
PHYSICAL REVIEW RESEARCH 2, 023132 (2020)
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We derive the Verlinde formula from a recently advocated set of axioms about entanglement entropy [Shi,
Kato, and Kim, Ann. Phys., 168164 (2020)]. For any state that obeys these axioms, we can define a quantity
that can be identified as the topological S matrix of an abstract anyon theory. We show that the S matrix is
unitary and that it recovers the fusion multiplicities of the underlying anyon theory through the Verlinde formula.
Importantly, we rigorously prove the modularity of the theory, which further implies that the mutual braiding
statistics of anyons are nontrivial. The key to the proof is a generalized quantum state merging technique, which
generates a topology beyond that of any subsystem of the original physical system.
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I. INTRODUCTION

Interacting quantum many-body systems can exhibit a
variety of exotic phenomena. In a strongly interacting regime,
the low-energy excitations may obey emergent laws [1] that do
not necessarily hold at the level of the constituent particles. In
the context of two-dimensional (2D) gapped phases, anyons,
which appear naturally in topologically ordered systems [2],
are expected to be described by the algebraic theory of anyon
[3]. It is a general framework that captures the fusion and
braiding properties of anyons.1 In particular, it is expected
that the theory is modular, which is the requirement of a
unitary topological S matrix. Modularity is tied to the braiding
nondegeneracy of the theory. Furthermore, there is a nontrivial
relation between the S matrix and the fusion multiplicities,
which is known as the Verlinde formula.

Historically, the fusion rules and the Verlinde formula were
first derived in a different physical context, i.e., the general
framework of conformal field theory [7–10]. The key under-
lying assumption is conformal invariance. This assumption is
physically natural for a critical point in which scale invari-
ance is expected to emerge. On the other hand, conformal
invariance is not a physically natural assumption for gapped
systems.

In the physical context of 2D gapped systems, the algebraic
theory of anyons [3] is well known at this point. Despite its
success, the properties of fusion multiplicities, the require-
ment of a unitary S matrix, and the Verlinde formula, etc.
are essentially plugged in from the underlying axioms of
the theory. It remains a fundamental problem to derive these

1The mathematical framework underlying the algebraic theory of
anyons is the unitary modular tensor category (UMTC), see [4] for a
review. It is sometimes also referred to as topological quantum field
theory (TQFT), which may have different meanings (either that by
Witten [5] or Turaev [6]), depending on the context.
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axioms from an arguably more physical assumption for 2D
gapped systems.

One such attempt was recently made in Ref. [11]. The au-
thors identified two local entropic conditions (axiom A0 and
A1 of [11]) as a reasonable starting point to derive the axioms
of the anyon theory. What gives credence to these axioms
is the conjectured area law of entanglement [12,13], which
would imply the proposed axioms. The two axioms capture
the quantum Markov chain structure of gapped 2D ground
states [14–21], which is a statement about the many-body
quantum correlation. While currently there is no rigorous
proof of the entanglement area law in 2D, it is wildly accepted
at the point. It is explicitly verified in a large class of exactly
solved models [22,23], and it shows excellent agreement with
numerical results [24,25]. It should be pointed out the axioms
hold only approximately in realistic models, and there are
fine-tuned 2D gapped states which violate A1 at all length
scales [26–28]. Nevertheless, current evidence is still consis-
tent with the conjecture that the area law is a good approxima-
tion on large length scales for a probable 2D gapped ground
state.

By starting from A0 and A1, Ref. [11] has defined the
superselection sectors (i.e., anyon types), the fusion rules,
and has derived the set of conditions that the fusion mul-
tiplicities are expected to satisfy. Furthermore, the authors
independently derived the well-known formula of topological
entanglement entropy (TEE) [12,13]. These data are uniquely
specified if one has access to a single quantum state. The
superselection sectors, fusion multiplicities, and the consis-
tency conditions are captured by the structure and the self-
consistency relations of the information convex sets [11]. It
also shows that a deformable unitary string operator exists,
which creates an anyon-antianyon pair.

In this work we show that a unitary S matrix can be defined
in the framework [11]. We define a quantity which can be
identified with the S matrix, and we show it recovers the fusion
multiplicities through the Verlinde formula. This implies that
the theory is modular. Physically, this means entanglement
area law implies the nontrivial braiding statistics of anyons
in addition to the fusion rules.
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FIG. 1. The reference state |ψ〉 on a 2D plane. It satisfies two
entropic conditions (axioms A0 and A1 of Ref. [11]), namely, for
every bounded-radius disk, which is divided into BC or BCD, we
require Eq. (1) or Eq. (2) to hold. The subsystems B, C, D can be
deformed provided that the deformation keeps the topology intact.

