
PHYSICAL REVIEW RESEARCH 2, 023131 (2020)

Ising model in a light-induced quantized transverse field
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We investigate the influence of light-matter interactions on correlated quantum matter by studying the
paradigmatic Dicke-Ising model. This type of coupling to a confined, spatially delocalized bosonic light mode,
such as provided by an optical resonator, resembles a quantized transverse magnetic field of tunable strength. As
a consequence, the symmetry-broken magnetic state breaks down for strong enough light-matter interactions to
a paramagnetic state. The nonlocal character of the bosonic mode can change the quantum phase transition in
a drastic manner, which we analyze quantitatively for the simplest case of the Dicke-Ising chain geometry.
The results show a direct transition between a magnetically ordered phase with zero photon density and a
magnetically polarized phase with superradiant behavior of the light. Our predictions are equally valid for the
dual quantized Ising chain in a conventional transverse magnetic field.
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I. INTRODUCTION

The investigation of quantum critical behavior in correlated
quantum many-body systems has been an active research field
over many decades in condensed matter physics; intriguing
universal behavior close to quantum critical points gives rise
to many fascinating quantum materials with exciting col-
lective effects. Indeed, such physics can be understood in
terms of universality classes, which are dependent on only
dimension and the underlying symmetry of the system. As
a consequence, the quantum critical properties of quantum
matter can be described by paradigmatic models for each uni-
versality class, which in many cases correspond to interacting
quantum spin systems. The most paradigmatic model in this
context is the nearest-neighbor Ising model [1].

In contrast, in standard quantum optics setups, the goal
is to understand and exploit the influence of (strong) light-
matter interactions on a collection of noninteracting matter
entities such as spins, atoms, or molecules. Such interactions
are obtained by an increase in the optical density of modes
around electronic resonances as is typically done in cavity
quantum electrodynamics [2–4]. The nonlocal character of
the interaction gives rise to an effective, typically long-range
coupling, between the matter degrees of freedom leading
to many interesting physical effects. For example, cavity-
induced long-range interactions in a quantum degenerate gas
inside an optical resonator can give rise to nonequilibrium
quantum phase transitions as well as to novel quantum phases
such as supersolids or spin glasses [5]. Among other models,
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two stand out: the quantum Rabi [6] and Dicke [7] Hamil-
tonians where a single or many isolated quantum spins are
coupled to a quantum light mode [5].

It is then a natural next step to investigate the interplay
between strong matter-matter and strong light-matter interac-
tions. From a condensed matter perspective one might expect
to tune the properties of quantum materials by quantum light
as recently theoretically discussed [8–12]. From a quantum
optics perspective one might aim at engineering interesting
novel facets of quantum light which exploits the mapping
of the intrinsic matter-matter corelations onto photons. On
the experimental side, this research direction is currently ac-
tively pursued, especially towards engineering novel materials
with optimized functionality such as enhanced charge/energy
transfer and transport in organic semiconductors [13–15],
modified chemical reactivity [16,17], or modified supercon-
ducting transition temperatures [18]. Recent theoretical [19]
and experimental [20] endeavors with quantum gases have
shown the occurrence of nonequilibrium phase transitions
which are characterized by spinor self-ordering in the pres-
ence of quantum field driving.

Here we approach this interesting physical domain by
adding the above mentioned most paradigmatic models for
matter-matter and for light-matter interaction, namely, the
nearest-neighbor Ising model and the Dicke Hamiltonian for
N > 1 spins. We make an important observation that the
Dicke Hamiltonian corresponds to a quantized transverse
magnetic field, so that we dub the full system the quantized
transverse-field Ising model (QTFIM). Indeed, for a finite
density of photonic states, the Dicke coupling reduces es-
sentially to a classical transverse magnetic field, while the
discrete quantal character of the light becomes essential when
the photon number is small and the coupling is large. It is then
possible to tune a zero-temperature quantum phase transition
by varying the strength of the quantized transverse magnetic
field stemming from the light-matter interaction. For weak
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fields, the system realizes a magnetically ordered symmetry-
broken phase with a small number of photons. In the strong-
coupling limit the matter system is a quantum paramagnet
while the light component reaches a superradiant regime well
described by a coherent state.

This general behavior is qualitatively and quantitatively
analyzed here for a QTFIM on a one-dimensional chain.
The relevance of this model has been proposed for a variety
of experimental platforms [21], and a direct implementation
within circuit QED has been shown [22]. We find that the
quantum phase transition is drastically altered by the quan-
tized nature of the transverse field. While the conventional
transverse-field Ising chain is exactly solvable [23] and known
to be in the two-dimensional Ising universality class, in con-
trast, the QTFIM chain possesses a Z2 × Z2 symmetry so
that the phase transition becomes first-order [22] between
two symmetry-broken phases. Here we determine this phase
transition quantitatively by exploiting the quantized nature of
the field. In the thermodynamic limit, a perturbative treatment
in the weak coupling regime indicates that the ground-state
energy per site of the bare Ising model is unchanged to any
order. In the strong-coupling superradiant limit the results
are shown to exactly correspond to the ones predicted by
the conventional transverse-field Ising model (TFIM) of the
high-field polarized phase. This is confirmed by numerical
calculations for a finite number of spins. Furthermore, we
extend a well-known duality for the TFIM to the QTFIM,
which results in a quantized Ising chain in a conventional
transverse magnetic field.

The article is organized as follows. In Sec. II we introduce
the microscopic model we focus on in this work. In Sec. III
we discuss the most important limiting cases of the QTFIM.
Afterwards, in Sec. IV we present our analytical calculations
in the weak- and strong-coupling regime for the QTFIM on a
one-dimensional chain. The analytical findings are combined
with numerical diagonalizations for small systems in order to
discuss the phase diagram of the QTFIM, which is done in
Sec. V. The duality of the QTFIM to the quantized Ising chain
in a field is described and discussed in Sec. VI. In the final
Sec. VII we conclude and elaborate on potential experimental
realizations.

II. MODEL

We investigate the QTFIM being the sum of an Ising
interaction and a Dicke Hamiltonian

HQTFIM = HIsing + HDicke, (1)

where the two interactions are expressed in terms of collec-
tive spin operators Ŝα and a bosonic mode with annihilation
(creation) operator â (â†) and read

HIsing = −J
∑
〈i, j〉

σ z
i σ z

j , (2)

HDicke = ω0 Ŝz + g√
N

(â† + â)Ŝx + ωc â†â. (3)

The collective spin operators Ŝα with α ∈ {x, y, z} are de-
fined as Ŝα ≡ ∑

j σ
α
j /2 in terms of Pauli matrices satisfy-

ing [σα, σ β] = 2iεαβγ σ γ such that [Ŝα, Ŝβ ] = iεαβγ Ŝγ . We
denote the eigenbasis of Ŝx by the following set of degener-
ate kets |m, l〉 where Ŝx|m, l〉 = m|m, l〉. Then the possible
values of m are in the range {−N/2,−N/2 + 1, . . . , N/2},
and for each m the degeneracy is l = ( N

m+N/2
). Ladder oper-

ators are introduced as Ŝ± = Ŝx + i Ŝy. A system with J > 0
(J < 0) is called (anti-)ferromagnetic. The expectation value
Mz := 〈Ŝz〉/N ∈ [−1/2,+1/2] is referred to as magnetization
and represents the magnetic order parameter in the ferro-
magnetic case. For antiferromagnetic Ising interaction the
staggered magnetization Ms

z := 〈∑i(−1)iσ (i)
z 〉/2N is the ap-

propriate order parameter.
The bosonic operators satisfy [â, â†] = 1 and describe

a confined light mode at frequency ωc. The photon-spin
coupling g is obtained from the collective interaction of all
spins with the bosonic mode and depends on the optical
confinement (or, equivalently, on the density of available
optical states around the spin transition frequency). A relevant
quantity and the proper order parameter for the light part
of the QTFIM is the normalized photon number given by
nph := 〈â†â〉/N .

The QTFIM possesses a Z2 × Z2 symmetry (Z2 sym-
metry) for ω0 = 0 (ω0 �= 0). The first symmetry refers to
the spin-flip symmetry of the Ising model, which is present
only for ω0 = 0. In the pure transverse-field Ising chain
this symmetry gives rise to a second-order phase transition
in the two-dimensional Ising universality class between the
symmetry-unbroken polarized phase and a symmetry-broken
ordered phase with finite magnetization Mz as order parame-
ter. The second symmetry is already present in the pure Dicke
Hamiltonian (J = 0) and triggers the second-order superradi-
ant quantum phase transition separating the normal phase and
the symmetry-broken superradiant phase with finite photon
density nph. Indeed, the combined transformation Ŝx → −Ŝx

and â → −â leaves the full QTFIM invariant.
In the following we will interchangeably make use of the

bare picture defined by the previously introduced Hamiltonian
and at the same time of a displaced picture obtained after
the application of a conditional displacement operator. The
reason for this is that some of the calculations, especially
the mapping of the QTFIM model onto the TFIM model,
are easier performed and understood in the displaced basis.
With the notation α = g/(ωc

√
N ) one can define a generalized

(conditional) displacement operator D̂ := exp {αŜx(â† − â)}.
This operator displaces a vacuum state into a coherent state
in the photon subspace with an amplitude conditioned on the
value of the Sx operator in the Hilbert space of the spins.
Notice that this displacement can be understood as a gener-
alized polaron transformation [24] extensively used for the
spin-boson problem of a two-level quantum emitter coupled
to vibrations or phonons. The transformation diagonalizes the
Dicke Hamiltonian for the case ω0 = 0. For an arbitrary ω0

the transformation leads to (see Appendix A for the detailed
derivation)

D̂HDickeD̂† = ωc
[
â†â − α2Ŝ2

x

]+ ω0{Ŝz cosh[α(â† − â)]

+ i Ŝy sinh[α(â† − â)]}, (4a)
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FIG. 1. (a) Ground-state magnetization Mz of the pure Ising model and the LFIM as a function of the spin-spin coupling J . The change from
the antiferromagnetic to the ferromagnetic ground state is at J = 0 (J = −h/4) for the pure Ising model (for the LFIM). (b) Magnetization Mz

for the TFIM as a function of λ−1 = h/2J . For small values of h/2J the system is magnetically ordered, i.e., the eigenstate approaches
the ferromagnetic state |⇑〉. For large values of h/2J the system approaches the polarized state |⇒〉 ≡ |→→→ · · · 〉. By replacing the
magnetization Mz by the staggered magnetization Ms

z and J by −J , the plot is also valid for an antiferromagnetic Ising interaction with
−J > 0. In this case the order approaches the state |⇓〉 for −J � h.

