any
loss occuring during the preparation stage. At some point, we
will assume some minor processing of the state for the sake
of tractability, but such processing is assumed not to affect the
purity of the state.

To compute the Schmidt number, the PDCS must be repre-
sented as a bipartite state. The photons in a pure PDCS are all
produced in pairs, but they are not necessarily distinguishable,
unless there is some mechanism to tag them. Often, some
form of postselection is used to tag the photons. In practice,
such postselection can be done by using two complimentary
displaced apertures or different complimentary wave-length
filters. Here, we’ll use type-II phase-matching, which tags the
two photons with different states of polarization. The resulting
bipartite squeezed state is analogous to a two-mode squeezed
state, where the two “modes” are the two states of polarization
and does not restrict the other degrees of freedom.

The paper is organized as follows. We generalize the bipar-
tite squeezing operator to incorporate all the spatiotemporal
degrees of freedom in Sec. II. It is used in Sec. III to derive
an expression for the full Schmidt number with the aid of a
Wigner functional approach. In Sec. IV, the detailed kernel
for type-II parametric down-conversion is incorporated into
the expression of the expression of the full Schmidt number.
This expression consists of a functional determinant, which
is evaluated in Sec. V by applying suitable approximations.
By considering typical experimental conditions, we present
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numerical curves for the full Schmidt number in Sec. VI,
showing a dramatic increase in the entanglement of the PDCS.
In Sec. VII, we end with some conclusions.

II. SQUEEZING OPERATOR

Including all the spatiotemporal degrees of freedom in the
bipartite squeezing operator, one can express it as

Ŝ = exp
(

1
2 âe � ζ ∗

eo � âo − 1
2 â†

e � ζeo � â†
o

)
, (1)

where the squeezing parameter becomes a kernel function and
the subscripts e and o represent the extraordinary and ordinary
states of polarization, respectively, as produced by parametric
down-conversion with typeII phase-matching. The contrac-
tions of the ladder operators on the kernels are represented
by the notation

âe � ζ ∗
eo � âo

≡
∫

âe(k1)ζ ∗
eo(k1, k2)âo(k2)

d3k1

(2π )3ω1

d3k2

(2π )3ω2
. (2)

In terms of this notation, the Wigner functional for a bipartite
squeezed vacuum state reads

Wbsv[α, β] = N 2
0 exp[−2(α∗ � C � α + β∗ � C � β

+α∗ � S � β∗ + α � S∗ � β )], (3)

where α and β are the fields for the two different states of
polarization, N0 is a normalization constant, and

C ≡ cosh�(2|ζeo|),
S ≡ exp�(iθeo) � sinh�(2|ζeo|),

(4)

with ζeo = |ζeo| � exp(iθeo) [25]. The subscript � indicates
that the products in the expansion of a function are �-
contractions and the first term is a Dirac δ function.

III. FULL SCHMIDT NUMBER

In order to quantify the entanglement in the pure bipartite
squeezed vacuum state, we use a Wigner functional approach
[23,24] to compute the full Schmidt number. The Wigner
functional approach alleviates this calculation significantly.
We start by computing the partial trace of Eq. (3) over β,
which is done by performing the functional integration over β.
In the process, we use the fact that C and S commute because
they involve the same kernel. The result is

Wpt[α] =
∫

Wbsv[α, β] D◦[β]

= N0

det{C} exp(−2α∗ � C−1 � α). (5)

The Wigner functional of the partial trace is that of a mixed
state and has the form of a thermal state. The inverse of the
full Schmidt number is given by the purity of the partial trace:

1

K =
∫

W 2
pt[α] D◦[α] = 1

det{C} . (6)

Hence, the full Schmidt number can be expressed as

K = det{C} ≡ exp(tr{ln�[cosh�(2|ζeo|)]}). (7)

Up till now, no approximations were employed, apart from
the semiclassical approximation. The representation of the
full Schmidt number in terms of a cosh-function is expected
from the equivalent expressions based on the particle-number
degrees of freedom only. The functional nature of the cosh
function and the determinant shows that the spatiotemporal
degrees of freedom are also incorporated here.