We further expect the logic developed in this work to
be useful in the classification of 3D topologically ordered
systems, topological defects, and the gapped domain walls
separating two gapped phases.

II. BACKGROUND

Because our derivation is built upon the framework [11],
we first recall the setup and collect the relevant facts. We
consider a 2D quantum many-body system, the Hilbert space
of which has a tensor product structure. We consider a quan-
tum state |ψ〉 of this quantum system, which satisfies the
following two conditions on each bounded-radius disk, see
Fig. 1. Let SA = −Tr(σA ln σA) be the von Neumann entropy
of the reduced density matrix σA = TrĀ|ψ〉〈ψ |, where Ā is
the complement of A. When the disk is divided into BC, we
require that

SBC + SC − SB = 0. (1)

When the disk is divided into BCD, we require that

SBC + SCD − SB − SD = 0. (2)

These two local entropic conditions are known as axiom A0
and A1 in [11]. Credit should be given to Kim for the original
thoughts on these two conditions.2 We shall refer to the state
|ψ〉 (or its reduced density matrices) as the reference state.
Physically interesting examples are the ground states of topo-
logically ordered systems [2], for which the bounded-radius
disks and the subsystems B, C, D are required to be larger
than the correlation length. This approach is Hamiltonian
independent.

Given a reference state satisfying axiom A0 and A1, a
finite set of superselection sector labels C = {1, a, b, . . . } and
a set of fusion multiplicities {Nc

ab} can be defined. Here 1
is the unique vacuum sector, and each a ∈ C has a unique
antiparticle ā ∈ C. The multiplicities, which are nonnegative
integers responsible for the fusion rules a × b = ∑

c Nc
ab c, are

shown to satisfy all the expected conditions (see Appendix for

2These two conditions were originally proposed in [17]. The first
attempt at deriving the axioms of anyon theory from these conditions
was presented in a conference Ref. [29].

the conditions). The quantum dimensions {da} can be uniquely
defined according to dadb = ∑

c Nc
abdc, and D = √∑

a d2
a is

the total quantum dimension.
These universal data and the consistency relations emerge

from the geometry and self-consistency relations of the in-
formation convex sets.3 The information convex set �(�) is
a convex set of density matrices defined for a subsystem �,
given the reference state |ψ〉. The sets are isomorphic for
a pair of subsystems that can be smoothly deformed into
each other, and every element is locally indistinguishable
from the reference state. We will need part of the structure
theorems of the information convex sets proved in Ref. [11].
For an annulus X (which is contained in a disk region),
the information convex set �(X ) is a simplex with a finite
set of extreme points. These extreme points are in one-to-
one correspondence with the set of superselection sectors,
{σ a

X }a∈C . Distinct extreme points are orthogonal, i.e., σ a
X ⊥ σ b

X
for a �= b. The reference state reaches the extreme point σ 1

X ,
which carries the vacuum sector.

Reference [11] further derives the well-known formula of
TEE, γ = lnD. This value comes from the entropy differ-
ence, 2γ = S(σ ∗

X ) − S(σ 1
X ), where σ ∗

X is the maximal-entropy
element in the “center” of �(X ). All superselection sectors
contribute to the TEE because they correspond to distinct
extreme points.4 Moreover, the reference state |ψ〉 is long-
range entangled [30] if �(X ) has more than one extreme point.

Finally, Ref. [11] shows the existence of a deformable uni-
tary string operator which creates a pair (a, ā). The positions
of the anyons can be chosen to be two bounded-radius disks.
On an annulus X surrounding a, the extreme point σ a

X ∈ �(X )
is reached. The support of the string can be deformed freely
in a topological manner.

III. THE MAIN RESULT AND ITS PROOF

The main result of this work is the definition of a quantity
for a reference state |ψ〉, which is identified with the topo-
logical S matrix of the underlying anyon theory. We show
the S matrix we define is unitary, and it recovers the fusion
multiplicities through the Verlinde formula

Nc
ab =

∑
x∈C

SaxSbxSc̄x

S1x
, (3)

where the components of the S matrix, Sab with a, b ∈ C, have
Sa1 = da

D and the following symmetries:

Sab = Sba, Sab = S∗
āb. (4)

3The definition in [11], which is based on a single quantum state,
was first considered in a slide of I. H. Kim, 2015 [29]. The author
introduced the terminology information convex (set) in [20] without
knowing Kim’s slides, and the definition was based on a particular
form of the Hamiltonian. Nonetheless, the author was inspired by
a discussion in [18]. The information-theoretic consistency of infor-
mation convex sets was briefly investigated in [21] based on structure
assumptions.

