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Control of charge state of dopants in insulating crystals: Case study of Ti-doped sapphire
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We study mechanisms of control of charge state and concentration of different point defects in doped insulating
crystals. The approach is based on the density functional theory calculations. We apply it to the problem of
obtaining of Ti-doped sapphire crystals with high figure of merit (FOM). The FOM of a given sample is
defined as the ratio of the coefficient of absorption at the pump frequency to the coefficient of absorption at
the working frequency of a Ti:sapphire laser. It is one of standard specifications of commercial Ti:sapphire laser
crystals. It is believed that the FOM is proportional to the ratio of the concentration of isolated Ti3+ ions to the
concentration of Ti3+-Ti4+ pairs. We find that generally this ratio is in inverse proportion to the concentration
of Ti4+ isolated substitutional defects with the coefficient of proportionality that depends on the temperature at
which the thermodynamic equilibrium concentration of defects is reached. We argue that in certain cases the
inverse proportion between concentrations of Ti3+-Ti4+ and Ti4+ may be violated. The role of codoping in the
control of the charge state of dopants is analyzed. We show that codopants that form positively (negatively)
charged defects may decrease (increase) the concentration of positively charged defects formed by the main
dopants. To evaluate the effect of codoping it is important to take into account not only isolated defects but
defect complexes formed by codopants, as well. In particular, we show that codoping of Ti:sapphire with nitrogen
results in an essential increase of the concentration of Ti4+ and in a decrease of the FOM, and, consequently,
growth or annealing in the presence of nitrogen or its compounds is unfavorable for producing Ti:sapphire laser
crystals. The approach developed can be used for determining appropriate growth and annealing conditions for
obtaining doped crystals with the required characteristics.
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I. INTRODUCTION

Doping of insulating crystals with active ions is a widely
used method of obtaining functional materials (active laser
medium, luminescent materials, scintillators, and many oth-
ers) with required properties. Usually, in such materials
dopant ions should be a certain charge state, occupy certain
crystallography positions, and not form (or, instead, form)
complexes with other dopant ions or intrinsic defects. The
problem of control of the state of the dopant in a host matrix
remains very important.

Density functional theory (DFT) is a powerful tool for
evaluation of efficiency of different methods of such control.
Using the results of DFT calculations and thermochemical
data one can analyze finite-temperature properties. In partic-
ular, one can calculate equilibrium concentrations of different
defects at a given temperature. Due to the condition of overall
charge neutrality of defects the concentration of a given
charged defect species cannot be calculated independently:
in the general case this concentration depends on formation
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energies of all charged defects. One can imply that equi-
librium (or almost equilibrium) concentrations of defects
are reached under annealing. Therefore the temperature that
enters into equations for equilibrium concentrations of de-
fects can be associated with the temperature of annealing.
For as-grown samples it can be replaced with the melting
temperature Tm. The situation becomes more complicated in
a situation where concentration of dopants that enter into
the crystal under its growth is smaller than their equilibrium
concentration at T = Tm. In this case the concentration of a
given species depends on the formation energies of all charged
and uncharged defects.

In this paper we consider the problem of control of the
charge state of dopants with reference to Ti-doped sapphire
crystals. Some elements of our approach were already pre-
sented in our previous paper [1], where the results of DFT
study of defect complexes of Ti-doped sapphire were reported.

We start with a short introduction where we describe the
problem as it is formulated in the materials science commu-
nity.

Ti:sapphire is a widely used active laser medium. Opera-
tion of a Ti:Al2O3 tunable laser was first reported by Moulton
[2] in 1982. An active ion in Ti:sapphire is Ti3+ substituted
for the octahedrally coordinated Al3+. This ion has a single
3d electron above a closed shell. Five d-electron levels are
split by the crystal field into an eg doublet and t2g triplet.
Transitions between the t2g and eg levels are responsible for
the absorption of visible light and near-infrared fluorescence
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[3,4]. Titanium substituted for the Al ion can also be in
the Ti4+ state. A charge-transfer transition between O2−
and Ti4+ causes ultraviolet (UV) absorption in Ti:sapphire
[5]. Measurement of UV spectral characteristics gives the
information on the concentration of Ti4+ ions in Ti:sapphire
samples [5,6].

Ti:sapphire exhibits weak near-infrared (NIR) absorption
[3,4,7–10] that results in losses at the wavelength of the laser
emission. To qualify the performance of Ti:sapphire as a laser
crystal the ratio of the absorption αm at the pump wavelength
(λm ≈ 500 nm) to the absorption αr at the laser emission
wavelength (λr ≈ 800 nm) is used. This ratio is known as a
figure-of-merit (FOM) characterization of commercial mate-
rials. To calculate the FOM one should specify exact values
of λm and λr . One of the accepted choices is λm = 514 nm
and λr = 820 nm [11]. Slightly different λm and λr are also
accepted [9].

NIR absorption is associated with Ti3+-Ti4+ pairs. A
correlation between NIR absorption and the concentration
of Ti3+-Ti4+ pairs was demonstrated in Ref. [9] where the
dependence of αr on αm was measured. A partially oxidized
sample studied in Ref. [9] was clear near the surface and pink
inside that visualized a variation of the concentration of Ti3+

across the sample. The total concentration of Ti cTi was a
constant. The obtained dependence of αr on αm is of a bell-like
shape. This dependence is described by the formula αr ∝
αm(α0 − αm), where α0 is some constant. It is believed that
the concentration of Ti3+-Ti4+ pairs (cTi3+-Ti4+) is proportional
to the product of concentrations of isolated Ti3+ and Ti4+

ions. The first one is proportional to αm, and the second, to
cTi-cTi3+ ∝ α0 − αm. Therefore the observation [9] correlates
with the expectation that the adsorption coefficient αr depends
linearly on cTi3+-Ti4+ . The pair mechanism of NIR absorption is
supported by calculations of energy levels of the Ti3+Ti4+O2−

9
cluster [12]. The energy difference [12] between the ground
state and the first excited level of such a cluster corresponds
to the wavelength λ = 813 nm that is in excellent agreement
with the experimental value of λ at which the maximum of
NIR absorption is observed.

The problem of NIR absorption was revisited recently in
[13] where the absorption data in the range of wavelengths
from 190 nm to 2000 nm were analyzed with reference to
many Ti:sapphire samples of different origin. A sample with
a large fraction of Ti4+ (that was confirmed by a very weak
absorption by this sample at λ = 490 nm) was used as a ref-
erence. The Ti4+ scaling factor was defined as the absorption
at λ = 225 nm by a given sample related to the absorption
by the reference sample. It was implied that this factor is
proportional to the concentration of Ti4+. If NIR is caused by
Ti3+-Ti4+ pairs, the FOM will be in inverse proportion to the
Ti4+ scaling factor. Nevertheless, some samples demonstrated
strong deviation from this law. Based on this observation
the authors of Ref. [13] arrived at the conclusion that the
Ti3+-Ti4+ pair model of NIR absorption needs a revision.

Defect energetics in Ti:sapphire were investigated within
the DFT approach in Refs. [14,15]. It was shown that in
the oxidized conditions Ti4+ ions substituted for Al3+ ions
together with charge-compensating vacancies of Al (V 3−

Al )
are the most stable defects. In the reduced conditions the
formation energy of substitutional Ti3+ ions is of the smallest

value. In the intermediate range of the oxygen potential the
substitutional Ti3+ and Ti4+ defects exhibit similar formation
energies, indicating that they can coexist. It was established
that Ti3+ ions demonstrate a tendency to form pairs and larger
clusters. The binding energy of the Ti3+-Ti3+ pair strongly
depends on the distance between Ti3+ ions. For the first
nearest neighbors this energy is about 1.2 eV, but for the third
nearest neighbors it is less than 0.2 eV. The binding energy
of Ti3+ triples and quadruples is about 2 eV and 3 eV, corre-
spondingly. In addition, positively charged Ti4+ ions bind in
pairs with negatively charged Al vacancies V 3−

Al with almost
the same binding energy as one of Ti3+-Ti3+ pairs. Energetics
of defect complexes in Ti-doped sapphire was studied in detail
in Ref. [1]. The formation energies and the binding energy of
pairs, triples, and quadruples formed by Ti3+, Ti4+, and V 3−

Al
were calculated. It was shown that equilibrium concentrations
of complex defects can be on the same order of or even
larger than the concentration of isolated Ti3+ or Ti4+ defects.
It was found that complex defects in Ti:sapphire influence
significantly the balance between charged defects.