IV. PARAMETRIC DOWN-CONVERSION

For a quantitative evaluation of Eq. (7), we need an expres-
sion for the parametric down-conversion kernel. In addition to
the phase-matching conditions, there are other experimental
details that affect the form of this kernel. Here, we will
assume a degenerate collinear operation. The restrictions thus
imposed already reduces the amount of entanglement in the
state. However, we pay the price for the sake of definitiveness
and tractability.

The unitary operator for parametric down-conversion with
type-II phase-matching is

Ûpdc2 ≡ exp(âe � H∗
eo � âo − â†

e � Heo � â†
o ), (8)

where

Heo(a1, a2) = η sinc
(

1
2π2w2

pβ|a1 − a2|2
)

× exp
(−π2w2

p|ν1a1 + ν2a2|2
)
, (9)

with a being the two-dimensional transverse spatial frequency
vector, ν1 = no/n3, ν2 = neff/n3, and

η = π2α0σIILwp

n2
3λ

2
p

√
πδλ

2λp
,

β = noneffLλp

πn3w2
p

. (10)

Here, α0 is the complex amplitude of the coherent state repre-
senting the pump (the only complex quantity in the expression
and not to be confused with the field α in the expression
of the Wigner functional), σII is the nonlinear coefficient of
the crystal for type-II phase-matching, expressed as a cross
section (with units of area), L is the length of the nonlinear
crystal, wp is the waist radius of the pump beam, δλ is
the wavelength bandwidth of the pump, no is the ordinary
refractive index, neff is the effective extra-ordinary refractive
index, n3 = 1

2 (no + neff ), and λp is the pump wavelength. The
nonlinear coefficient also depends on the wave vectors of the
three beams, but for the conditions considered here, these
dependences are expected to be weak enough to ignore.

Comparing Eqs. (8) to (1), we see that one can substitute
|ζeo| → 2|Heo| into Eq. (7), to obtain

K = det
{

cosh�
[
4|η|∣∣sinc

(
1
2π2w2

pβ|a1 − a2|2
)∣∣

× exp
(−π2w2

p|ν1a1 + ν2a2|2
)]}

. (11)

V. CALCULATION

In its most general form, the functional determinant of
a functional cosh function is intractable. However, there are
ways to approach the problem. Our aim here is not an exhaus-
tive analysis for all possible conditions, but a representative
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example to see what is possible. For example, if |η| is very
small (close to zero), then we have

cosh�(4|Heo|) ≈ 1 + 8|Hoe| � |Heo|, (12)

where 1 denotes a Dirac δ function. Then, the determinant
becomes

K ≈ exp(8tr{|Hoe| � |Heo|}). (13)

This trace can be calculated to give

8tr{|Hoe| � |Heo|} = |η|2
πw4

pβ
. (14)

In terms of Eq. (10), the full Schmidt number becomes

K ≈ exp

( |η|2
πw4

pβ

)
= exp

(
π5|α0|2σ 2

IILδλ

2n3
3noneffλ6

p

)
. (15)

The opposite limit (very large |η|) does not work, because
Hoe tends to zero for increasing |a|. As a result, there are
always regions where the argument of the cosh-function is
small, even when |η| is very large.

An alternative is to calculate the expression order-by-order,
using the expansion

ln�[cosh�(4|Hoe|)] ≈ 1
2 Z− 1

12 Z�2 + 1
45 Z�3− 17

2520 Z�4 + · · · ,

(16)

where Z ≡ 16|Hoe| � |Heo|. However, it still assumes that the
kernel is relatively small. For the determinant, we need to
compute the traces of all terms. The trace of the first term
is given in Eq. (14). For the higher-order terms, the integrals
are intractable, but they can be simplified by applying suitable
approximations.