D̂HIsingD̂† =
∑
〈i, j〉

σ z
i σ z

j − i

2

⎡⎣∑
〈i, j〉

(
σ

y
i σ z

j + σ z
i σ

y
j

)⎤⎦
× sinh[2α(â† − â)] + 1

2

⎡⎣∑
〈i, j〉

(
σ z

i σ z
j + σ

y
i σ

y
j

)⎤⎦
×{cosh[2α(â† − â)] − 1}. (4b)

Interestingly, the displaced Ising interaction still contains
a conventional nearest-neighbor Ising interaction extensively
scaling with the number of spins, which is not coupled to the
photonic operators. The other two terms are more complex
representing different types of nearest-neighbor spin inter-
actions coupled to highly nonlinear photonic operators. The
latter do not contain contributions of the order α0, which we
will use in Sec. IV B to simplify the perturbation theory in the
strong-coupling limit.

III. LIMITING CASES OF THE QTFIM

In the following we discuss several limiting cases of the
QTFIM: the bare Ising model, the pure Dicke Hamiltonian,
and the transverse-field Ising model.

A. Ising model

In the absence of the Dicke Hamiltonian, i.e.,
ω0 = ωc = g = 0, the QTFIM reduces to the conventional
nearest-neighbor Ising model. For ferromagnetic Ising
interaction with J > 0 the model is unfrustrated on all lattice
topologies so that there are two ferromagnetic ground states
|⇑〉 ≡ |↑ . . . ↑〉 and |⇓〉 ≡ |↓ . . . ↓〉. These two states are
related by the Z2 spin-flip symmetry, which is an exact
global symmetry of the Ising model. In contrast, for
an antiferromagnetic Ising interaction with J < 0 the
physical properties depend strongly on the underlying
lattice. Bipartite lattices like the one-dimensional chain
or the two-dimensional square lattice can be mapped

exactly to the ferromagnetic case by an sublattice spin
rotation about the x axis: σx → σx, σy → −σy, and
σz → −σz on one of the two sublattices. These cases are there-
fore also unfrustrated. However, lattices with loops of odd
length like the triangular or the kagome lattice are highly frus-
trated and possess an extensive number of ground states and
remain classically disordered even at zero temperature [25].

The simplest case is the one-dimensional Ising chain,
which we will focus on in most parts of this work. Here,
for the antiferromagnetic case J < 0, the ground-state mag-
netization is Mz = 0, while, for a ferromagnetic chain with
J > 0, the ground-state magnetization of the fully polarized
state |⇓〉 is Mz = −1/2. By introducing additionally a small
longitudinal magnetic field h Ŝz with h > 0 one obtains the
longitudinal field Ising model (LFIM)

HLFIM = h Ŝz − J
∑
i, j

σ z
i σ z

j , (5)

and the degeneracy of the ground state is lifted. The ground
state is |⇓〉 for J > −h/4 and |↓↑↓ . . . 〉 for J < −h/4.
Hence, as for the pure Ising model, the magnetization is
again a step function where the transition is shifted towards
J = −h/4 as shown in Fig. 1.

Due to the longitudinal field the Z2 spin-flip symmetry
is absent for the LFIM in contrast to the pure Ising model.
Hence, there is no spontaneous symmetry breaking as for the
TFIM discussed in the next subsection, and the change of
magnetization signals a first-order phase transition.

B. Transverse-field Ising model

In the limit of ω0 = 0 and large number of photons, the
QTFIM reduces to the conventional TFIM

HTFIM = hŜx − J
∑
i, j

σ z
i σ z

j , (6)

where h = g2/ωc. The mapping is achieved under the as-
sumption that the photonic subsystem is in a coherent

023131-3



ROHN, HÖRMANN, GENES, AND SCHMIDT PHYSICAL REVIEW RESEARCH 2, 023131 (2020)

state, allowing the replacement of photonic creation and
annihilation operators by their expectation values (see Ap-
pendix B). As for the pure Ising model, the TFIM possesses
the exact Z2 spin-flip symmetry σ (i)

z → −σ (i)
z on all sites with

index i.
In the case of a ferromagnetic Ising interaction J > 0

the TFIM is unfrustrated and realizes a zero-temperature
phase transition between a quantum paramagnet and a Z2-
symmetry-broken phase for any lattice in any spatial di-
mension d [26]. The corresponding universality class is the
one of the classical Ising model in dimension d + 1. The
same behavior is also found for an antiferromagnetic Ising
interaction J < 0 on bipartite lattices, which can be mapped
exactly to the ferromagnetic case by a sublattice rotation as
already explained for the pure Ising model in Sec. III A.

The situation becomes more complicated in the presence
of geometric frustration where different types of quantum-
critical behavior as well as exotic states of quantum matter are
known to occur [27]. Important examples in the framework
of fully frustrated TFIMs are the antiferromagnetic TFIM
on the triangular and pyrochlore lattice. For the triangular
TFIM an order by disorder mechanism [28–30] gives rise to a
ground state where translational symmetry is broken and the
universality class of the quantum phase transition is 3D-XY
[27,31–33]. In contrast, on the pyrochlore lattice, disorder
by disorder leads to a quantum-disordered Coulomb phase
[34,35] in the antiferromagnetic TFIM displaying emergent
quantum electrodynamics and the quantum phase transition to
the high-field quantum paramagnet is first-order [36].

The only exactly solvable case is the ferromagnetic (and
antiferromagnetic) TFIM on a one-dimensional chain. Here a
Jordan-Wigner transformation allows us to map the TFIM to a
quadratic fermionic Hamiltonian, which can be diagonalized
by Fourier and Bogoliubov transformations [23]. With the
exact magnetization for h, J > 0, and λ := 2J/h (see also
Fig. 1)

Mz =
{

1
2 (1 − λ−2)

1
8 λ > 1

0 λ � 1
, (7)

one can easily obtain the exact quantum critical point which
is given by λc ≡ (2J/h)c = 1. Furthermore, it is straightfor-
ward to obtain the critical exponents which correspond to
the ones of the classical two-dimensional Ising model, e.g.,
the magnetization Mz (or staggered magnetization Ms

z for an
antiferromagnetic Ising interaction) scales as (λ − λc)β with
β = 1/8 close to the critical point representing the order
parameter of the system. For J � h the ground state is nearly
the polarized state | ⇒〉, whereas the ordered states |⇑〉 and
|⇓〉 are approached for J � h. Finally, we give the explicit
analytic expression of the ground-state energy per site

e0,TFIM(λ) = −J

λ

1

2π

∫ 2π

0
dk
√

1 + λ2 + 2λ cos(k), (8)

which we will use in Sec. IV B for the strong-coupling pertur-
bation theory.

C. Dicke Hamiltonian

The limit of vanishing Ising interaction J = 0 corresponds
to the Dicke Hamiltonian where N noninteracting spins 1/2

are collectively coupled via their total spin x component
to a single bosonic light mode described by creation and
annihilation operators â† and â, respectively. In the limit
N = 1 the model reduces to the Rabi Hamiltonian introduced
in 1936 [6] (in the context of a quantized magnetic field
resonantly driving a nuclear spin) and is exactly integrable
[37]. For N > 1 but still finite, the Dicke model with ω0 > 0
is nonintegrable [38,39]. However, for many experimental
situations, counterrotating terms such as S+a† and S−a, can
be dropped out, and the resulting interaction is described by
the exactly solvable Tavis-Cummings Hamiltonian [40]. In the
limit N = 1 the Tavis-Cummings Hamiltonian is known as the
Jaynes-Cummings Hamiltonian [41]. There are, however, two
more situations where integrability is achieved [42,43]: (i) the
case of degeneracy with ω0 = 0 and (ii) the thermodynamics
limit with N → ∞ [44–46] where phase transitions have been
identified [47].

In the following we aim at obtaining analytical insight into
the behavior of the QTFIM at critical points. To this end we
restrict our treatment to case with ω0 = 0 where the energies
are at least twofold degenerate, so that we dub this limit
the degenerate Dicke Hamiltonian. This is a consequence of
[Ŝx,HDicke] = 0 so that the eigenvalues of Ŝx are conserved
quantities. The system therefore factorizes in a spin and in
a photonic part. With the conditional displacement operator
previously defined D̂ := exp αŜx (â† − â) and the property
D̂†âD̂ = â + αŜx, the degenerate Dicke Hamiltonian can be
transformed to the diagonal expression in Eq. (4a) (after set-
ting ω0 = 0). It is then straightforward to obtain the energies

En,l = ωc[n − α2m2], (9)

where m ∈ {−N/2,−N/2 + 1, . . . , N/2} and l is the index
defined in Sec. II to take into account the degeneracy of the
spin states. The corresponding eigenstates of HDicke are given
by the application of D̂† on the eigenstates |n〉 ⊗ |m, l〉 of the
transformed Hamiltonian. In order to abbreviate the notation,
the index l is not specified explicitly in this section. Hence,
the exact ground state has the quantum numbers n = 0 and
m = ±N/2 and is obtained by the action of D̂† onto the ket
(|0〉 ⊗ | ± N/2〉) leading to

|ψ0〉 =
[

e− |αN |2
8

∞∑
n=0

(∓αN )n

2n
√

n!
|n〉
]

⊗ |±N/2〉, (10)

where |±N/2〉 are eigenstates of Ŝx and |n〉 denotes a
photonic state with n photons. The ground state has therefore
a Poissonian photon distribution.