4Our setup and axioms are natural for models with bosonic local
degrees of freedom. Fermionic models deserve a separate study.
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FIG. 2. An annulus X and string operators supported within it.
(a) String operator U a

R which creates a pair of excitations a and ā
on the reference state. (b) The string operator U a

L is obtained by
deforming U a

R on the reference state.

This establishes the modularity of the theory, and it is tied to
the braiding nondegeneracy. It corresponds to an independent
axiom of the algebraic theory of anyon.5 We derive this result
from axioms A0 and A1 of Ref. [11].

A. Our definition of the S matrix

We define Sab as follows:

Sab ≡ dadb

D fab, (5)

fab ≡ Tr
(
U a†

L U a
Rσ b

X

)
. (6)

Here X is an annulus, and U a
R is an operator which creates

a pair of anyons (a, ā), see Fig. 2. U a
L is obtained from U a

R
by a deformation on the reference state, namely, we require
that U a

L |ψ〉 = U a
R |ψ〉. σ b

X is an extreme point of the informa-
tion convex set �(X ). By definition, Tr(U a†

L U a
Rσ 1

X ) = 1. This
implies that fa1 = 1, ∀a.

This Sab is well defined in the sense that it is invariant under
the deformation of three things: the annulus X , the support
of the strings, the positions of the anyons. To establish this
fact, we first notice that the extreme point σ b

X can be obtained
by acting string operators on the reference state. Therefore,
one can rewrite Eq. (6) as an expectation value of four string
operators. First, for generic deformable unitary strings (see
Fig. 3), we define

f (U,V ) ≡ 〈ψ |U †
L V †

R URVL|ψ〉. (7)

It recovers fab when the strings carry fixed sectors, i.e.,

fab = f (U a,V b) = 〈ψ |U a†
L V b†

R U a
RV b

L |ψ〉.
Because these string operators act directly on the reference
state (either to the left on 〈ψ | or to the right on |ψ〉), small
deformation of any one of them will leave f (U,V ) invariant.
Moreover, modifying the string operators by a slight change
of the position of an excitation (without passing the excitation
through another string) will not affect the value of f (U,V ).
This is because applying this new string operator on the
reference state is equivalent to applying the original one and
then applying an additional unitary operator supported on the
union of two disklike regions. In the expectation value (7),
these additional unitary operators are canceled.

5It does not follow from the pentagon equation or the hexagon
equations.

(a) (b)

UL

VR

UR

VL

FIG. 3. Two distinct ways to create four excitations: (a) with
UR and VL , (b) with UL and VR. Here UL|ψ〉 = UR|ψ〉 and VL|ψ〉 =
VR|ψ〉. Depending on the context of the discussion, an operator may
either correspond to a string carrying a fixed sector or a string bundle.

Using the trick of deforming the string operators, taking a
partial trace, and making use of the aforementioned invariant
property, one finds

fab = fba, fab = f ∗
āb. (8)

In more detail, to verify these identities, one can diagrammat-
ically represent both sides of the identity and then smoothly
deform one to another. The deformation involves both the
strings and the anyon positions. These identities imply that
our definition of S matrix obeys the requisite symmetries (4).

B. Proof of the Verlinde formula

To facilitate the proof, we remark on the approach of
deriving (8). First, the deformation of string operators and
taking a partial trace allows us to obtain a quantity in a few
different ways. By matching these results, one can derive a
constraint. Second, the deformation of a string operator is a
rather general property. It works not only for a string which
carries a fixed sector but also for a string bundle, which is
a product of multiple string operators with disjoint supports
(see Fig. 4).6 By applying the above idea to string bundles, we
obtain the following proposition:

Proposition 1. The S matrix we define satisfies
∑

c

Nc
abScx = SaxSbx

S1x
. (9)

Proof. We show that
∑

c P(a×b→c) fcx = fax fbx, then Eq. (9)

follows. Here P(a×b→c) = Nc
abdc

dadb
. Let us consider f (U ab,V x ),

where U ab is a string bundle consisting of two strings with
sectors a and b, and V x is a string with sector x. We calculate
f (U ab,V x ) in two ways.