In this paper we present a thorough investigation of
the problem of control of the charge state of titanium in
Ti:sapphire. Our investigation complements the study [14,15]
and our recent study [1].

The method for the calculation of defect formation energies
and of dopant concentration presented in Secs. III–V is the
central result of this paper. It can be applied to dopant and
defect complexes in different technologically relevant mate-
rials. In Secs. V and VI we answer a number of questions
that arose in Ref. [13] and clarify the role of several factors
that may increase the FOM such as an appropriate choice of
the temperature of annealing, adding of certain compounds
into the atmosphere, or into the melt under the growth or
annealing, codoping with nonisovalent atoms. This analysis is
another principal result of the paper. The approach developed
is quite general and can be used for determining appropriate
growth and annealing conditions to control the charge state
of dopants in various insulating crystals not restricted to
Ti:sapphire.

II. EQUILIBRIUM CONCENTRATION OF DEFECTS AND
UNIVERSAL RELATION BETWEEN CONCENTRATIONS

OF SIMPLE AND COMPLEX DEFECTS

In this section we derive the general relation between
equilibrium concentrations of isolated and complex defects
and show that this relation also takes place if the total number
of dopant atoms is fixed.

Equilibrium concentrations of defects can be obtained from
the condition of the minimum of the free energy. The free
energy depends on the defect formation energies Ei and the
configurational entropy ln W , where W is the number of ways
to place defects in the crystal:

F = F0 +
∑

i

Eini − kBT ln W. (1)

In Eq. (1) F0 is the free energy of the perfect crystal, the sum
is taken over all possible defect species, ni is the number of
defects of the ith species, T is the temperature, and kB is
the Boltzmann constant. We imply that the total number of
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defects ntot = ni1 + ni2 + · · · is much smaller than the number
of lattice sites and approximate W by the equation

W ≈
∏

i

Ni!

(Ni − ni )!ni!
, (2)

where Ni is the number of different positions and orientations
for the ith defect species.

We take into account that overall electric charge of all
charged defects is zero. This results in the constraint∑

i

qini = 0, (3)

where qi is the electrical charge of the ith defect (below we use
elementary charge units for qi). If the total number of dopant
in the crystal is fixed we have the additional constraint∑

i

kTi,ini = nTi. (4)

Here we specify the case of Ti dopants. In Eq. (4) kTi,i is
the number of Ti atoms per an ith defect and nTi is the total
number of Ti ions in the crystal. The constraint (4) should be
taken into account if an actual concentration of dopant differs
from its equilibrium concentration at T = Tm (for as-grown
samples) or at the temperature of annealing.

The free energy minimum with the additional constraints
can be found by the method of Lagrange multipliers. The
constraints (3) and (4) can be taken into account by two
additional terms with two Lagrange multipliers λq and λTi.
The extremum condition yields

ñi = ni

Ni
= exp

(
−Ei − λqqi − λTikTi,i

kBT

)
. (5)

Substituting Eq. (5) into Eqs. (3) and (4) we obtain two
equations for λq and λTi.

One can find the general relation between the concentra-
tions of isolated and complex defects using Eq. (5). Let us
consider a complex defect ic composed of r1 + r2 + · · · + rs

simple defects:

ic = i1 . . . i1︸ ︷︷ ︸
r1 times

i2 . . . i2︸ ︷︷ ︸
r2 times

. . . is . . . is︸ ︷︷ ︸
rs times

. (6)

For such a defect Eq. (5) can be rewritten as

ñic = exp

(
E (b)

ic

kBT

)
s∏

j=1

[
exp

(
−Eij − λqqi j − λTikTi,i j

kBT

)]r j

× exp
λq

(
qic − ∑s

j=1 r jqi j

)
kBT

× exp
λTi

(
kTi,ic − ∑s

j=1 r jkTi,i j

)
kBT

, (7)

where

E (b)
ic

=
s∑

j=1

r jEi j − Eic (8)

is the binding energy of the complex defect ic. Charge and
particle number conservation requires qic = ∑s

j=1 r jqi j and

kTi,ic = ∑s
j=1 r jkTi,i j . Thus Eq. (7) reduces to

ñic = exp

(
E (b)

ic

kBT

)(
ñi1

)r1
(
ñi2

)r2
. . .

(
ñis

)rs
. (9)

Considering the problem with only one constraint (3) we put
λTi = 0 from the beginning and again arrive at the relation (9).

In the DFT approach the defect formation energy is given
by the equation [16,17]

Ei = Edef,i − Eperf −
∑

X

μX pX,i + μeqi + E (c)
i , (10)

where Edef,i is the energy of the supercell with a given defect,
Eperf is the energy of the perfect supercell, pX,i is the number
of atoms of type X (host or impurity atoms) that have been
added to (pX,i > 0) or removed from (pX,i < 0) the supercell
to form the defect of the ith species, μX is the chemical
potential of the atom of the type X, μe is the electron chemical
potential, and E (c)

i is the correction that excludes electrostatic
interaction caused by periodic coping of charged defects in
the supercell calculations.

Substituting Eq. (10) into Eq. (5) and redefining the La-
grange multiplier λ̃q = λq − μe one can exclude the electron
chemical potential from the problem. This means that equilib-
rium concentrations of defects can be expressed through the
quantities independently of μe. If the total number of Ti atoms
is fixed, the chemical potential of Ti can be excluded as well.
In the latter case equilibrium concentrations of defects do not
depend on μTi.

Applying Eq. (9) to Ti:sapphire we find that the ratio of
the concentration of isolated Ti3+ ions to the concentration of
Ti3+-Ti4+ pairs is in inverse proportion to the concentration of
isolated Ti4+ ions:

c3

c3−4
= e− E (b)

3−4
kBT

2ñ4
. (11)

Here and below we use the notations 3 ≡ Ti3+ ≡ Ti0
Al, 4 ≡

Ti4+ ≡ Ti+Al, and 3-4 ≡ Ti3+-Ti4+. The factor of 2 in the de-
nominator of Eq. (11) is the number of different positions and
orientations of Ti3+-Ti4+ pairs per one Al site. The coefficient
of proportionality depends on the temperature at which the
equilibrium concentration of defects is reached. For defects
with positive binding energy (DFT calculations show that
E (b)

3−4 > 0) the coefficient of proportionality decreases under
lowering in this temperature. The relation (11) is fulfilled for
any total concentration of Ti (equilibrium at given temperature
or fixed to a certain level). At the same time the relation
(11) may be violated under additional constraints on the
concentrations of defects (see Sec. VI).