In the general case ω0 �= 0 the Hamiltonian has to be diag-
onalized numerically. Due to [Ŝx, Ŝz] �= 0, the ground state is
a complex, entangled state. However, for large values of g, the
degenerate Dicke model (ω0 = 0) is a good approximation as
can be seen in Fig. 2. The ground-state energy for ω0 = ωc

converges towards the ground-state energy for ω0 = 0 as g is
increased and the photon distribution approaches a Poissonian
distribution.

In the case where the spin-photon system is quasires-
onant ω ≈ ωc and the coupling is very weak g � ω0, ωc,
one can perform the aforementioned approximation where

023131-4



ISING MODEL IN A LIGHT-INDUCED QUANTIZED … PHYSICAL REVIEW RESEARCH 2, 023131 (2020)

0 1 2 3
g/ωc

−2.0

−1.5

−1.0

−0.5

0.0

e/
ω

c

Rabi, ω0/ωc = 0
Rabi, ω0/ωc = 1
JCM, ω0/ωc = 1

FIG. 2. Ground-state energy per site e for the limiting case of
N = 1 where we compare the (i) Rabi model for ω0 ∈ {0, 1} and
(ii) Jaynes-Cummings model (JCM). For g � ωc, the JCM is a good
approximation of the Rabi model with finite ω0, whereas for large
g � ωc the solution to the Rabi model with ω0 = 0 approaches the
ground-state energy of the Rabi model for ω0/ωc = 1.

counterrotating terms are ignored and the Tavis-Cummings
Hamiltonian emerges:

HTCM = ω0 Ŝz + ωcα[âŜ− + â†Ŝ+] + ωc â†â. (11)

The light-matter interaction describes the flipping of a spin
accompanied by the absorption or emission of a photon.
The total number of excitations, i.e., the number of spins in
state |↑〉 plus the number of photons, is always conserved,
hence [HTCM, ωc (Ŝz + â†â)] = 0 for any value of ω0. Conse-
quently, an eigenbasis exists such that the representation of
the Hamiltonian reduces to a block-diagonal matrix. Then,
for N spins, the problem reduces to the diagonalization of
2N × 2N matrices. By exploiting symmetries, one can reduce
the dimension of the block matrices further and obtain an
analytical solution. As numerically illustrated in Fig. 2 for the
particular case of N = 1, the Jaynes-Cummings interaction
(JCM) approximates well the Rabi model for g � ω0 = ωc.
For more general sets of parameters, a full check is necessary,
however, to assess whether ignoring the counterrotating terms
the rotating wave approximation is a valid approach.

IV. QTFIM: ANALYTICAL CONSIDERATIONS

The full QTFIM given in Eq. (1) is now investigated for
the case of a one-dimensional chain of N spins and nearest-
neighbor Ising interactions. For the specific case ω0 = 0,
which we focus on in the following, this model is a modifi-
cation of the TFIM, since the magnetic field h is replaced by
the quantized transverse field g/

√
N (â† + â). We first discuss

the weak-coupling limit in the magnetically ordered phase
where the light-matter interaction is assumed to be small.
Afterwards, we turn to a perturbative treatment of the strong-
coupling superradiant phase.

A. Weak-coupling limit: Magnetically ordered phase

We consider the weak-coupling limit g � J, ωc for ω0 = 0,
where the system is magnetically ordered, i.e., the Z2 spin-flip
symmetry is spontaneously broken, and the density of photons
is zero. The unperturbed Hamiltonian is therefore given as

H0 = −J
∑

i

σ z
i σ z

i+1 + ωc â†â, (12)

and the perturbation reads

V = g√
N

(â† + â)Ŝx. (13)

Here we calculate the corrections to the ground-state energy
in powers of g. To this end we choose the symmetry-broken
magnetic state |⇑〉 ≡ |↑ . . . ↑〉 as one of the two Ising ground
states so that the unperturbed ground state of the full model
corresponds to

|ψ0〉 = |0〉 ⊗ |⇑〉. (14)

The associated unperturbed ground-state energy is given
by E (0)

0,weak = −JN . Clearly, the first-order correction to the
ground-state energy vanishes, since the light-matter coupling
always changes the photon number by one. In second order,
one obtains

E (2)
0,weak = 〈ψ0|V 1

E (0)
0 − H0

V|ψ0〉 = −1

4

g2

2J + ωc
. (15)

The energy correction is therefore not extensive. The same
is true in any order of perturbation theory. Indeed, since the
perturbation scales as g/

√
N , one gets a suppressing factor

N−k/2 in order k of perturbation theory which cannot be
compensated by the appearing sums in the general perturba-
tive expressions in order to yield an extensive contribution.
As a consequence, in the thermodynamic limit N → ∞, the
ground-state energy per site is exactly

e0,weak = E0,weak

N
= E (0)

0,weak

N
= −J. (16)

Calculating the first-order correction to the ground-state vec-
tor, one obtains∣∣ψ (1)

0

〉 = − g

2
√

N

1

2J + ωc
|1〉 ⊗

∑
ξ

|ξ 〉, (17)

where

|ξ 〉 :=
∣∣∣∣↑ . . . ↑↓

ξ

↑ . . .

〉
. (18)

Consequently, the magnetization is not altered in leading order
in the thermodynamic limit, which is true to any order in
perturbation theory.

B. Strong-coupling limit: Superradiant phase

Next we investigate the strong-coupling limit for ω0 = 0
where the Ising interaction is treated as a perturbation to
the Dicke Hamiltonian. We calculate the expression for the
ground-state energy per site as well as the corrected ground-
state wave vector from which the corresponding photon num-
ber statistics can be deduced. For both, energy and the ground
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state, we start by presenting the derivation which employs the
displaced basis. However, in both cases the same results are
also obtained in the bare basis, which we show explicitly for
the ground-state wave function. Furthermore, for the ground-
state energy, again two distinct approaches are pursued:
(i) a mapping onto the TFIM after ignoring negligible nonex-
tensive contributions in the displaced Hamiltonian and (ii) a
mean-field approach based on the linearization around large
classical amplitudes of the photon field under the condition
g2/ωc � 1 in the initial basis. Both approaches yield the same
results and provide an elegant mapping of the QTFIM onto the
TFIM which admits an exact solution for the chain geometry.

We first analyze the perturbation term in Eq. (4b) in the
displaced basis as modification of the eigenenergies of the dis-
placed diagonalized Dicke part of Eq. (4a). The unperturbed
Hamiltonian is therefore given by

H0 = ωc
[
â†â − α2Ŝ2

x

]
, (19)

with eigenstates written as∣∣ψ (0)
n,m,l

〉 = |n〉 ⊗ |m, l〉, (20)

where |n〉 are the eigenstates of â†â and Ŝx|m, l〉 = m |m, l〉
with an index l to take into account the degeneracy of the spin
states. The corresponding bare eigenenergies are

E (0)
n,m,l = nωc − g2

Nωc
m2 = nωc − ωcα

2m2, (21)

independent of l . Apparently, the ground state is twofold
degenerate with eigenstates

|�〉left ≡ ∣∣ψ (0)
0,−N/2,1

〉 = |0〉 ⊗ |⇐〉,
|�〉right ≡ ∣∣ψ (0)

0,+N/2,1

〉 = |0〉 ⊗ |⇒〉, (22)

and energy E (0)
0,strong ≡ E (0)

0,±N/2,1 = −g2N/4ωc. Furthermore,

we define the ground-state energy per site e(0)
0,strong = −g2/4ωc.

Without loss of generality we choose the eigenstate at order
zero of perturbation theory as |�〉right.

In the following subsections we show that the perturbative
strong-coupling expansion of the QTFIM chain is equivalent
to the high-field expansion of the conventional TFIM, first, by
application of the perturbation theory introduced above and,
second, within a mean-field approach. Afterwards, we present
the first-order correction to the ground state and calculate the
associated ground-state photon distribution.

1. Energetics

We calculate the ground-state energy per site
e0,strong = E0,strong/N perturbatively in Jωc/g2 for N → ∞ in
the displaced basis.

The most important point to realize is that the last two
terms on the right-hand side of Eq. (4b) do not give rise to
extensive corrections to the ground-state energy E (0)

0,strong for
finite perturbation orders. The reason for that is the factor
α ∝ 1/

√
N in the photonic expressions. Hence to obtain

extensive perturbative corrections of the ground-state energy
E0,strong only the Ising interaction

∑
i σ

z
i σ z

i+1 is relevant, and

the problem reduces to finding the ground-state energy of

−ωcα
2Ŝ2

x − J
∑

i

σ z
i σ z

i+1, (23)

where the light part is not written anymore since it completely
decouples from the spin part in this situation. If one assumes
that the ground state of this Hamiltonian is a superposition
of states which are given by a finite number of spin flips with
respect to the unperturbed ground state (which we prove in the
Appendix B), the Ŝ2

x operator can be rewritten for N → ∞ as
follows. For a state resulting from flipping a < ∞ spins of
|�〉r the corresponding eigenenergy of −ωcα

2Ŝ2
x is

−Ng2

4ωc
+ a

g2

ωc
− a2 g2

ωcN
→ −Ng2

4ωc
+ a

g2

ωc
, (24)

and the spectrum is equidistant. Therefore the unperturbed
part of the Hamiltonian in Eq. (23) can be replaced by an
effective Ŝx operator, and the total Hamiltonian reads

Ng2

4ωc
+ g2

ωc
Ŝx − J

∑
i

σ z
i σ z

i+1. (25)

Comparing with the conventional TFIM on a chain Eq. (6),
one immediately sees that for h = g2/ωc a perturbation in
J/h yields the same ground-state corrections in HTFIM as
in the QTFIM. We conclude that given the perturbation
series obtained from the analytic expression for the TFIM
e0,TFIM(2J/h), the one of the QTFIM is

e0,strong

(
Jωc

g2

)
= e0,TFIM

(
2Jωc

g2

)
− e(0)

0,strong. (26)

In regions where the perturbative expansion converges this
can be expressed with the exact formula for the ground-state
energy of the Ising model in a transverse field [23] given in
Eq. (8) with λ = 2Jωc/g2. The final result for e0,strong(Jωc/g2)
is then

e0,strong = g2

4ωc
− g2

2ωc

1

2π

∫ 2π

0
dk
√

1 + λ2 + 2λ cos (k).