First, we have

f (U ab,V x ) = Tr
(
U ab†

L U ab
R σ x

X

) = fax fbx. (10)

In the first line, we have deformed V x†
R and done a partial

trace such that the remaining subsystem X is an annulus
containing U ab

L and U ab
R . In the second line, we have used the

fact that the extreme point σ x
X is “factorizable.” Specifically,

in Ref. [11], it was shown that the extreme points of an

6The same trick works for a string which prepares a generic element
of �(X ) for an annulus X surrounding an excitation. This fact is not
needed in the proof.
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(a) (b)

FIG. 4. (a) A single string and (b) a string bundle. In this partic-
ular figure, the string bundle consists of two strings.

annulus, restricted to disjoint subannuli, have a tensor product
form. Therefore, we can split U ab

L and U ab
R into two families,

(U a
L ,U a

R ) and (Ũ b
L , Ũ b

R ), so that the string operators for a
and b are supported on disjoint subannuli. Because operators
belonging to different families commute with each other, the
expectation value becomes

Tr
(
U ab†

L U ab
R σ x

X

) = Tr
(
U a†

L U a
RŨ b†

L Ũ b
Rσ x

X

)

= Tr
(
U a†

L U a
Rσ x

X1

)
Tr

(
Ũ b†

L Ũ b
Rσ x

X2

)
,

where X1, X2 ⊆ X are disjoint subannuli of X .
Second, we deform the string U ab

R in the same manner.
Because the string bundle U ab can produce sector c on an
annulus surrounding a and b with probability Nc

abdc

dadb
[11,21],

we obtain the following expression:

f (U ab,V x ) =
∑

c

P(a×b→c) fcx. (11)

By matching the two expressions (10) and (11) one obtains
Eq. (9). �

Note that Proposition 1 in itself does not imply modularity
(i.e., that the S matrix is unitary). For example, a solution
like fab = 1, ∀a, b is consistent with Eq. (9) but it leads to
a noninvertible S matrix. We need a concrete statement on the
nontrivial braiding. The key is the following lemma:

Lemma 1. Let σ ∗
X = ∑

a
d2

a
D2 σ

a
X be the maximal-entropy el-

ement of �(X ), then

Tr
(
U a†

L U a
Rσ ∗

X

) = δa,1. (12)

See Sec. III C for the proof Lemma 1. Based on Lemma 1,
we show that the S matrix is unitary, and we further derive the
Verlinde formula.

Proposition 2. The S matrix is unitary and the Verlinde
formula (3) holds.

Proof. We only need to show that the S matrix is unitary.
The Verlinde formula follows from unitarity and Eq. (9).
Equation (12) implies that

∑
x S1xSax = δa,1. Multiplying S1x

to both sides of Eq. (9), doing the sum of x, and using N1
ab =

δb,ā, one derives that
∑

x SaxSbx = δb,ā. This, together with the
symmetry properties (4), implies that the S matrix is unitary.
This completes the proof. �

The same logic applies to a generic string bundle, and the
end result is the Verlinde formula for a generic number of
excitations.

C. Proof of Lemma 1

Proof. For a = 1, Eq. (12) is trivially true. In order to
derive Eq. (12) for the case of a �= 1, we consider the merging

A

B

C1C2

C1C2

D

ā

a

ā

a

(a) (b) (c)

FIG. 5. (a) The merging of σ 1
ABC and σCD, where C = C1C2.

ABCD is not a subsystem of the original system, and it has a topology
equivalent to a torus with one hole. (b) The unitary string operator U a

R

is supported on BC. (c) The unitary string operator U a
L is supported

on CD. It is obtained from the deformation of U a
R .

process described in Fig. 5(a). We merge7 two reduced density
matrices of the reference state, namely, σ 1

ABC and σCD, where
C = C1C2. We call the density matrix obtained by this merg-
ing as τABCD. (The two states can be merged because they are
identical on C and the conditional mutual information I (AB :
C2|C1) = I (C1 : D|C2) = 0 for the reference state.) Note that
while ABC and CD are subsystems of the original physical
system, the support of the merged state is not. This is because
A and D on the original physical system overlap nontrivially,
yet in the merged state, they do not share any common region.
For the state τABCD, A and D belong to different Hilbert spaces.
What is important here is that the merged state τABCD exists
even though one cannot obtain such a state by tracing out
subsystems from the original physical system.

Let us consider the reduced density matrices of τABCD on
annuli ABC and BCD. TrDτABCD = σ 1

ABC carries the vacuum
sector. TrAτABCD = σ ∗

BCD is the maximal-entropy element of
�(BCD). After applying U a

R or U a
L onto τABCD, see Fig. 5, the

sectors seen on AB are

TrCD
(
U a

L τABCDU a†
L

) = σ 1
AB,

TrCD
(
U a

RτABCDU a†
R

) = σ ā
AB.

Thus, the two density matrices U a
L τABCDU a†

L and U a
RτABCDU a†

R
are orthogonal for a �= 1. This fact follows from that σ 1

AB ⊥
σ ā

AB for a �= 1 and the monotonicity of fidelity. Therefore,

Tr
(
U a†

L U a
Rσ ∗

BCD

) = Tr
(
U a†

L U a
RτABCD

) = 0, ∀ a �= 1.