III. CALCULATION OF DEFECT FORMATION ENERGIES

To calculate defect formation energies we use the
Kohn-Sham density functional method in the generalized
gradient approximation with the Perdew-Burke-Ernzerhof
parametrization for the exchange-correlation functional and
double-zeta basis with polarization orbitals as implemented
in the open source SIESTA code [18]. The pseudopotentials
were generated with the improved Troullier-Martins scheme.
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The Al-3s23p1, O-2s22p4, and Ti-4s13d3 electronic states are
considered as valence ones. We do not include 3d semicore
states into the valence ones due to the following reason. The
heats of formation of crystal phases used as references for
building the Al-Ti-O phase diagram (TiO2, Ti3O5, Ti2O3)
calculated with the use of the 4-electron state of Ti are in
better coincidence with experimental quantities than the ones
of the 10-electron state of Ti. In addition, calculations with 10
valence electrons per atom are slower than with 4. Actually
there is no unambiguous answer as to where semicore states
should be included [19]. To study codoping with carbon, ni-
trogen, and fluorine we set C-2s22p2, N-2s22p3, and F-2s22p5

valence electronic states.
Lattice parameters and atomic positions are optimized

until the residual stress components converge to less than
0.1 GPa and the residual forces are less than 0.01 eV/Å. The
plane-wave cutoff energy of 250 Ry is used to calculate the
total energy of the system. A 120-atom supercell of α-Al2O3

is built of 4 optimized unit cells. One simple or complex
defect is placed in the supercell. The optimization of atomic
positions in the supercell with a defect is fulfilled again.
Numerical integrations over the supercell Brillouin zone are
performed at the � point. To check convergency of the �-point
integration we calculate several formation energies integrating
over 3 × 3 × 3 and 5 × 5 × 5 grids of k points. Integration
over a 3 × 3 × 3 grid yields Ti3+, Ti4+, and V 3−

Al forma-
tion energies higher than ones for the �-point integration
by 0.02 eV, 0.027 eV, and 0.018 eV, correspondingly. The
difference of energies given by integration over 3 × 3 × 3 and
5 × 5 × 5 grids of k points is less than 10−3 eV. Based on
this result we conclude that restriction with integration over
the � point (which considerably speeds up the calculations)
mainly results in an unessential overestimate (about 10%) of
the total equilibrium concentration of Ti. The error in relative
concentrations of different defects is less than 3%.

Chemical potentials of atoms that enter into Eq. (10) are
calculated from chemical potentials of materials related to the
Al-Ti-O system. The chemical potential of a given material is
the sum of the zero-temperature DFT energy and a tempera-
ture correction part:

μ(X ) = μ0(X ) + �μT (X ), (12)

where μ0(X ) is the DFT energy of a crystal (per formula
unit), or of an isolated molecule if the material is a gas at the
standard conditions. The temperature correction is determined
by the equation [20,21]

�μT (X ) = HX (T, p) − HX (0, p) − T SX (T, p), (13)

where HX (T, p) and SX (T, p) are the enthalpy and entropy
at the temperature T and pressure p. We put p = 0.1 MPa
(standard conditions) and take the values of HX (T, p) and
SX (T, p) from the thermochemical tables [22].

The heat of formation Hf for a compound with the general
formula XuYv , where X,Y = Al, Ti, C, is calculated as

Hf (XuYv ) = μ(XuYv ) − uμ(X ) − vμ(Y )

u + v
(14)

FIG. 1. Phase diagram of the Al-Ti-O system at T = Tm. The
points A, B, D, I, and J denoted by arrows correspond to the vertices
of the three-phase region around Al2O3.

or, if Y = O, N, F, as

Hf (XuYv ) = μ(XuYv ) − uμ(X ) − v
2 μ(Y2)

u + v
. (15)

Equations (14) and (15) give heats of formation per one
atom. Chemical potentials in Eqs. (14) and (15) take into
account the temperature correction Eq. (13). Using calculated
heats of formation (14) and (15), we build the Al-Ti-O phase
diagram and define points in which α-Al2O3 is in equilibrium
with two other phases. The obtained phase diagram at T =
Tm = 2327 K (the melting temperature of α-Al2O3) is shown
in Fig. 1. The same procedure is done for four-component
systems Al-Ti-O-X, where X = C, N, F. The reference points
in the phase diagrams, where two (three) phases are in equi-
librium with Al2O3, are listed in Table I.

Chemical potentials of atoms are calculated for all refer-
ence points using the equations that relate these potentials
with the potentials Eq. (12). For instance, for the point A of
the ternary system we have

2μAl + 3μO = μ(Al2O3), (16)

μTi + 2μO = μ(TiO2), (17)

2μO = μ(O2). (18)

The expression for the defect formation energies (10)
contains the difference of the energies of a defect and of
the perfect supercell Ed−p,i = Edef,i − Eperf . Within the DFT
method we calculate this difference at T = 0. At finite T one
should take into account a temperature correction �Ed−p,i(T )
to this difference. The origin of �Ed−p,i(T ) is differences of
finite temperature enthalpy and entropy of a defect and a per-
fect supercell. We evaluate �Ed−p,i(T ) from the temperature
corrections Eq. (13) for relevant materials in the crystal state.

The difference �Ed−p,TiAl (T ) is evaluated from �μT for
pure Al2O3 and Ti2O3:

�Ed−p,TiAl (T ) = 1
2 [�μT (Ti2O3) − �μT (Al2O3)]. (19)
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TABLE I. Phases in equilibrium with Al2O3 and the oxygen chemical potential in reference points of the ternary and four-component
phase diagrams at T = Tm. The potential μO is counted from the energy of an isolated oxygen atom.

Point Al-Ti-O Al-Ti-O-C Al-Ti-O-N Al-Ti-O-F μO (eV)

A O2, TiO2 O2, TiO2, CO2 O2, TiO2, N2 O2, TiO2, AlF3 −7.29
B TiO2, Ti3O5 TiO2, Ti3O5, CO2, TiO2, Ti3O5, N2 TiO2, Ti3O5, AlF3 −8.37
C Ti3O5, CO2, CO −9.24
D Ti3O5, Ti2O3 Ti3O5, Ti2O3, CO, Ti3O5, Ti2O3, N2 Ti3O5, Ti2O3, AlF3 −9.75
E Ti2O3, N2, TiN −9.88
F Ti2O3, CO, TiC −10.06
G CO, TiC, C −10.24
H N2, TiN, AlN −10.30
I Ti2O3, TiO Ti2O3, TiO, TiC Ti2O3, TiO, TiN Ti2O3, TiO, AlF3 −10.36
J TiO, Al TiO, Al, TiC TiO, Al, TiN TiO, Al, AlF3 −10.45
K Al, TiN, AlN −10.45
L Al, TiC, C −10.45

To evaluate the temperature correction for the supercell with
a vacancy we imply that

3�Ed−p,VO (T ) + 2�Ed−p,VAl (T ) = −�μT (Al2O3). (20)

Equation (20) can be justified as follows. If one removes
an integer number of formula units from the supercell and
rearranges atoms one can obtain another perfect supercell.
The formation energy of such a “defect” is equal to zero
and the temperature correction to Ei is equal to zero as well.
The temperature correction to Ei contains the corrections to
μX and to Edef,i − Eperf and they should cancel each other.
Equation (20) provides the fulfillment of this condition. As-
suming that �Ed−p,VX (T ) (with X = Al, Ti, O), are the same
for Al2O3, Ti2O3 and TiO2, we calculate �Ed−p,VAl (T ) and
�Ed−p,VO (T ) using equations

3�Ed−p,VO (T ) + 2�Ed−p,VTi (T ) = −�μT (Ti2O3), (21)

2�Ed−p,VO (T ) + �Ed−p,VTi (T ) = −�μT (TiO2), (22)

and Eq. (20).
Temperature corrections to the energies of substitutional N,

C, and F defects are evaluated from �μT (AlN), �μT (Al4C3),
and �μT (AlF3), correspondingly. For instance, to evaluate
�Ed−p,NO (T ) we use the relation

�Ed−p,NO (T ) = �μT (AlN) + �Ed−p,VAl (T ) + �Ed−p,VO (T ).
(23)

Equation (23) is based on the fact that the NO defect can
be created by removing one Al and one O atom from the
Al2O3 crystal and adding one formula unit of AlN. Similar
arguments were used to evaluate �Ed−p,CO (T ), �Ed−p,CAl (T ),
and Ed−p,FO (T ). The temperature correction �Ed−p,ic (T ) for a
complex defect is taken as the sum of �Ed−p,i(T ) for simple
defects which form this complex defect.