(27)
The same result is obtained by a mean-field approach

presented in detail in the Appendix B where the photonic op-
erators in the original Hamiltonian of Eq. (1) are replaced by
〈â(†)〉 + δâ(†). Discarding fluctuations of order

√
N and

assuming that the photonic part is the coherent state, which
solves the model for J = 0, leads to the same Hamiltonian
as in Eq. (25). Thus, mean-field theory in the light part is an
equivalent approach to solve the model in the strong-coupling
limit.

2. Ground state and photon distribution

Now we calculate the first-order correction |ψ (1)
right〉 to the

unperturbed ground state |�〉right of the Dicke Hamiltonian
for ω0 = 0 due to the Ising interaction. This can be done by
performing the calculation first in the displaced basis and
subsequently retransforming to the original basis as shown in
the Appendix C. We further show that the computation of the
ground-state correction using the bare basis yields the same
result.

023131-6



ISING MODEL IN A LIGHT-INDUCED QUANTIZED … PHYSICAL REVIEW RESEARCH 2, 023131 (2020)

The first-order correction of the state vector leads to∣∣ψ (1)
right

〉 = {∑
n

fnD̂†
ph[α(N/2 − 2)]|n〉

}∑
ν

|ν〉, (28)

where the states with two nearest-neighbor spin flips and
therefore m = (N − 4)/2 are labeled as

|ν〉 :=
∣∣∣∣→ → · · · → ←

ν
←
ν+1

→ · · ·
〉
, (29)

and the coefficients fn are given as

fn = e−2|α|2 (−2α)n

√
n!

1

ωcα2(4 − 2N ) − nωc
. (30)

The photonic displacement operator D̂ph(z) is defined as

D̂ph(z) := exp(zâ† − z∗â) (31)

and acts only on the photonic part of the Hilbert space. In or-
der to calculate the photon distribution in the strong-coupling
limit, we trace over the spin part of the total ground state
|ψright〉 = |ψ (0)

right〉 + |ψ (1)
right〉 in first-order perturbation theory.

One then obtains the density matrix

ρ =
∑
m,l

〈m, l|ψright〉〈ψright|m, l〉

= ∣∣ψ (0)
right,ph

〉〈
ψ

(0)
right,ph

∣∣+ N
∣∣ψ (1)

right,ph

〉〈
ψ

(1)
right,ph

∣∣, (32)

where the photonic states are defined as

∣∣ψ (0)
right,ph

〉
:= e− |α|2N2

8

∞∑
n=0

(−αN )n

2n
√

n!
|n〉,

∣∣ψ (1)
right,ph

〉
:= −J

∞∑
n=0

fnD̂†
ph

(
α

N − 4

2

)
|n〉. (33)

The photon distribution P(n) = Tr(|n〉〈n|ρ) is then given by
the following expression:

P(n) = e− |α|2N2

4
(−αN )2n

22nn!
+ J2

∞∑
k,k′=0

fk fk′ 〈n|D̂†
ph

(
α

N − 4

2

)

× |k〉〈k′|D̂ph

(
α

N − 4

2

)
|n〉. (34)

We stress that the first-order contribution to the ground state
does not change the form of the photon distribution for N →
∞. Taking into account that α → 0 and α2N = const, one
can see that fk = O(N−k/2) for N → ∞. In this limit, also
the order of the overlap 〈n|D̂†

ph(α N−4
2 )|k〉 can be determined.

Therefore we use |k〉 ∝ (â†)k|0〉 and the commutation relation
[D̂ph(x), â†] = xD̂ph(x) in order to express the overlap in
terms of 〈n|D̂†

ph(α N−4
2 )|0〉. Then one can show that

〈n|D̂†
ph

(
α

N − 4

2

)
|k〉〉 = O(

√
N

k
)〈n|D̂†

ph(αN/2)|0〉. (35)

As a consequence, the ground state remains a coherent state
with a Poissonian photon distribution. This is different for
finite n, where differences between odd and even n are present
and the photonic part can show nonclassical features.

0 1 2 3 4 5 6
(g2/ωc)/ωc

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1.0

e 0
/ω

c

magnetically
ordered phase
Mz > 0, n = 0

Mz = 0
n > 0
superradiant
phase

4 spins
6 spins
8 spins
10 spins

FIG. 3. Ground-state energy per site e0 for J/ωc = 1: Compar-
ison of the analytical result (blue dashed line) and numerical data
obtained for N = 4 to N = 10 spins (solid lines). The quantity g2/ωc

serves as an analog of the magnetic field strength of the conventional
TFIM. The vertical red line indicates the location of the quantum
phase transition separating the magnetically ordered phase for small
g from the superradiant phase at large g. The gray dotted vertical
line highlights the second-order phase transition of the conventional
transverse-field Ising chain [see Eq. (6)].

V. PHASE DIAGRAM

We are now in the position to analyze the phase diagram of
the QTFIM on a chain. To this end we combine our analytical
findings presented in the weak- and strong-coupling limit in
the last section with numerically exact diagonalizations of
small systems up to N = 10.

Most importantly, we can locate the quantum phase tran-
sition between the magnetically ordered phase and the super-
radiant phase to an arbitrary precision in the thermodynamic
limit, since (i) the ground-state energy of the magnetically
ordered phase does not depend on the light-matter interaction
and (ii) the ground-state energy of the superradiant phase has
been shown to correspond exactly to the one of the transverse-
field Ising chain in the polarized phase. The crossing of both
ground-state energies in Eqs. (16) and (27) yields the quantum
phase transition point of the QTFIM on a chain geometry, i.e.,
the critical point at J = Jcrit and g = gcrit corresponds to the
condition e0,strong = e0,weak. The latter equation can be written
in the form

Jcrit

ωc
≈ 0.294

(
gcrit

ωc

)2

. (36)

For J/ωc = 1, the analytic and numerical ground-state en-
ergies per site are shown in Fig. 3. The phase transition at
g2/ω2

c ≈ 3.40 (vertical red line) is first-order, which can be
seen directly from the kink of the ground-state energy in
the thermodynamic limit (dashed line), which separates the
magnetically ordered phase (small g2/ωc) and the superradi-
ant phase (large g2/ωc). We note that the numerical data for
finite N displays the same qualitative behavior and approach
the expressions of the thermodynamic limit in a monotonous
fashion. Altogether, when comparing to the conventional
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(g2/ωc)/ωc
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M
z

4 spins
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10 spins

FIG. 4. Magnetization per spin Mz for J/ωc = 1: The analytical
result (blue dashed line) is approached by the numerical data for
finite system sizes with fixed ω0 = 0.001ωc (solid lines). The red
vertical line marks the phase transition from the magnetically or-
dered phase (small g, Mz = 1/2) to the superradiant phase (large g,
Mz = 0). The gray dotted vertical line highlights the second-order
phase transition of the conventional transverse-field Ising chain [see
Eq. (6)] with h = g2/ωc.

transverse-field Ising chain, the order of the phase transition
changes to first order in the QTFIM and the extension of the
ordered phase becomes larger.

Both ordered phases can be characterized by an order
parameter, namely, the magnetization per spin Mz for the
magnetically ordered phase and the photon number per spin
n for the superradiant phase. Interestingly, both order pa-
rameters can be deduced exactly in thermodynamic limit,
which is again a consequence of the vanishing quantum
fluctuations in the weak-coupling regime and the mapping
to the conventional TFIM for the superradiant phase. The
corresponding analytical and numerical results for the two
order parameters are shown in Figs. 4 and 5 for J/ωc = 1.
In the thermodynamic limit, the magnetization per spin jumps
at the phase transition point from the maximally ordered value
1/2 of the pure Ising model to zero in the superradiant phase,
in full agreement with the first-order nature of the phase
transition. In contrast, the magnetization per spin for finite
N is a smooth function in the regime of the magnetically
ordered phase with values smaller 1/2 signaling true quantum
fluctuations in the ground state. Interestingly, Mz remains
almost zero in the superradiant phase even for finite N . The
photon number per spin n in the thermodynamic limit is finite
only in the superradiant phase and serves as the proper order
parameter. At the phase transition this quantity jumps from
zero to n ≈ 0.85, and it increases linearly as a function of
g2/ω2

c within the superradiant phase:

n =
{

0 λ � λcrit
g2

4ω2
c

λ < λcrit
, (37)

where λ = 2Jωc/g2 and λcrit ≈ 0.588. Again, the results for
finite N are fully consistent and approach the first-order phase
transition of the QTFIM smoothly for increasing N .

0 1 2 3 4 5 6
(g2/ωc)/ωc
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n
p
h
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FIG. 5. Photon number per spin n: The numerical values (solid
lines) indicate the point of the transition already quite well. However,
the analytical solution (dashed line) is approached very slowly with
increasing g. The gray dotted vertical line highlights the second-order
phase transition of the conventional transverse-field Ising chain [see
Eq. (6)].