Since BCD can be any annulus, Lemma 1 is justified. �
We would like to remark on a counterintuitive aspect of the

proof. A careful reader may imagine another quantum state,
ρABCD, which reduces to σ 1

ABC and σ 1
BCD. Then, by applying

the same logic, one seems to get a contradiction, namely,

7Merging is a process to obtain a unique density matrix from two
density matrices supported on smaller regions. It works for quantum
Markov states satisfying a few simple conditions, see [11,19]. The
merging technique is first introduced in [19]. The fact that the
merging result of a pair of elements of information convex sets is
an element of an information convex set, which is necessary for the
proof in this paper, is established in [11].
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Tr(U a†
L U a

Rσ 1
BCD) = 0. It is not a real contradiction. Instead, it

means that such a state ρABCD cannot exist. This phenomenon
can be understood from the entropic “uncertainty principle” in
Refs. [31,32], which implies that annuli ABC and BCD cannot
both obtain the vacuum sector. Note that the ABCD in Fig. 5(a)
is topologically equivalent to the 1-hole torus considered in
[31]. In comparison, our method does not make use of the
global topology of the system, and τABCD is constructed given
the reduced density matrices within a disk region. It makes
our method applicable to a broader context, e.g., a sphere or
a torus with ground-state degeneracy modified by a closed
defect line.

As a corollary, the S matrix is encoded in a single quantum
many-body state, and moreover, we only need the reduced
density matrix within a disk region. This result should be
contrasted with [31], which makes use of multiple ground
states on a torus. We would like to compare our result with
another recent attempt [33] to define the S matrix from one
single ground state. It makes assumptions concerning the
Hamiltonian and the operator algebra. As the author remarks,
the method therein requires the assumption of a unitary mod-
ular tensor category description to complete the argument that
the invariant constructed matches the S matrix. In comparison,
with axioms A0 and A1 of [11], we are able to define the S
matrix and derive the Verlinde formula it obeys.

IV. SUMMARY AND DISCUSSION

We have derived the Verlinde formula from a law of entan-
glement natural for 2D gapped systems (axioms A0 and A1
of the framework [11]). From a 2D quantum state satisfying
these axioms, we define a unitary S matrix, which recovers the
fusion multiplicities through the Verlinde formula. It shows
that axiom A0 and A1 imply the nontrivial mutual braiding
statistics of anyons in addition to the previously identified
fusion rules. It deserves a further study on whether the entire
emergent physical law of anyons is implied by these two
conditions.

Both the fusion rules and the S matrix are encoded in a
single quantum state. It supports the conjecture that the entire
set of universal data of a topologically ordered system is en-
coded in one single ground-state wave function. To justify this
conjecture, one may further attempt to extract the topological
spins. It is recently noticed that S and T matrices do not

completely determine an anyon model [34–37], and therefore
additional topological invariants need to be considered. We
have generalized the merging technique to produce a quantum
state supported on a topology beyond that of any subsystem
(e.g., Fig. 5). Moreover, the definition of the information
convex set naturally generalizes into this context. We expect
this observation to be useful in future studies. One may further
attempt to define F and R symbols from a state satisfying ax-
ioms A0 and A1. In light of the recent operational definition of
F and R symbols for microscopic models [38], it is plausible
that progress can be made. This is because the framework [11]
provides well-defined unitary processes.

Finally, it should be emphasized that deriving the axioms
of the algebraic theory of anyon is stronger than extracting
the anyon data. The power of our method precisely lies
in the fact that it can derive the emergent laws. Even though
the algebraic theory of anyons is well known by now, there
is plenty of space for further exploration. Namely, there are
physical systems for which the abstract framework (analogous
to the algebraic theory of anyons) is difficult to guess, but
the analogy of axiom A0 and A1 can be easily inferred.
Such examples include a large class of three-dimensional
gapped phases, topological defects, and the gapped domain
walls separating two gapped phases. The logic developed in
Ref. [11] and this work will be a powerful tool in the study of
these systems.
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APPENDIX: FUSION RULES

The fusion multiplicities obey the following rules:
(1) Nc

ab = Nc
ba.

(2) Nc
1a = δa,c.

(3) N1
ab = δb,ā.

(4) Nc
ab = Nc̄

b̄ā
.

(5)
∑

i Nd
aiN

i
bc = ∑

j N j
abNd

jc.
These rules are derived from axioms A0 and A1 in

Ref. [11].
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