The correction E (c)
i in the expression for the defect forma-

tion energy (10) is evaluated by a method similar to the one
proposed in Refs. [23,24]. DFT supercell calculations give
the formation energies E (0)

i with spurious electrostatic inter-
action between periodically arranged charged defects. Calcu-
lations of the charge distribution show that the defect charge
is strongly localized. Therefore, the main contribution to
the electrostatic energy comes from the monopole-monopole

interaction, while the contribution of the monopole-dipole
and dipole-dipole interaction [25,26] is much smaller. This
allows us to equate E (c)

i with the Madelung energy taken with
a negative sign. We imply that the Madelung energy for a
supercell composed of n × m × k unit cells can be presented
in the form

EM (n, m, k) = q2
i,eff

2εeff
ẼM (n, m, k), (24)

where qeff is the effective charge of the defect, εeff is the ef-
fective dielectric constant, and ẼM (n, m, k) is the electrostatic
energy of a periodic structure of q = 1 point charges in the
medium with ε = 1 and with a charge-compensating back-
ground. For a cubic lattice ẼM (n, n, n) = −2.837/na, where
a is the lattice parameter. In the general case ẼM (n, m, k) de-
pends on the size and the form of the supercell. For elongated
supercells it can be positive.

For each defect species we calculate the supercell defect
formation energy E (0)

i for five different supercells: (2,2,1),
(2,3,1), (3,3,1), (2,2,2), and (2,2,3). Each supercell is built
from hexagonal unit cells with lattice parameters a = b =
4.86 Å and c = 13.19 Å obtained for pure Al2O3 by opti-
mization of lattice vectors. Then, we calculate the Madelung
energy ẼM by the Ewalds method for the same supercells, de-
fine the dimensionless quantity vM (n, m, k) = aẼM (n, m, k),
and fit the energy E (0)

i by a linear function:

E (0)
i (vM ) = Ei + q2

i,eff

2εeffa
vM = c0,i + c1,ivM . (25)

As two examples we present the result of fitting for Ti4+

and V 3−
Al in Fig 2. Taking into account that for infinitely

large supercell vM (n, m, k) = 0, we evaluate the corrected
formation energy as Ei = c0,i and the correction E (c)

i , as
E (c)

i (n, m, k) = c0,i − E (0)
i (n, m, k). Calculated electrostatic

corrections E (c)
i (2, 2, 1) for the considered charged defects are

given in Table II. Note that if we set εeff = 10 we obtain the
effective charges |qTi4+,eff/e| = 0.76 and |qV 3−

Al ,eff/e| = 2.52,
which looks reasonable.
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FIG. 2. Calculated defect formation energies E (0)
i (in eV) for

Ti4+ (a) and V 3−
Al (b) for several supercells versus vM and linear

fit (25). For concreteness, we set μe equal to the valence band
maximum.

IV. EQUILIBRIUM CONCENTRATIONS OF DEFECTS
IN Ti:SAPPHIRE

As was already mentioned in the Introduction the equi-
librium concentration of a given charged defect depends on
the formation energies of all charged defects. If one considers
the additional constraint (4) one should know the formation
energies of all uncharged defects as well. In practice defect

TABLE II. Electrostatic correction E (c)
i to the defect formation

energy for the 2 × 2 × 1 supercell.

Defect q E (c)
i (eV)

Ti4+ +1 0.11
V3−

Al −3 1.21

Ti4+-V3−
Al −2 0.42

Ti3+-Ti4+ +1 0.05
Ti4+-Ti4+-V3−

Al −1 0.21
Ti3+-Ti4+-V3−

Al −2 0.68
Ti3+-Ti3+-V3−

Al −3 1.48
F+

O +1 0.14
F+

O -V3−
Al −2 0.54

F+
O -F+

O -V3−
Al −1 0.16

N−
O −1 0.17

C2−
O −2 0.60

C−
O −1 0.15

C2−
O -Ti4+ −1 0.16

species with large formation energies can be ignored since
their contribution in Eqs. (3) and (4) is negligible.

We have calculated formation energies of different defects
including substitutional and interstitial ions of Ti, C, N, and F
in different charge states, native defects (Al and O vacancies
and interstitials), and complexes of such defects. We have
found that most defects have rather large formation energies.
We restrict our analysis with several defects species with
the smallest formation energies. In the case of Ti:sapphire
without codopants we consider three species of isolated de-
fects (Ti3+, Ti4+, and V 3−

Al ), three pairs (Ti3+-Ti3+, Ti3+-Ti4+,
and Ti4+-V 3−

Al ), four triples (Ti3+-Ti3+-Ti3+, Ti4+-Ti4+-V 3−
Al ,

Ti3+-Ti4+-V 3−
Al , and Ti3+-Ti3+-V 3−

Al ), and a quadruple com-
plex Ti4+-Ti4+-Ti4+-V 3−

Al . For Ti:sapphire with codopants we
add to this list two or three defect species (see below) formed
by codopants.

In this section we concentrate on Ti:sapphire without
codopants.

If the total number of Ti atoms is not fixed [the constraint
(4) is not applied] the concentrations of charged defects are
found from the following system of equations:

ñ3
4ñV = e− 3E4+EV

kBT , (26)

ñ4 + 2C34ñ3ñ4 − 3ñV − 8C4V ñ4ñV − 18C44V ñ2
4ñV

− 36C34V ñ3ñ4ñV − 54C33V ñ2
3ñV = 0, (27)

where we use the notation V ≡ V 3−
Al . In Eq. (27) we take into

account the relation (9). The factors Cic are the coefficients
in the relation (9) averaged over different orientations and
configurations:

Cic =
∑

f Kic, f e
E (b)

ic , f
kBT∑

f Kic, f
, (28)

where E (b)
ic, f is the binding energy of the complex ic and Kic, f

is the number of configurations and orientations with the
same energy (different f label configurations and orientations
with distinct energies). Calculated binding energies and the
numbers Kic, f are given in Table III. Binding energies are
independent of the chemical potentials of atoms. Binding
energies given in Table III include the electrostatic correction
E (c)

i . They differ from ones calculated in Refs. [1,15], where
this correction was not taken into account. The concentration
of electrically neutral defects depends only on its own forma-
tion energy:

ñi = e− Ei
kBT . (29)

The formation energies of Ti3+ and of the electrically
neutral combination of three Ti4+ and one V 3−

Al at T = Tm are
given in Table IV for all reference points of the Al-Ti-O phase
diagram. Using Eqs. (26), (27), and (29) and the data from
Tables III and IV we calculate ñ3, ñ4, and ñV . Concentrations
of complex defects are found from Eq. (9) in which the factor
exp(E (b)

ic
/kBT ) is replaced with the coefficient Cic , Eq. (28).

The concentration of an ith defect species is calculated as ci =
KiñicAl, where cAl = 4.7 × 1022 cm−3 is the concentration of
Al in the Al2O3 crystal, and Ki = ∑

f Ki, f is the total number
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TABLE III. Binding energies E (b)
ic, f and the numbers of different

orientations and configurations Kic, f with the same energy. Com-
plexes of Al vacancy surrounded by two Ti and Ti surrounded by Ti
and Al vacancy are notated as Ti-V -Ti and Ti-Ti-V , correspondingly.
For complexes Ti-Ti-Ti-V we consider only configurations with the
vacancy in the center.