VI. THE DUAL TRANSFORMATION: THE TRANSVERSE
FIELD IN A QUANTIZED ISING CHAIN

In this section we introduce an exact duality of the QTFIM
for ω0 = 0 to a transverse field in a quantized Ising chain.
Such exact dualities are typically very interesting because
findings in one system can be directly transferred to a different
system and are therefore relevant in a broader context. A
Kramers-Wannier duality is well known for the conventional
TFIM on a chain which even displays an exact self-duality
[48], i.e., the TFIM is dual to itself and the quantum phase
transition is located exactly at J = h.

The construction of the Kramers-Wannier duality can be
done along the same lines also for the QTFIM. We introduce
pseudospins 1/2 on links ν described by Pauli matrices �τ .
The pseudospin state |↑〉 (|↓〉) is then identified with fer-
romagnetic (antiferromagnetic) spin configurations |↑↑〉 and
|↓↓〉 (|↑↓〉 and |↓↑〉) on the corresponding link. It is then
possible to express the spectral properties of the QTFIM
exactly in terms of the pseudospins �τ . Note that the properties
of eigenfunctions such as degeneracies are not respected in
this duality mapping.

The Ising exchange is then mapped to an effective field
term −J

∑
ν τ x

ν in the pseudospin language, which is an
immediate consequence of the above assignment of the pseu-
dospin states |↑〉 and |↓〉 with the ferro- and antiferromag-
netic alignment of nearest-neighbor spins. In contrast, the
action of each operator σ x

i always flips ferromagnetic spin
configurations to antiferromagnetic ones on the two links left
and right from site i. As a consequence, the operator σ x

i in
the Dicke Hamiltonian becomes an effective nearest-neighbor
Ising exchange τ z

ν τ
z
ν+1 in terms of pseudospin operators. In

total one then obtains the following dual Hamiltonian of the
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QTFIM for ω0 = 0:

HQTFIM
dual = −J

∑
ν

τ x
ν + g

(2
√

N )
(â† + â)

∑
ν

τ z
ν τ

z
ν+1 + ωc â†â,

(38)

which corresponds to a transverse field in a light-induced
quantized Ising chain. Let us stress again that this nonlocal
mapping does not keep track of state properties as well as
degeneracies. However, the QTFIM and its dual are isospec-
tral, and we can therefore directly conclude that also HQTFIM

dual
displays a first-order phase transition in the thermodynamic
limit, but in this case between a symmetry unbroken phase
with zero magnetization per spin and zero photons per spin
at small g and an ordered phase with finite Mz and n for
large g. These findings are indeed in accordance with general
considerations of Dicke Hamiltonians competing with short-
range interactions [49,50].

VII. CONCLUSIONS

In this work we have combined two paradigmatic models,
the Ising model from condensed matter physics and the Dicke
Hamiltonian from quantum optics. The latter corresponds to
a light-induced quantized magnetic field, and we therefore
consider the QTFIM as the paradigmatic model to study what
one could call optomagnetism.

Here we have investigated in detail the simplest, geomet-
rically unfrustrated, geometry which is the one-dimensional
chain, and we focused on the case ω0 = 0. In the thermo-
dynamic limit, the phase transition between the magnetically
ordered weak-coupling phase and the strong-coupling super-
radiant phase can be determined to an arbitrary precision.
This is the consequence of the fact that quantum fluctuations
are absent in the magnetic phase and that we found the
appropriate connection of the superradiant phase to the ana-
lytic solution of the conventional transverse-field Ising chain,
both resulting from disentangling extensive and subextensive
contributions to the ground-state energy. The phase transition
between the two ordered phases is first-order for ferro- and
antiferromagnetic Ising interactions, in agreement with pre-
vious works [21,51] but in contradiction to the mean-field
calculation in Ref. [22]. We further extended the well-known
Kramers-Wannier duality for the transverse-field Ising chain
to the QTFIM resulting in the isospectral light-induced quan-

tized Ising model in a tranverse field, which therefore also
displays a first-order phase transition. In the future it would
be interesting to extend our calculations to the case ω0 �= 0
so that only one Z2 symmetry remains and a second-order
superradiant phase transition is known to be present. Another
important aspect is a generalization of the light part; e.g.,
Dicke lattice models with discrete gauge symmetry due to
local photon operators are known to exhibit first- and second-
order quantum phase transitions depending on the photon
quantum dynamics [52].

Experimentally, the QTFIM chain is expected to be realiz-
able in a variety of quantum platforms [21]. For example, a
direct implementation within circuit QED has indeed already
been given in Ref. [22]. Other possible suitable candidates
for experimental implementations could be within the field
of optomagnonics using YAG magnetic spheres in microwave
cavities [53], with Rydberg atoms [54], or in ion traps, where
the tailoring of collective motional modes can lead to a
variety of spin models [55]. Alternatively, the manipulation
of internal degrees of freedom with cavity quantum optical
fields leads to an alternative platform where magnetism can be
studied and observed as spinor ordering and texture formation
in cold quantum gases [19,20,56–58].

In conclusion, the interplay between matter-matter and
light-matter interactions can lead to a strong imprint of quan-
tum cooperativity. Such optomagnetic systems represent a
promising playground for the discovery of yet unknown quan-
tum phenomena and therefore hold the key for the emergence
of quantum materials with enhanced capabilities.
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APPENDIX A: THE DISPLACED DICKE-ISING
HAMILTONIAN

The light-matter interaction in the Hamiltonian can be
eliminated by a diagonalizing transformation that sees the
field operators transformed as â + αŜx = D̂†âD̂. The Dicke
part consequently transforms to

H̃Dicke := D̂HDickeD̂† = ωc D̂(â† + αŜx )D̂†D̂(â + αŜx )D̂† − ωcα
2Ŝ2

x = ωc
[
a†a − α2Ŝ2

x

]
. (A1)

To transform HIsing we use the identity

eÂB̂e−Â = B̂ + [Â, B̂] + · · · + 1

n!
[Â, [Â, . . . , [Â, B̂]], . . .]︸ ︷︷ ︸

n times Â

+ · · · . (A2)

Furthermore we introduce the abbreviations γ δ = ∑
i σ

γ
i σ δ

i+1 and r̂ = α(â† − â). It follows that

H̃Ising := D̂HIsingD̂† = −J

[
zz − i

2
(yz + zy)

∞∑
k=0

1

(2k + 1)!
(2r̂)2k+1 + 1

2
(zz − yy)

∞∑
k=1

1

(2k)!
(2r̂)2k

]

= −J

[
zz − i

2
(yz + zy) sinh(2r̂) + 1

2
(zz − yy)(cosh(2r̂) − 1)

]
. (A3)
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The longitudinal field ω0Sz is transformed in the same way as the Ising Hamiltonian. We use Sz = ∑
i σ

z
i /2 and do not write the

constant prefactors. Then we obtain

D̂
∑

i

σ z
i D̂† =

∑
i

exp[αŜx(â† − â)]σ z
i exp[−αŜx(â† − â)]

=
∑

i

σ z
i + [α(â† − â)]

⎡⎣∑
j

σ x
j

2
, σ z

i

⎤⎦+ 1

2!
[α(â† − â)]2

⎡⎣∑
k

σ x
k

2
,

⎡⎣∑
j

σ x
j

2
, σ z

i

⎤⎦⎤⎦+ · · · , (A4)

where again (A2) is applied. Since the photonic operators commute with all spin operators, these were written in front of the
commutators. The remaining spin commutators are nonzero only if the index i of the outer sum is equal to all indices of the sums
within the commutator. Furthermore, one can find for the concatenated commutators[

σ x
i , . . .

[
σ x

i ,
[
σ x

i , σ z
i

]]] =
{−i 2nσ

y
i n odd

2nσ z
i n even, (A5)

where n is the number of Pauli-x operators within the commutators. The final result for the transformed is

D̂†
∑

i

σ z
i D̂† =

∑
n=0

i
[α(â† − â†)]2n+1

(2n + 1)!

(∑
i

σ
y
i

)
+
∑
n=1

[α(â† − â†)]2n

(2n)!
(â† − â†)2n

(∑
i

σ z
i

)

=
(∑

i

σ z
i

)
cosh(r̂) + i

(∑
i

σ
y
i

)
sinh(r̂). (A6)

APPENDIX B: MAPPING OF QTFIM ONTO TFIM
IN THE STRONG COUPLING LIMIT

FOR THE CHAIN GEOMETRY

We follow two approaches which both prove the mapping
of the QTFIM onto the TFIM for the chain geometry under
strong coupling, i.e., high photon field amplitude conditions.

Approach 1: Neglecting nonextensive contributions

To find the energies of the QTFIM in the limit where
the Ising interaction is a perturbation, we will use the dis-
placed basis and make use of Eq. (4b). We will then no-
tice that the perturbed energies can be exactly derived from
the exact solution of the TFIM. For J = 0 the two eigen-
states of HDicke are given by |�〉l = |0〉 ⊗ (⊗ν |←〉ν ) and
|�〉r = |0〉 ⊗ (⊗ν |→〉ν ). Treating HIsing as a perturbation the
most important point to realize is that the terms

− i

2
(yz + zy) sinh(2r̂) + 1

2
(zz − yy)[cosh(2r̂) − 1] (B1)

with γ δ = ∑
i σ

(i)
γ σ

(i+1)
δ and r̂ = g√

Nωc
(â† − â) do not give

rise to extensive corrections of the ground-state energy for
finite perturbation orders. The reason for that is the factor
1/

√
N in r̂. Hence to obtain extensive perturbative corrections

of the ground-state energy only the term zz = ∑
i σ

(i)
z σ (i+1)

z
is relevant. We reformulate the problem as finding the
ground-state energy per site e0 = E0/N of the Hamiltonian
H = H̃Dicke − J

∑N
i=1 σ z

i σ z
i+1 perturbatively in Jωc/g2 for

N → ∞. W.l.o.g. one can choose the eigenstate at order
zero perturbation theory as |�〉r . Since the magnetic and the
photonic part of H̃Dicke completely decouple we write only the
magnetic part in the following derivation.