In most experimental setups, the Rayleigh range of the
pump beam is much longer than the thickness of the crystal.
Hence, β � 1, which is the thin-crystal approximation. The
phase-matching function (sinc function) is then approximately
equal to 1.

It is tempting to remove the sinc function from the inte-
gral and evaluate the integral for the remaining expression.
However, without the phase-matching function, the PDCS is
not normalizable. So, the integral tends to diverge. A better
approach is to replace the sinc function by an exponential
function with the negative argument of the sinc function.
However, this Gaussian approximation of the phase-matching
function [14] deviates from the sinc function already at the
subleading order in the expansion in terms of β [26,27]. Its
only purpose is to regularize the integral. Once the integral is
evaluated, one sets β → 0, except for an overall factor of β,
which indicates that the result in the thin-crystal approxima-
tion is suppressed. Under the thin-crystal approximation, the
kernel in Eq. (9) is replaced by

Htc(a1, a2) =
√

2πη exp
(− 1

2π2w2
pβ|a1 − a2|2

)
× exp

(−π2w2
p|ν1a1 + ν2a2|2

)
. (17)

All the traces become tractable in the thin-crystal limit.
Another useful approximation is the plane-wave approxi-

mation where the pump beam radius is assumed to be much
larger than any of the other parameters. As a result, one can

FIG. 1. Comparison of the curves for the model, the two approx-
imations and the small-amplitude model, plotted as functions of the
dimensionless parameter X .

treat the pump beam as a plane wave, leading to a two-
dimensional Dirac δ function in the Fourier domain. The Dirac
δ function is given by a limit process: when wp → ∞, the
angular spectrum of the pump beam becomes

lim
wp→∞ exp

(−π2w2
p|a3|2

) = 1

πw2
p

δ(a3), (18)

where a3 = ν1a1 + ν2a2. Using the plane-wave approxima-
tion, one can evaluate the integrals for the higher-order traces
without modifying the sinc functions.

The parameter dependences obtained under these two
approximations are the same. The only differences are the
numerical factors for the terms in the expansions. The traces
of the even higher orders all have the form

tr{Z�n} = ξAX 2n, (19)

where ξ is a numerical factor, and A and X are dimensionless
quantities given by

A = n2
on2

eff

4n4
3β

,

X = 2π2|α0|σIIL

noneffλ2
pwp

√
δλ

λp
. (20)

Inspired by the expressions for these two approximations,
we propose a closed-form expression for the full Schmidt
number, given by

K ≈ exp[A − A cos(X )], (21)

in terms of the quantities in Eq. (20). We compare the
curve for this model to those for the two approximations
and the small-amplitude model for Eq. (15) in Fig. 1. Only
the arguments of the exponentials are compared. Since these
arguments share the same amplitude A, we remove it as well.
So, the functions plotted in Fig. 1 are

fmodel = 1 − cos(X ),

fquad = 1

2
X 2,

ftc = 1

2
X 2 − 1

12
X 4 + 16

405
X 6 − 17

630
X 8,

fpw = 1

2
X 2 − 1

9π
X 4 + 11

225π2
X 6 − 2567

99225π3
X 8. (22)
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The comparison in Fig. 1 shows that the curve for the model
lies between those of the two approximations, while the
quadratic curve lies above the others and thus overestimates
the magnitude for larger values of the parameter X . Based
on the agreement among the different curves, we consider the
model valid up to about X ≈ 0.8.

In terms of the spatial degrees of freedom only, under the
thin-crystal approximation, the expression for the Schmidt
number is [14]

Kbiphot ≈ 1

2β
. (23)

Here it is assumed that the PDCS can be regarded as a bipho-
ton state, and the thin-crystal approximation is implied by the
use of the Gaussian approximation for the phase-matching
function, which in turn implies that β must be very small.
An equivalent factor of 1/β appears in the definition of A in
Eq. (20).