Complex defect ic Notation Kic, f E (b)
ic, f (eV)

Ti3+-Ti3+ 33 3 1.36
33 1 1.22

Ti3+-Ti3+-Ti3+ 333 6 2.03
Ti4+-Ti4+-Ti4+-V 3−

Al 444V 4 4.47
Ti3+-Ti4+ 34 3 0.76

34 1 0.68
Ti4+-V 3−

Al 4V 3 2.05
4V 1 1.85

Ti4+-V 3−
Al -Ti4+ 44V 3 3.36

44V 3 2.91
Ti4+-Ti4+-V 3−

Al 44V 6 2.51
44V 6 2.40

Ti3+-V 3−
Al -Ti4+ 34V 3 2.69

34V 3 2.51
Ti3+-Ti4+-V 3−

Al 34V 6 2.55
34V 6 2.49

Ti3+-V 3−
Al -Ti3+ 33V 6 0.92

Ti3+-Ti3+-V 3−
Al 33V 12 1.88

N−
O -Ti4+ 3 1.35

3 1.10
C2−

O -Ti4+ 6 2.95
F+

O -V 3−
Al FV 3 1.61

FV 3 2.03
F+

O -V 3−
Al -F+

O FVF 3 3.44
FVF 3 2.87
FVF 3 3.79
FVF 6 3.30

of configurations and orientations of the ith defect species
(Ki = 1 for Ti3+, Ti4+, and V 3−

Al ).
The obtained equilibrium concentrations of defects and the

overall concentration of Ti are shown in Fig. 3. To make
this figure more readable we do not display the concentra-

tion of Ti3+-Ti3+-Ti3+ triples, which is lower than that of
Ti3+-Ti3+ pairs. The concentrations of the Ti3+-Ti3+-V 3−

Al
and Ti3+-Ti4+-V 3−

Al complexes are not displayed either.
They are generally much lower than the concentration of
Ti4+-Ti4+-V 3−

Al complexes (they are comparable only in the
reduced conditions).

One can see from Fig. 3 that the overall concentration of Ti
varies in the range from 6 × 1019 cm−3 to 3.5 × 1020 cm−3

that corresponds to the range from 0.12 wt.% to 0.7 wt.%
of Ti. This concentration is rather high. For instance, in
samples investigated in Ref. [13] the concentration of Ti
was in the range from 0.006 to 0.2 wt.%. Samples used in
Refs. [3–5,8,11] had the concentration of Ti less than 0.1
wt.%. The concentration of Ti in samples grown in Ref. [6]
was in the range from 0.1 to 0.25 wt.%.

If the total concentration of Ti differs from the equilibrium
one we should take into account the constraint (4). Then we
arrive at a system of three equations:

ñ3
4ñV = ñ3

3e
3E3−3E4−EV

kBT , (30)

ñ4 + 2C34ñ3ñ4 − 3ñV − 8C4V ñ4ñV − 18C44V ñ2
4ñV

− 36C34V ñ3ñ4ñV − 54C33V ñ2
3ñV = 0, (31)

ñ3 + ñ4 + 4C34ñ3ñ4 + 4C33ñ2
3 + 18C333ñ3

3

+ 4C4V ñ4ñV + 36C44V ñ2
4ñV + 36C34V ñ3ñ4ñV

+ 36C33V ñ2
3ñV + 12C444V ñ3

4ñV = nTi

nAl
. (32)

The quantity 3E3 − 3E4 − EV in Eq. (30) and the coef-
ficients Cic in Eqs. (31) and (32) are independent of μTi.
Consequently, the solution of the system (30)–(32) is also in-
dependent of μTi and concentrations can be presented as con-
tinuous functions of μO. The oxygen chemical potential varies
in the range [μr, μo], where μr = [μ(Al2O3) − 2μ(Al)]/3
(μo = μ(O2)/2) is the value of the oxygen chemical potential
in the reduced (oxidized) limit. The boundaries μr and μo

depend on temperature.
Calculated concentrations of simple and paired defects at a

fixed overall concentration of Ti (cTi) are presented in Fig. 4.
We consider three different cTi (1020 cm−3, 1019 cm−3, and

TABLE IV. Defect formation energies (in eV) at reference points of Al-Ti-O and Al-Ti-O-X (X = C, N, F) phase diagram at T = Tm. The
energies of electrically neutral combinations are given per one defect.

Point E3 (3E4 + EV )/4 (E4 + EN−
O

)/2 (2E4 + EC2−
O

)/3 (E4 + EC−
O

)/2 EF+
O

− E4

A 2.25 1.57 3.21 5.64 7.24 0.29
B 1.71 1.57 2.40 4.19 5.33 0.29
C 1.57 1.79 3.23 3.97
D 1.48 1.92 1.59 2.83 3.41 −0.17
E 1.48 1.96 1.53
F 1.48 2.03 2.62 3.09
G 1.92 2.43 2.80 3.14
H 2.11 2.59 1.64
I 1.48 2.14 1.65 2.67 3.17 −0.47
J 1.52 2.21 1.68 2.70 3.19 −0.56
K 2.11 2.65 1.68
L 2.23 2.74 2.94 3.19
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FIG. 3. Equilibrium concentration of isolated Ti3+ and Ti4+ defects, Ti3+-Ti3+ and Ti3+-Ti4+ pairs, and total concentration of Ti (a) and
concentration of isolated V 3−

Al vacancies, complexes of V 3−
Al vacancy with one, two, and three Ti4+, and total concentration of V 3−

Al vacancies
(b) in Ti:sapphire at T = Tm in the conditions that correspond to reference points of Al-Ti-O phase diagram Fig. 1 (see also Table I). Lines are
guides to the eye. Oxygen chemical potential is given in the inset in panel (a).

1018 cm−3) and two temperatures: T = Tm = 2327 K and
T = Ta = 2000 K. We consider that T = Tm concentrations
correspond to as-grown samples and T = Ta < Tm ones, to

samples annealed at T = Ta. One can see from Fig. 5 that
annealing may result in an increase or a decrease of the con-
centration of a given defect species depending on the oxygen

FIG. 4. Equilibrium concentrations of isolated and paired defects at T = 2327 K (solid curves) and T = 2000 K (dashed curves) at fixed
overall concentration of Ti cTi = 1020 cm−3 [(a), (b)], cTi = 1019 cm−3 [(c), (d)], and cTi = 1018 cm−3 [(e), (f)].
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FIG. 5. The phase diagram of the Al-Ti-O-C system at T = Tm

and reference points.

chemical potential and the total concentration of Ti. As was
expected, a relative fraction of isolated defects increases under
lowering in the total concentration of Ti.

V. CONCENTRATION OF DEFECTS IN Ti:SAPPHIRE
GROWN IN THE PRESENCE OF CARBON, NITROGEN,

FLUORINE, AND THEIR COMPOUNDS

To obtain crystals with a low concentration of Ti4+ and
high FOM it is desirable to grow them in the reduced condi-
tions. To do that one can add certain substances or compounds
to the melt or to the atmosphere or anneal samples in their
presence. A side effect of such a treatment is codoping of
Ti:sapphire. Charged defects formed by dopants may change
a balance between different Ti defects which results in a
change of the ratio of concentration of isolated Ti3+ ions to
the concentration of Ti3+-Ti4+ pairs. The mechanism is quite
simple. If codoping results in an appearance of additional
positively charged defects, some negatively charged vacancies
V 3−

Al compensate codopants and the concentration of Ti4+

decreases. Consequently, according to Eq. (11) (valid for
codoped samples, as well) the ratio cTi3+/cTi3+-Ti4+ increases.
If codoping results in the appearance of additional negatively
charged defects, the concentration of isolated Ti4+ ions in-
creases to provide charge compensation. Consequently, the
ratio cTi3+/cTi3+-Ti4+ decreases. To determine the role of a
given codopant one should take into account not only isolated
charged defects formed by codopant atoms but complex de-
fects as well. Among such complex defects it is important to
consider pairs and triples formed by codopants with vacancies
V 3−

Al and with Ti4+.
In addition to a shift of the charge balance, codoping may

create additional impurity levels in the band gap that will
influence optical properties of crystals.