If a spins of |�〉r are flipped, the energy of H̃Dicke is
− g2

4ωcN (N − 2a)2 = N/4(− g2

ωc
) + a g2

ωc
− a2 g2

ωcN . If a is finite

and N → ∞, this is equal to N/4(− g2

ωc
) + a g2

ωc
and the spec-

trum of HDicke is equidistant such that we can write

H̃Dicke ≈ −Ng2

4ωc
+ g2

ωc

∑
i

σ x
i

2
+ Ng2

2ωc
= Ng2

4ωc
+ g2

ωc
Ŝx.

(B2)
Comparing with the transverse-field Ising chain

HTFIM = −J
∑

i

σ z
i σ z

i+1 + hŜx, (B3)

we then immediately see that for h = g2/ωc a perturbation in
J/h yields the same ground-state energy corrections in HTFIM

as in the QTFIM. We conclude that given the perturbation
series for the transverse-field Ising chain as e0,TFIM(λ) with
λ = 2J/h as in Eq. (8) the one for the QTFIM is

e0,QTFIM(Jωc/g2) = e0,TFIM(2Jωc/g2) + g2

4ωc
. (B4)

In regions where the perturbative expansion converges this
can be expressed with the exact formula for the ground-state
energy of the Ising model in a transverse field [23] given by

e0,QTFIM(Jωc/g2)

= g2

4ωc
− g2

2ωc

1

2π

∫ 2π

0
dk
√

1 + λ2 + 2λ cos(k). (B5)

For J = 0, we obtain e0,QTFIM = −g2/(4ωc), which is consis-
tent with the solution of the Dicke Hamiltonian.

Approach 2: Mean-field approximation

We now show that taking expectation values of the pho-
tonic part in the high-field phase leads to the same mapping
as the previously described perturbative approach. To show
this we use the original form of the Hamiltonian and assume
that the photonic state of the system is a coherent state |α̃〉
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with α̃ = g
√

N/(2ωc). For the mean-field ansatz we write
â = 〈â〉 + δâ and â† = 〈â〉 + δâ† where we assume that
〈â†〉 = 〈â〉 as a consequence of coherent photonic states. In
this way we rewrite the QTFIM Hamiltonian as

HQTFIM =HIsing + g√
N

(2〈â〉 + δâ + δâ†)Ŝx

+ ωc [〈â〉2 + 〈â〉(δâ + δâ†) + δâ†δâ]. (B6)

Because we are interested only in extensive contributions
we discard all terms that are fluctuations of order

√
N . The

expectation value 〈â〉 = α̃ = g
√

N/(2ωc). This yields

HQTFIM ≈ HIsing + g2

ωc
Ŝx + g2

4ωc
N. (B7)

This is the same result as obtained with the perturbative
expansion.

APPENDIX C: PERTURBATIVE EXPANSION
IN THE STRONG-COUPLING LIMIT

Let us compute in perturbation theory the corrections to the
ground-state energy and the ground-state wave function for
the case of weak Ising couplings Jωc � g2. For this we start
with the analytically available solutions for the Dicke model

and treat the Ising part as a perturbation. For convenience, a
photonic displacement operator is defined as

D̂ph(x) = ex(â†−â), (C1)

where x ∈ R. This operator acts only on the photonic part of
the Hilbert space, whereas the displacement D̂ acts on both
the spin and the photon part degrees of freedom. Moreover,
we introduce α = g/(

√
Nωc).

1. Perturbation theory in the bare basis

The eigenbasis of the Dicke Hamiltonian can be written as∣∣ψ (0)
n,m,l

〉 = D̂†(|n〉 ⊗ |m, l〉) = D̂†
ph(mα)|n〉 ⊗ |m, l〉, (C2)

where |n〉 are the eigenstates of a†a and Sx|m, l〉 = m|m, l〉
with an index to take into account that the spin states might be
degenerate. The corresponding energy levels are

E (0)
n,m,l = nωc − g2

Nωc
m2 = nωc − ωcα

2m2. (C3)

Apparently, the ground state is degenerate twice. However,
for simplicity we do not consider this degeneracy since the
error due to this assumption vanishes for large N . Instead,
the correction for the ground state |ψ (0)

+ 〉 := |ψ (0)
0,N/2,0〉 with

positive m = N/2 is calculated:

|ψ (1)
+ 〉 := ∣∣ψ (1)

0,N/2,0

〉 = ∞∑
n=0

N/2∑
m=−N/2+1

∑
l

〈m, l|DHIsingD†|0, N/2, 0〉
E (0)

0,N/2,0 − E (0)
n,m,l

D†|n, m, l〉

= − J
∞∑

n=0

∑
m, l

m �= −N/2

N∑
i=1

〈m, l|σ z
i σ z

i+1|N/2, 0〉 〈n|D̂ph(mα)D†
ph(αN/2)|0〉

−ωc
(

αN
2

)2 − nωc + ωcα2m2
D̂†

ph(αm)|n〉 ⊗ |m, l〉, (C4)

where in the second line the values for the energies and the Ising operator were inserted and the magnetic and the photonic part
of the scalar product were separated.

The sum above can be simplified by considering the action of the z-Pauli matrices on the state |N/2, 0〉 = | →→ · · · 〉. We
introduce the notation

|ν〉 :=
∣∣∣∣→ → · · · → ←

ν
←
ν+1

→ · · ·
〉

= σ z
ν σ

z
ν+1| →→ · · · 〉. (C5)

Therefore, the scalar product 〈m, l|σ z
i σ z

i+1|N/2, 0〉 is zero only if |m, l〉 = |ν〉 for some ν = i and thus

∑
i

∑
m,l

〈m, l|σ z
i σ z

i+1|N/2, 0〉 〈n|D̂ph(mα)D†
ph(αN/2)|0〉

−ωc
(

αN
2

)2 − nωc + ωcα2m2
D̂†

ph(αm)|n〉 ⊗ |m, l〉

=
∑

i

∑
m

∑
ν

δm,N/2−2δν,i

〈n|D̂ph(mα)D†
ph(αN/2)|0〉

−ωc
(

αN
2

)2 − nωc + ωcα2m2
D̂†

ph(αm)|n〉|ν〉

= 〈n|D̂ph[(N/2 − 2)α]D̂ph(−αN/2)|0〉
−ωc

(
αN
2

)2 − nωc + ωc
(
α N−4

2

)2 D̂†
ph[α(N/2 − 2)]|n〉

∑
ν

|ν〉. (C6)

This sum can be simplified by applying D̂(α)D̂(β ) = D̂(α + β ) for any pair of real numbers α, β. Furthermore, we will use the
coherent state decomposition in terms of the number states D̂(α)|0〉 = exp (−|α|2/2)

∑∞
n=0 αn/

√
n!|n〉.
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Inserting (C6) into (C4) gives

|ψ (1)
+ 〉 = − J

∞∑
n=0

〈n|D̂ph(−2α)|0〉
ωcα2(4 − 2N ) − nωc

D̂†
ph[α(N/2 − 2)]|n〉

∑
ν

|ν〉

= − J
∑

n

e−2|α|2 (−2α)n

√
n!

1

ωcα2(4 − 2N ) − nωc
D̂†

ph[α(N/2 − 2)]|n〉
∑

ν

|ν〉. (C7)

Note that the first-order contribution vanishes for N → ∞ since α → 0 and α2N = const.

2. Perturbation theory in the displaced basis

An alternative perturbation theory calculation can be conducted on the displaced Hamiltonian, i.e., the Hamiltonian

D̂HD̂† = ωcâ†â − ωcαS2
x + D̂HIsingD̂†, (C8)

with the Ising part as perturbation. The unperturbed basis is |n〉 ⊗ |m, l〉 (same way as for the perturbation theory above). Let us
split the displaced Ising term into three parts:

D̂HIsingD̂† = 1

2
(zz + yy)︸ ︷︷ ︸

V̂1

− i

2
(yz + zy) sinh(r̂)︸ ︷︷ ︸

V̂2

+ 1

2
(zz − yy) cosh(r̂)︸ ︷︷ ︸

V̂3

. (C9)

The perturbation due to V̂1 is

−J
∑
n,ν

〈n, ν|V̂1|0, N/2〉
−α2

(
N
2

)2 + −α2
(

N−4
2

)2 |n〉 ⊗ |ν〉 = 0, (C10)

since (
σ z

ν σ
z
ν+1 + σ y

ν σ
y
ν+1

)| →→ · · · →〉 = |ν〉 − |ν〉, (C11)

where the state |ν〉 is defined as in Eq. (C5). The perturbation due to V̂2 is

−J
∑
n,ν

〈ν|V̂2|N/2〉〈n| sinh(2r̂)|0〉
α2(4 − 2N ) − nωc

|n〉 ⊗ |ν〉 = J
∑

n

〈n|D̂ph(2α) − D̂†
ph(2α)|0〉

2α2(4 − 2N ) − nωc
|n〉 ⊗

∑
ν

|ν〉, (C12)

since (
σ y

ν σ z
ν+1 + σ z

ν σ
y
ν+1

)| →→ · · · →〉 = −2i| →→ · · · →←
ν

←
ν+1

→ · · · ←〉 = −2i|ν〉 (C13)

and sinh x = (ex − e−x )/2. An analogous way shows for V3

−J
∑
n,ν

〈ν|V3|N/2〉〈n| cosh(2r̂)|0〉
α2(4 − 2N ) − nωc

|n〉 ⊗ |ν〉 = −J
∑

n

〈n|D̂ph(2α) + D̂†
ph(2α)|0〉

2α2(4 − 2N ) − nωc
|n〉 ⊗

∑
ν

|ν〉. (C14)

The sum of all three contributions is

−J
∑

n

〈n|D̂†
ph(2α)|0〉

α2(4 − 2N ) − nωc
|n〉 ⊗

∑
ν

|ν〉 = −J
∑

n

e−2|α|2 (−2α)n

√
n!