VI. NUMERICAL EXAMPLE

To see how the incorporation of the particle-number de-
grees of freedom affects the Schmidt number, we will consider
an example with typical experimental parameters for such
a parametric down-conversion experiment. Our hypothetical
experiment, which is designed to satisfy the conditions for
the thin-crystal and plane wave approximations, has a pump
beam given by a 1-W pulsed laser with a pulse-repetition
frequency of 100 MHz, a pulse width of 100 fs, a center
wavelength of 400 nm and a waist radius in the crystal of
1 mm. The nonlinear crystal is a 10-mm-long BBO crystal,
cut for degenerate collinear down-conversion. Under these
conditions, β = 0.00211, which gives Kbiphot = 236.6.

How does the incorporation of the particle-number degrees
of freedom affect this result? There are 2.01 × 1010 photons
per pulse for 1 W of optical power. It gives |α0| = 0.14 × 106.
Here, the cross section for the BBO is σII = 0.76 × 10−8 μm2,
so that |α0|σII ≈ 0.001 μm2 (X = 0.052). The wavelength
bandwidth is about 5 nm for a pulse width of 100 fs. The
resulting full Schmidt number is only Kfull = 1.15.

To understand this number, we remind ourselves that the
biphoton Schmidt number is conditioned on the detection of
a biphoton. However, most pulses do not produce a down-
converted biphoton under these conditions. The full Schmidt
number, which is the average number of terms in the Schmidt
decomposition, also considers the dominating vacuum state in
those pulses without biphotons. In other words, the vacuum,
which does not carry any spatiotemporal degrees of freedom,
completely dominates the Schmidt decomposition.

One option to have more down-converted photons is to
increase the power of the laser. For a 100-W laser the value of
|α0| increases by a factor of 10, leading to an enhanced cross
section of |α0|σII ≈ 0.01 μm2 (X = 0.52). In this case, the full
Schmidt number jumps to Kfull = 2 × 106. A logarithmic plot
of the curve for the full Schmidt number, given in Eq. (21),
as a function of the enhanced cross section |α0|σII is shown
in Fig. 2. One can see a drastic increase of several orders of
magnitude in the value of the full Schmidt number for one
order of magnitude increase in the enhanced cross section.

FIG. 2. Full Schmidt number plotted on logarithmic axes as a
function of the enhanced cross section |α0|σII.

VII. CONCLUSIONS

The main results of this paper are (a) the expression for the
full Schmidt number of the PDCS that is obtained in Eq. (11)
with the aid of the Wigner functional formalism, without any
severe restrictions on the spatiotemporal degrees of freedom
and (b) the enormous values of the full Schmidt number
shown in Fig. 2, much larger than previous estimates (see, for
example, Ref. [20]). While the latter is of special significance
for any photonic quantum information system that uses a
PDCS as a resource for high-dimensional entanglement, it
is to the best of our knowledge unprecedented in any field
of quantum physics. The result suggests that measurements
combining all the degrees of freedom may benefit signifi-
cantly from the much larger entanglement dimension. It may,
for example, produce significant improvements in quantum
metrology, such as that which is to be applied in gravitational
wave detection [9].

The final calculations to obtain a quantitative value for
the full Schmidt number are still challenging. Fortunately,
we could perform these calculations with the aid of some
innocuous approximations. We did need to perform the cal-
culation on an order-by-order basis, which limits how far we
can plot the curves. Nevertheless, the result that we obtain
at the eighth order level can be plotted far enough to show
the dramatic increase in the full Schmidt number. Beyond this
point, it is reasonable to expect that the rise would eventually
slow down, because the rate of increase in the full Schmidt
number would eventually outpace the rate at which photons
with a full complement of modes are added, based on an
increase in the enhanced cross section. To see the slow down,
a different approach is needed to evaluate the determinant. It
is the hope that such an approach can be found in a future
investigation.
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