In this section we consider codoping of Ti:sapphire with
carbon, nitrogen, and fluorine.

A. Al-Ti-O-C system

Using calculated heats of formation of relevant materi-
als we build the four-component Al-Ti-O-C phase diagram
(Fig. 5). The calculations were done for graphite phase of
carbon. There are nine points at the diagram Fig. 5 (labeled
as A, B, C, D, F, G, I, J, L), where Al2O3 is in equilibrium
with three other phases.

We have calculated the formation energies of substitutional
CO and CAl defects and carbon interstitial in different charge
states. Most of these energies are quite large. In the intermedi-
ate and reduced conditions two substitutional defects, C2−

O and
C−

O, dominate. Negatively charged carbon defects may bind in
pairs and triples with Ti4+ and Ti3+. Binding energies of such
complexes are large and complex defects prevail over isolated
ones. Among complex defects the concentration of C2−

O -Ti4+

pairs is the highest one. It can reach the level of 1016 cm−3.
But since the concentration of isolated Ti4+ is at least two
orders higher, carbon defects practically do not influence the
concentration of Ti4+ and Ti3+-Ti4+.

Our results correlate with ones obtained for C-doped
α-Al2O3 in Refs. [27–29], where the formation energies of
substitutional and interstitial carbon defects were calculated.
It was shown in Refs. [27–29] that in the reduced conditions
the substitutional CO defects have the smallest formation
energy, while in the oxidized conditions the substitutional CAl

defects are energetically preferable. The formation energies
of interstitial carbon defects are large both in the reduced
and in the oxidized conditions. Here we do not consider CAl

but find that in the oxidized conditions the concentrations of
CO are extremely low ones (see Fig. 7 below). We cannot
compare directly the results of [27–29] with our results since
in Refs. [27–29] the chemical potential of C was set to be the
same as in diamond [27] or in graphite [28,29] irrespective of
the value of the oxygen chemical potential.

In Fig. 6 we display equilibrium concentrations of Ti de-
fects and Al vacancies at the reference points of the Al-Ti-O-C
phase diagram at T = Tm. The concentrations are obtained
from Eqs. (26) and (27), where we neglect the contribution
of carbon defects.

The concentrations of carbon defects are found from the
relations

ñC−
O

= e−
E

C−
O

+E4

kBT

ñ4
, ñC2−

O
= e−

E
C2−

O
+2E4

kBT

(ñ4)2
. (33)

Equations (33) are obtained from Eq. (5) (with λTi = 0).
The concentration of pairs C2−

O -Ti4+ is found from Eq. (9).
The energies (EC−

O
+ E4)/2 and (EC−

O
+ 2E4)/3 are given in

Table IV, and the binding energy of the C2−
O -Ti4+ pair, in

Table III. Calculated concentrations of carbon defects are
shown in Fig. 7.

B. Al-Ti-O-N system

In Fig. 8 we present the Al-Ti-O-N phase diagram at T =
Tm that was built using calculated heats of formation of related
materials. This diagram contains eight reference points (A,
B, D, E, H, I, J, K). The formation energy of N−

O defects
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FIG. 6. Equilibrium concentrations of defects in Ti:sapphire at T = Tm in the conditions that correspond to reference points of Al-Ti-O-C
phase diagram Fig. 5. Defect species in panels (a) and (b) are the same as in Figs. 3(a) and 3(b). Oxygen chemical potential is given in the inset
in the panel (a).

is small and their concentration is high. It correlates with
the results of [27] where the formation energies of nitrogen
defects in Al2O3 were calculated. It was shown [27] that even
in the oxidized conditions the substitutional N−

O defect has the
smallest formation energy. The N−

O defects shift the balance
between other charged defects in Ti:sapphire. To evaluate
this shift we add the term −(3/2)ñN to the left-hand side of
Eq. (27), where ñN, is the number of N−

O defects normalized
to the total number of oxygen atoms. The quantity ñN is
expressed through ñ4 using Eq. (5) with λTi = 0:

ñN = e−
E

N−
O

+E4

kBT

ñ4
. (34)

The energy (EN−
O

+ E4)/2 is given in Table IV. In Fig. 9
we present calculated concentrations of Ti defects and Al
vacancies at T = Tm at the reference points of the Al-Ti-O-N
phase diagram. One can see that the presence of nitrogen
defects results in a considerable increase of the concentration
of Ti4+ and in an increase of the overall concentration of Ti in
the reduced and intermediate condition.

Negatively charged nitrogen defects can bind in pairs
with Ti4+. The binding energy of such a pair is given in
Table III. The calculated concentration of isolated N−

O defects

FIG. 7. Equilibrium concentrations of carbon defects at T = Tm.
Lines are guides to the eye.

and N−
O-Ti4+ pairs and the total concentration of nitrogen are

shown in Fig. 10. In the oxidized conditions the concentration
of nitrogen defects decreases and they do not influence the
concentration of Ti4+. The concentration of N−

O-Ti4+ pairs is
slightly higher than the concentration of isolated N−

O defects,
but since these pairs are electrically neutral, they do not
influence the concentration of charged defects.

The increase in the concentration of Ti3+-Ti4+ pairs results
in a decrease of the cTi3+/cTi3+-Ti4+ ratio and a decrease of the
FOM.

C. Al-Ti-O-F system

Keeping in mind that fluorine ions enter into Ti:sapphire
mostly in the form of substitutional F+

O defects one would
expect that codoping with fluorine decreases the concentration
of Ti4+. But the situation appears to be more complicated due
to formation of negatively charged complexes of F+

O and V 3−
Al .

The calculated four-component Al-Ti-O-F phase diagram
at T = Tm is shown in Fig. 11. This diagram contains five
reference points (A, B, D, I, J). In all these points Al2O3 is
in equilibrium with AlF3. Two other compounds are the same
as for the reference points of the Al-Ti-O diagram (Fig. 1).

FIG. 8. The phase diagram of the Al-Ti-O-N system at T = Tm

and reference points.
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FIG. 9. Equilibrium concentrations of defects in Ti:sapphire at T = Tm in the conditions that correspond to reference points of Al-Ti-O-N
phase diagram Fig. 8. Defect species in panels (a) and (b) are the same as in Figs. 3(a) and 3(b). Oxygen chemical potential is given in the inset
in panel (a).

Calculations show that together with positively charged F+
O

defects two types of negatively charged complexes formed
by fluorine have small formation energies. They are the pairs
F+

O -V 3−
Al and the triples F+

O -F+
O -V 3−

Al . To calculate equilibrium
concentrations of defects we take into account three fluorine
defect species and add to the left-hand part of Eq. (27) the
terms (3/2)ñF − 12CFV ñFñV − 15CFV Fñ2

FñV , where ñF is the
number of F+

O defects normalized to the total number of
oxygen atoms. The quantities ñF and ñ4 satisfy the equation

ñF = ñ4e−
E

F+
O

−E4

kBT , (35)

which follows from Eq. (5). The difference EF+
O

− E4 is given

in Table IV. The binding energies of the complexes F+
O -V 3−

Al
and F+

O -F+
O -V 3−

Al are presented in Table III.
The calculated equilibrium concentrations of defects are

shown in Figs. 12 and 13. One can see from Fig. 13 that
the concentrations of positively charged F+

O and negatively
charged F+

O -F+
O -V 3−

Al are close to each other. Negatively
charged defects almost compensate positively charged ones
and the concentrations of Ti4+ and Ti3+-Ti4+ are changed
unessentially. Thus, our expectation on a positive role of fluo-
rine is not confirmed. It appears that triples F+

O -F+
O -V 3−

Al have
rather small formation energy and the positive effect caused
by isolated F+

O ions reduces due to formation of F+
O -F+

O -V 3−
Al

FIG. 10. Equilibrium concentrations of nitrogen defects at T =Tm.

triples. We note that such a reduction is not a general rule.
It would not happen if the binding energy of complexes was
smaller.