1

α2(4 − 2N ) − nωc
|n〉 ⊗

∑
ν

|ν〉, (C15)

which gives the same result for the first-order state correction as before if the inverse transformation is applied:

|ψ (1)
+ 〉 = −J

∑
n

e−2|α|2 (−2α)n

√
n!

1

α2(4 − 2N ) − nωc
D̂†

(
|n〉 ⊗

∑
ν

|ν〉
)

= −J
∑

n

e−2|α|2 (−2α)n

√
n!

1

ωcα2(4 − 2N ) − nωc
D̂†

ph[α(N/2 − 2)]|n〉
∑

ν

|ν〉. (C16)

In order to calculate the photon distribution, we trace over the spin part of the total state |ψ+〉 = |ψ (0)
+ 〉 + |ψ (1)

+ 〉 and obtain a
density matrix

ρ =
∑
m,l

〈m, l|ψ+〉〈ψ+|m, l〉 = ∣∣ψ (0)
+,ph

〉〈
ψ

(0)
+,ph

∣∣+ N
∣∣ψ (1)

+,ph

〉〈
ψ

(1)
+,ph

∣∣, (C17)
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FIG. 6. (a) Required cutoff of the photon number in order to reach an accuracy of δ = 0.01ωc depending on the number of spins for J and
g fixed. (b) Effect of the light-matter coupling constant g on the required maximum photon number for a chain of five spins and J/ωc = 0.

where the photonic states are defined as follows:∣∣ψ (0)
+,ph

〉
:= e− |α|2N2

8

∞∑
n=0

(−αN )n

2n
√

n!
|n〉,

∣∣ψ (1)
+,ph

〉
:= −J

∞∑
n=0

e−2|α|2 (−2α)n

√
n!

1

ωcα2(4 − 2N ) − nωc
D̂†

ph[α(N/2 − 2)]|n〉. (C18)

Then, the photon distribution P(n) is

P(n) = Tr(|n〉〈n|ρ)

= e− |α|2N2

4
(−αN )2n

22nn!
+ J2

∞∑
m=0

〈m|n〉〈n|
∞∑

k,k′=0

e−2|α|2 (−2α)k

√
k![ωcα2(4 − 2N ) − kωc]

e−2|α|2 (−2α)k′

√
k′![ωcα2(4 − 2N ) − k′ωc]

·D̂†
ph[α(N/2 − 2)]k〉〈k′|D̂ph[α(N/2 − 2)]m〉

= e− |α|2N2

4
(−αN )2n

22nn!
+ J2

∞∑
k,k′=0

e−2|α|2 (−2α)k

√
k![ωcα2(4 − 2N ) − kωc]

e−2|α|2 (−2α)k′

√
k′![ωcα2(4 − 2N ) − k′ωc]

·〈n|D̂†
ph[α(N/2 − 2)]k〉〈k′|D̂ph[α(N/2 − 2)]n〉. (C19)

APPENDIX D: CONDITIONAL DISPLACEMENT AND SQUEEZING OPERATORS IN THE WEAK-COUPLING LIMIT

For α � 1, i.e., g � ωc or large N , terms of order α2 or higher in the displaced QTFIM Hamiltonian can be dropped [see
Eqs. (4a) and (4b) with ω0 = 0]. Then

D̂HQTFIMD̂† ≈ ωc
[
â†â − α2Ŝ2

x

]− J

⎡⎣∑
〈i, j〉

σ z
i σ z

j − α i(â† − â)

⎛⎝∑
〈i, j〉

σ
y
i σ z

j + σ z
i σ

y
j

⎞⎠⎤⎦
= ωc

[
â†â − α2Ŝ2

x

]+ −J[zz − α i
(
â† − â

)
(yz + zy)] (D1)

with the same notation as used before. For aesthetic resaons,
one can change â → i â without changing eigenvalues. The
key point, however, is that[

Ŝ2
x , yz + zy

] = 0,

[zz, yz + zy] = 0, (D2)

and, therefore, we can define a conditional displacement

D̂yz ∝ exp (yz + zy)(â† − â), (D3)

which transforms the Hamiltonian into a diagonal form. This
principle might also work for higher orders, such as α2, where

terms describing two-photon generation also are included.
However, another operator than a conditional displacement
must be used in order to diagonalize a Hamiltonian with
squared annihilation and creation operators.

APPENDIX E: NUMERICAL CONSIDERATIONS:
CONVERGENCE

The analytical results are supported by numerical compu-
tations. Since the photonic part of the Hilbert space is infinite,
only the subspace including states with less than nmax photons
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is used for the matrix representation of the Hamiltonian.
Then the ground state and the ground-state energy can be
determined by finding the lowest eigenvalue of L × L ma-
trices with L ≡ 2N nmax. The quality of the approximation
was ensured by measuring the maximal difference of the
ground-state energy for nmax = ntest and nmax = ntest + 1,
which should approach zero as nmax is increased. Figure 6
shows the computational effort for a fixed δ.

Since for ω0 = 0 the ground state is two-fold degenerate
(there is one state with magnetization Mz = +M and another

one with Mz = −M), the numerically obtained magnetiza-
tion Mz can vary between −M and M. Theoretically, the
computed eigenvector can be an arbitrary superposition of
these two states with magnetization ±M which span the
two-dimensional eigenspace corresponding to the extracted
ground-state energy. In order to lift this degeneracy and
only get the maximum magnetization +M, a small longi-
tudinal field ω0 was added. ω0 was chosen small enough
to still have a good approximation to the original QTFIM
for ω0 = 0.

[1] S. Suzuki, J.-I. Inoue, and B. Chakrabarti, Quantum Ising
Phases and Transitions in Transverse Ising Models, Lecture
Notes in Physics, Vol. 862 (Springer-Verlag, Berlin, 2013).

[2] S. Haroche and D. Kleppner, Cavity quantum electrodynamics,
Phys. Today 42(1), 24 (1989).

[3] P. R. Berman, Cavity Quantum Electrodynamics (Academic
Press, Boston, 1994).

[4] H. Walther, B. T. Varcoe, B. Englert, and T. Becker, Cavity
quantum electrodynamics, Rep. Prog. Phys. 69, 1325 (2006).

[5] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Cold
atoms in cavity-generated dynamical optical potentials, Rev.
Mod. Phys. 85, 553 (2013).

[6] I. I. Rabi, On the process of space quantization, Phys. Rev. 49,
324 (1936).

[7] R. H. Dicke, Coherence in spontaneous radiation processes,
Phys. Rev. 93, 99 (1954).

[8] G. Mazza and A. Georges, Superradiant Quantum Materials,
Phys. Rev. Lett. 122, 017401 (2019).

[9] M. Kiffner, J. R. Coulthard, F. Schlawin, A. Ardavan, and D.
Jaksch, Manipulating quantum materials with quantum light,
Phys. Rev. B 99, 085116 (2019).

[10] X. Wang, E. Ronca, and M. A. Sentef, Cavity quantum elec-
trodynamical Chern insulator: Towards light-induced quantized
anomalous Hall effect in graphene, Phys. Rev. B 99, 235156
(2019).

[11] M. Kiffner, J. Coulthard, F. Schlawin, A. Ardavan, and D.
Jaksch, Mott polaritons in cavity-coupled quantum materials,
New J. Phys. 21, 073066 (2019).

[12] M. A. Sentef, J. Li, F. Künzel, and M. Eckstein, Quantum to
classical crossover of Floquet engineering in correlated quan-
tum systems, arXiv:2002.12912.

[13] E. Orgiu, J. George, J. Hutchison, E. Devaux, J. F. Dayen,
B. Doudin, F. F. Stellacci, C. Genet, J. Schachenmayer, C.
Genes, G. Pupillo, P. Samori, and T. W. Ebbesen, Conductivity
in organic semiconductors hybridized with the vacuum field,
Nat. Mater. 14, 1123 (2015).

[14] X. Zhong, T. Chervy, S. Wang, J. George, A. Thomas, J.
Hutchinson, E. Devaux, C. Genet, and T. W. Ebbesen, Non-
radiative energy transfer mediated by hybrid light-matter states,
Angew. Chem. 55, 6202 (2016).

[15] X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C.
Genet, J. Hutchinson, and T. W. Ebbesen, Energy transfer be-
tween spatially separated entangled molecules, Angew. Chem.
56, 9034 (2017).

[16] J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W.
Ebbesen, Modifying chemical landscapes by coupling to vac-
uum fields, Angew. Chem. Int. Ed. 51, 1592 (2012).

[17] T. Schwartz, J. A. Hutchinson, J. Léonard, C. Genet, S. Haacke,
and T. W. Ebbesen, Polariton dynamics under strong light–
molecule coupling, ChemPhysChem 14, 125 (2013).

[18] A. Thomas, E. Devaux, K. Nagarajan, T. Chervy, M. Seidel,
D. Hagenmüller, S. Schütz, J. Schachenmayer, C. Genet, G.
Pupillo, and T. W. Ebbesen, Exploring superconductivity un-
der strong coupling with the vacuum electromagnetic field,
arXiv:1911.01459.

[19] F. Mivehvar, F. Piazza, and H. Ritsch, Disorder-Driven Density
and Spin Self-Ordering of a Bose-Einstein Condensate in a
Cavity, Phys. Rev. Lett. 119, 063602 (2017).

[20] R. M. Kroeze, Y. Guo, V. D. Vaidya, J. Keeling, and B. L. Lev,
Spinor Self-Ordering of a Quantum Gas in a Cavity, Phys. Rev.
Lett. 121, 163601 (2018).

[21] C. F. Lee and N. F. Johnson, First-Order Superradiant Phase
Transitions in a Multiqubit Cavity System, Phys. Rev. Lett. 93,
083001 (2004).

[22] Y. Zhang, L. Yu, J.-Q. Liang, G. Chen, S. Jia, and F. Nori,
Quantum phases in circuit QED with a superconducting qubit
array, Sci. Rep. 4, 4083 (2015).