D. Influence of codoping on the FOM

To determine the impact of carbon, nitrogen, and fluorine
compounds on the FOM of Ti:sapphire we calculate the
cTi3+/cTi3+-Ti4+ ratio at all reference points of Table I using the
data presented in Figs. 6, 9, and 12. The result is shown in
Fig. 14. Since the concentration of carbon defects is low, at
the points A, B, D, I, J the result is the same for Al-Ti-O-C
and Al-Ti-O systems. At the same time under conditions that
corresponds to the points G and L one can to reach the much
larger ratio of cTi3+/cTi3+-Ti4+ . The latter is connected with
the low total equilibrium concentration of Ti at these points.
This conclusion is in agreement with experimental study [30]
where it was shown that thermal carbon treatment of raw
materials (Al2O3 and TiO2) makes it possible to decrease the
concentration of Ti4+ in Ti:Al2O3 crystals. With this, Fig. 14
illustrates that nitrogenization provokes considerable reduc-
tion of the cTi3+/cTi3+-Ti4+ ratio in the reduced and intermediate
conditions, and that fluoridization leaves this ratio almost
unchanged.

FIG. 11. The phase diagram of the Al-Ti-O-F system at T = Tm

and reference points.
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FIG. 12. Equilibrium concentrations of defects in Ti:sapphire at T = Tm in the conditions that correspond to reference points of Al-Ti-O-F
phase diagram Fig. 11. Defect species in panels (a) and (b) are the same as in Figs. 3(a) and 3(b). Oxygen chemical potential is given in the
inset in panel (a).

It is instructive to evaluate the relation between the FOM
and cTi3+/cTi3+-Ti4+ . To do that we use the data of [13]. One of
the samples investigated in Ref. [13] (labeled as SY1b) had
FOM = 12. Concentrations of Ti3+ and Ti4+ in this sample
were estimated as 1.3 × 1018 cm−3 and 2.3 × 1018 cm−3,
correspondingly. Using Eq. (11) and taking T = 2000 K we
obtain cTi3+-Ti4+ ≈ 1016 cm−3 and cTi3+/cTi3+-Ti4+ ≈ 100. Thus
one can estimate that FOM ∼ 0.1 × cTi3+/cTi3+-Ti4+ . Note that,
normally, commercial samples have FOM = 100–300 and
FOM of the best samples is up to 1000.

E. Band structure of Ti:sapphire codoped with carbon,
nitrogen, and fluorine

Codoping may result in the appearance of additional defect
levels in the band gap. To consider this effect we calculate
the band structure of the system with one given defect per
supercell. Strictly speaking, from such calculations one ob-
tains impurity bands of a crystal with periodically arranged
defects. But since such bands are very narrow they can be
associated with impurity levels connected with a given defect.
The position of obtained impurity levels in the band gap
and separation between them weakly depend on the supercell

FIG. 13. Equilibrium concentrations of fluorine defects at T = Tm.

size. This can be seen from comparison of the results of
Refs. [31,32] and our calculations [1].

In Figs. 15–17 we present the band structure of a sap-
phire crystal with carbon, nitrogen, and fluorine defects. For
comparison, in Figs. 15(d) and 17(d) we reproduce the band
structures of crystals with Ti4+ substitutional defects and with
V 3−

Al vacancies [1]. One can see that fluorine defects do not
cause additional impurity levels in the band gap. Formation
of complexes of fluorine defects with Al vacancy results
in a minor modification of Al vacancy levels. In contrast,
negatively charged carbon and nitrogen defects (C2−

O , C−
O, and

N−
O ) reveal themselves in an appearance of additional impurity

levels. Binding of such defects with Ti4+ causes splitting of Ti
impurity levels.

Due to small equilibrium concentration of carbon defects
one can expect that carbon impurities will not influence
significantly optical properties of Ti:sapphire. Equilibrium
concentration of nitrogen defects is much higher. Therefore
growth or annealing in the presence of nitrogen compounds
may result in an essential modification of optical properties of
Ti:sapphire not only due to a change of the balance between
Ti3+ and Ti4+ ions, but also due to the appearance of impurity
levels caused by nitrogen defects.

FIG. 14. The ratio of concentrations of Ti3+ to the concentration
of Ti3+-Ti4+ pairs at reference points of Al-Ti-O-X phase diagrams
(see Table I) at T = Tm. Filled circles correspond to X = C, open
circles, to X = N, and open squares, to X = F. Lines are guides to
the eye.
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FIG. 15. Band structure of Al2O3 with C2−
O (a), C−

O (b), C2−
O -Ti4+

(c), and Ti4+ (d) defects. The valence band maximum is set at 0 eV,
and the arrow indicates the position of the highest occupied level.

VI. UNIVERSAL RELATIONS BETWEEN THE
CONCENTRATIONS OF Ti3+, Ti4+, AND Ti3+-Ti4+

In this section we discuss whether the observed relations
between the concentrations of isolated Ti3+ and Ti4+ defects
and Ti3+-Ti4+ pairs confirm or put in question the pair model
of NIR absorption.

FIG. 16. The same as in Fig. 15 for N−
O (a) and N−

O -Ti4+ (b).

For samples where the equilibrium concentration of defects
was reached at the same temperature, e.g., the samples are an-
nealed at the same T , the factor exp(−E (b)

3−4/kBT ) will be the
same and according to Eq. (11) the ratio of the concentration
of Ti3+ to the concentration of Ti3+-Ti4+ will be in inverse
proportion to the concentration of Ti4+. Assuming that the
cTi3+/cTi3+-Ti4+ ratio determines the FOM one can expect that
the FOM would be in inverse proportion to cTi4+ as well. At
the same time samples annealed at different temperatures will
have different coefficients of proportionality between these
quantities and their FOM may not demonstrate such a propor-
tionality. Let us consider the following example. We imagine
that someone obtained five samples labeled as c, d, f, i, and j.
These samples were grown in the conditions that correspond
to the reference points C, D, F, I, and J of the Al-Ti-O-C
phase diagram, respectively. According to our calculations
(see Fig. 6) these samples should have approximately the same
total concentration of Ti, but different concentrations of Ti4+.
Then we imagine that each sample was divided into seven
parts and 30 samples were annealed in the conditions that
correspond to the reference points C, G, and L of the Al-O-C
phase diagram at two different temperatures, T = 2100 K and
T = 2000 K. The reference points for the Al-O-C diagram
and the value of μO at three different temperatures are given in
Table V (under lowering in temperature two reference points,
C and G, disappear and are replaced with the point C1).
We imply that the total concentration of Ti is not changed
under annealing. As a result there were obtained 35 samples:
5 parent samples c, d, f, i, and j; 15 samples annealed at
T = 2100 K in the conditions that correspond to the points
C, G, and L of the Al-O-C phase diagram and labeled as xCa,
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FIG. 17. The same as in Fig. 15 for a F+
O (a), F+

O -V 3−
Al (b),

F+
O -F+

O -V 3−
Al (c), and V 3−

Al (d).

xGa, and xLa (x = c, d, f, i, j); and 15 samples annealed at
T = 2000 K and labeled as xCb, xGb, and xLb, correspond-
ingly. We calculate the cTi3+/cTi3+-Ti4+ ratio for these samples
and plot it against 1/cTi4+ (Fig. 18). One can see that the

FIG. 18. The cTi3+/cTi3+-Ti4+ ratio versus the inverse concentra-
tion of Ti4+. Open circles show equilibrium concentrations at T =
Tm, filled circles, at T = 2100 K and T = 2000 K, labeled as xYa
and xYb, respectively (x = c, d, f, i, j refers to the parent sample, and
Y = C, G, L, to the reference point in the Al-O-C phase diagram).
Triangles correspond to equilibrium concentration at T = 1600 K
reached under condition that diffusion of Ti is suppressed. Dashed
lines show linear fit. A rectangle in (a) indicates the area shown in
(b) in another scale.

points in Fig. 18 belong to three zero-origin straight lines
with different slopes. If one takes randomly several samples
from this 35-sample set and measures the FOM one may find
that the FOM is not proportional to 1/cTi4+ . But this does
not mean that the pair model of NIR absorption is incorrect.
This example demonstrates that it is important to investigate
samples annealed at the same temperature to verify the pair
model of NIR absorption.

The dependencies presented in Fig. 18 also demonstrate
that annealing in the reduced conditions (point L) should
increase the FOM and the effect is larger at lower temperature
of annealing. At the same time annealing in the intermediate
conditions (points G and C) may decrease the FOM.

Let us also discuss the possible scenario of violation of
proportionality between the FOM and 1/cTi4+ even for sam-
ples annealed at the same temperature. We imply that at rather
low temperature the diffusion coefficient for certain defects is
so small that such defects can be considered as frozen ones.
Let Ti ions be such defects while Al vacancies remain mobile
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TABLE V. Oxygen chemical potential at reference points of Al-O-C phase diagram at three different temperatures.

Reference points, phases in equilibrium, μO (eV)

A C C1 G L
T (K) Al2O3, O2, CO2 Al2O3, CO2, CO Al2O3, CO2, C Al2O3, CO, C Al2O3, C, Al

2100 −6.97 −9.11 −9.73 −10.38
2000 −6.83 −9.06 −9.50 −10.35
1600 −6.28 −8.73 −10.25

ones. To calculate concentrations of Ti defects we take into
account two additional constraints:

cTi3+ + cTi4+ + cTi4+−V 3−
Al

= c1 = const., (36)

cTi3+−Ti3+ + cTi3+−Ti4+ + cTi4+−Ti4+−V 3−
Al

+cTi3+−Ti4+−V 3−
Al

+ cTi3+−Ti3+−V 3−
Al

= c2 = const. (37)

These constraints forbid formation of new Ti clusters and
dissociation of existing Ti clusters. The concentrations of
defects with one Ti (c1) and with two Ti ions (c2) calcu-
lated for the same imaginary samples c, d, f, i, and j are
shown in Fig. 19. For the system with the constraints (36)
and (37). the relation (9) is not satisfied. Therefore the re-
lation (11) is violated, which can be demonstrated by direct
calculations.

We calculate equilibrium concentration of Ti3+, Ti4+, and
Ti3+-Ti4+ under the constraints (36) and (37) at T = 1600 K
(we imply that the frozen regime is reached at this tempera-
ture). We fix μO that corresponds to the point C1 (Table V).
The quantities c1 and c2 are fixed to ones as in the samples
c, d, f, i, and j. The results of the calculations are shown
in Fig. 18 by triangles labeled as c1, d1, f1, i1, and j1.
One can see that indeed cTi3+/cTi3+-Ti4+ is not proportional to
1/cTi4+ . Comparing Figs. 18 and 19 we find that cTi3+/cTi3+-Ti4+

FIG. 19. Sum of equilibrium concentrations of isolated Ti and
pairs Ti4+-VAl (c1) and sum of concentrations of Ti-Ti pairs and
Ti-Ti-VAl triples (c2) at T = Tm in the conditions that correspond
to the point C, D, F, I, J of the Al-Ti-O-C phase diagram
(Fig. 5).

correlates with the c1/c2 ratio. Note that the violation of the
relation (11) and more general relation (9) is caused solely
by the additional constraints (36) and (37), and therefore this
effect most probably holds true for a wide range of “freezing”
temperatures.

To conclude this analysis we discuss one more feature
observed in Ref. [13]. It was found in Ref. [13] that for some
sets of samples the absorption coefficient α820 is proportional
to the square of the absorption coefficient α490. If NIR ab-
sorption is caused by Ti3+-Ti4+ pairs such a behavior means
that the concentration of Ti3+-Ti4+ pairs is proportional to the
square of the concentration of Ti3+ isolated ions. It cannot
be the general property. Nevertheless our calculations show
that for the samples annealed at the same μO this property is
satisfied at least approximately. We specify μO = −10.0 eV
and calculate equilibrium concentrations of defects at T =
Tm, T = 2100 K, and T = 2000 K assuming that the total
concentration of Ti cTi is fixed. We consider 20 different cTi

in the range from 5 × 1018 cm−3 to 1020 cm−3. Obtained
concentrations of Ti3+-Ti4+ are plotted in Fig. 20 against
the concentration of Ti3+. One can see that for given T the
law cTi3+-Ti4+ = κc2

Ti3+ is satisfied. The coefficient κ weakly
depends on temperature. Thus the observed in Ref. [13]
correspondence between α820 and α490 does not contradict the
pair model of NIR absorption.

FIG. 20. Dependence of the concentration of Ti3+-Ti4+ on the
concentration of Ti3+ calculated for the case where equilibrium
concentrations are reached at fixed total Ti concentration at μO =
−10.0 eV and T = Tm (diamonds), T = 2100 K (squares), and T =
2000 K (circles). Lines show the quadratic fit. Total concentration of
Ti is varied from 5 × 1018 cm−3 to 1020 cm−3.
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VII. CONCLUSION

In conclusion, with reference to Ti:doped sapphire we
analyzed factors that determine the charge state of dopants
in insulating crystals. Basing on DFT calculation combined
with thermochemical data we found that Ti atoms enter into
the Al2O3 crystal predominantly in the form of substitutional
Ti3+ and Ti4+ ions. An essential fraction of such defects bind
in pairs, triples, etc., or form complexes with Al vacancies.

For laser applications it is important to reduce the concen-
tration of Ti3+-Ti4+ pairs keeping concentration of unpaired
Ti3+ ions at a high level. To increase the cTi3+/cTi3+-Ti4+ ratio
to the level of 103 or higher the crystals should be grown
or annealed in the reduced conditions. Alternatively one can
fix the total concentration of Ti at a relatively low level
(�1018 cm−3). Annealing in conditions that correspond to
intermediate values of the oxygen chemical potential may
result in a decrease of the cTi3+/cTi3+-Ti4+ ratio.

We have shown that codopants that form charged defects
may change relative concentrations of the main dopants in
different charge states. In particular, we have found that
growth or annealing of Ti:sapphire in the presence of nitrogen
compounds results in the appearance of a large number of
negatively charged nitrogen defects that cause a decrease of
the cTi3+/cTi3+-Ti4+ ratio.

We have demonstrated that growth or annealing of doped
crystals in the presence of additional compounds may influ-
ence the charge state of dopants indirectly. Such a situation is
realized in Ti:sapphire grown or annealed in the presence of

carbon or its compounds. Carbon defects have large formation
energies and their equilibrium concentrations are quite low.
Nevertheless the presence of carbon and its compounds may
increase the cTi3+/cTi3+-Ti4+ ratio due to lowering of the oxygen
chemical potential and increasing of the titanium chemical
potential.

We analyze the general relation between the concentra-
tions of isolated and complex defects. We find that normally
the concentration of complex defects is proportional to the
product of concentrations of isolated defects which form the
complex defect. The coefficient of proportionality depends on
the binding energy and on the temperature of annealing or the
melting temperature (for as-grown samples). This relation is
violated if some defects are frozen. Such a situation is ex-
pected at rather low temperature of annealing. In application
to Ti:sapphire it means that the cTi3+/cTi3+-Ti4+ ratio and FOM
are proportional for the inverse concentration of Ti4+ only for
samples annealed at the same temperature and even in that
case such a proportionality can be violated if the temperature
of annealing is quite low.
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