[23] P. Pfeuty, The one-dimensional Ising model with a transverse
field, Ann. Phys. 57, 79 (1970).

[24] M. Reitz, C. Sommer, and C. Genes, Langevin Approach to
Quantum Optics with Molecules, Phys. Rev. Lett. 122, 203602
(2019).

[25] R. Liebmann, Statistical Mechanics of Periodic Frustrated Ising
Systems (Springer, Berlin, 1986).

[26] K. Coester, D. G. Joshi, M. Vojta, and K. P. Schmidt, Linked-
cluster expansions for quantum magnets on the hypercubic
lattice, Phys. Rev. B 94, 125109 (2016).

[27] R. Moessner and S. L. Sondhi, Ising models of quantum frus-
tration, Phys. Rev. B 63, 224401 (2001).

[28] K. Kanô and S. Naya, Antiferromagnetism. The kagomé Ising
net, Prog. Theor. Phys. 10, 158 (1953).

[29] J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, Order as an
effect of disorder, J. Phys. France 41, 1263 (1980).

[30] E. F. Shender, Antiferromagnetic garnets with fluctuationally
interacting sublattices, Zh. Eksp. Teor. Fiz. 83, 326 (1982).

[31] D. Blankschtein, M. Ma, A. N. Berker, G. S. Grest, and C. M.
Soukoulis, Orderings of a stacked frustrated triangular system
in three dimensions, Phys. Rev. B 29, 5250 (1984).

[32] S. V. Isakov and R. Moessner, Interplay of quantum and thermal
fluctuations in a frustrated magnet, Phys. Rev. B 68, 104409
(2003).

[33] M. Powalski, K. Coester, R. Moessner, and K. P. Schmidt,
Disorder by disorder and flat bands in the kagome transverse
field Ising model, Phys. Rev. B 87, 054404 (2013).

023131-14

https://doi.org/10.1063/1.881201
https://doi.org/10.1063/1.881201
https://doi.org/10.1063/1.881201
https://doi.org/10.1063/1.881201
https://doi.org/10.1063/1.881201
https://doi.org/10.1088/0034-4885/69/5/R02
https://doi.org/10.1088/0034-4885/69/5/R02
https://doi.org/10.1088/0034-4885/69/5/R02
https://doi.org/10.1088/0034-4885/69/5/R02
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1103/PhysRev.49.324
https://doi.org/10.1103/PhysRev.49.324
https://doi.org/10.1103/PhysRev.49.324
https://doi.org/10.1103/PhysRev.49.324
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRevLett.122.017401
https://doi.org/10.1103/PhysRevLett.122.017401
https://doi.org/10.1103/PhysRevLett.122.017401
https://doi.org/10.1103/PhysRevLett.122.017401
https://doi.org/10.1103/PhysRevB.99.085116
https://doi.org/10.1103/PhysRevB.99.085116
https://doi.org/10.1103/PhysRevB.99.085116
https://doi.org/10.1103/PhysRevB.99.085116
https://doi.org/10.1103/PhysRevB.99.235156
https://doi.org/10.1103/PhysRevB.99.235156
https://doi.org/10.1103/PhysRevB.99.235156
https://doi.org/10.1103/PhysRevB.99.235156
https://doi.org/10.1088/1367-2630/ab31c7
https://doi.org/10.1088/1367-2630/ab31c7
https://doi.org/10.1088/1367-2630/ab31c7
https://doi.org/10.1088/1367-2630/ab31c7
http://arxiv.org/abs/arXiv:2002.12912
https://doi.org/10.1038/nmat4392
https://doi.org/10.1038/nmat4392
https://doi.org/10.1038/nmat4392
https://doi.org/10.1038/nmat4392
https://doi.org/10.1002/anie.201600428
https://doi.org/10.1002/anie.201600428
https://doi.org/10.1002/anie.201600428
https://doi.org/10.1002/anie.201600428
https://doi.org/10.1002/anie.201703539
https://doi.org/10.1002/anie.201703539
https://doi.org/10.1002/anie.201703539
https://doi.org/10.1002/anie.201703539
https://doi.org/10.1002/anie.201107033
https://doi.org/10.1002/anie.201107033
https://doi.org/10.1002/anie.201107033
https://doi.org/10.1002/anie.201107033
https://doi.org/10.1002/cphc.201200734
https://doi.org/10.1002/cphc.201200734
https://doi.org/10.1002/cphc.201200734
https://doi.org/10.1002/cphc.201200734
http://arxiv.org/abs/arXiv:1911.01459
https://doi.org/10.1103/PhysRevLett.119.063602
https://doi.org/10.1103/PhysRevLett.119.063602
https://doi.org/10.1103/PhysRevLett.119.063602
https://doi.org/10.1103/PhysRevLett.119.063602
https://doi.org/10.1103/PhysRevLett.121.163601
https://doi.org/10.1103/PhysRevLett.121.163601
https://doi.org/10.1103/PhysRevLett.121.163601
https://doi.org/10.1103/PhysRevLett.121.163601
https://doi.org/10.1103/PhysRevLett.93.083001
https://doi.org/10.1103/PhysRevLett.93.083001
https://doi.org/10.1103/PhysRevLett.93.083001
https://doi.org/10.1103/PhysRevLett.93.083001
https://doi.org/10.1038/srep04083
https://doi.org/10.1038/srep04083
https://doi.org/10.1038/srep04083
https://doi.org/10.1038/srep04083
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1103/PhysRevLett.122.203602
https://doi.org/10.1103/PhysRevLett.122.203602
https://doi.org/10.1103/PhysRevLett.122.203602
https://doi.org/10.1103/PhysRevLett.122.203602
https://doi.org/10.1103/PhysRevB.94.125109
https://doi.org/10.1103/PhysRevB.94.125109
https://doi.org/10.1103/PhysRevB.94.125109
https://doi.org/10.1103/PhysRevB.94.125109
https://doi.org/10.1103/PhysRevB.63.224401
https://doi.org/10.1103/PhysRevB.63.224401
https://doi.org/10.1103/PhysRevB.63.224401
https://doi.org/10.1103/PhysRevB.63.224401
https://doi.org/10.1143/ptp/10.2.158
https://doi.org/10.1143/ptp/10.2.158
https://doi.org/10.1143/ptp/10.2.158
https://doi.org/10.1143/ptp/10.2.158
https://doi.org/10.1051/jphys:0198000410110126300
https://doi.org/10.1051/jphys:0198000410110126300
https://doi.org/10.1051/jphys:0198000410110126300
https://doi.org/10.1051/jphys:0198000410110126300
https://doi.org/10.1103/PhysRevB.29.5250
https://doi.org/10.1103/PhysRevB.29.5250
https://doi.org/10.1103/PhysRevB.29.5250
https://doi.org/10.1103/PhysRevB.29.5250
https://doi.org/10.1103/PhysRevB.68.104409
https://doi.org/10.1103/PhysRevB.68.104409
https://doi.org/10.1103/PhysRevB.68.104409
https://doi.org/10.1103/PhysRevB.68.104409
https://doi.org/10.1103/PhysRevB.87.054404
https://doi.org/10.1103/PhysRevB.87.054404
https://doi.org/10.1103/PhysRevB.87.054404
https://doi.org/10.1103/PhysRevB.87.054404


ISING MODEL IN A LIGHT-INDUCED QUANTIZED … PHYSICAL REVIEW RESEARCH 2, 023131 (2020)

[34] M. Hermele, M. P. A. Fisher, and L. Balents, Pyrochlore
photons: The U (1) spin liquid in a s = 1

2 three-dimensional
frustrated magnet, Phys. Rev. B 69, 064404 (2004).

[35] N. Shannon, O. Sikora, F. Pollmann, K. Penc, and P. Fulde,
Quantum Ice: A Quantum Monte Carlo Study, Phys. Rev. Lett.
108, 067204 (2012).

[36] J. Röchner, L. Balents, and K. P. Schmidt, Spin liquid and quan-
tum phase transition without symmetry breaking in a frustrated
three-dimensional Ising model, Phys. Rev. B 94, 201111(R)
(2016).

[37] D. Braak, Integrability of the Rabi Model, Phys. Rev. Lett. 107,
100401 (2011).

[38] C. Emary and T. Brandes, Quantum Chaos Triggered by Precur-
sors of a Quantum Phase Transition: The Dicke Model, Phys.
Rev. Lett. 90, 044101 (2003).

[39] D. Braak, Solution of the Dicke model for N = 3, J. Phys. B 46,
224007 (2013).

[40] M. Tavis and F. W. Cummings, Exact solution for an n-
molecule—radiation-field Hamiltonian, Phys. Rev. 170, 379
(1968).

[41] E. T. Jaynes and F. W. Cummings, Comparison of quantum and
semiclassical radiation theories with application to the beam
maser, Proc. IEEE 51, 89 (1963).

[42] D. Z. Rossatto, C. J. Villas-Bôas, M. Sanz, and E. Solano,
Spectral classification of coupling regimes in the quantum Rabi
model, Phys. Rev. A 96, 013849 (2017).

[43] P. Forn-Díaz, L. Lamata, E. Rico, J. Kono, and E. Solano,
Ultrastrong coupling regimes of light-matter interaction,
Rev. Mod. Phys. 91, 025005 (2019).

[44] K. Hepp and E. H. Lieb, On the superradiant phase transition
for molecules in a quantized radiation field: The Dicke maser
model, Ann. Phys. 76, 360 (1973).

[45] I. Brankov, V. Zagrebnov, and I. Tonchev, Asymptotically exact
solution of the generalized Dicke model, Theor. Math. Phys. 22,
13 (1975).

[46] N. Bogolubov and V. Plechko, A class of exactly soluble many-
body Hamiltonians with the interaction of substance and boson
field, Physica A 82, 163 (1976).

[47] Y. K. Wang and F. T. Hioe, Phase transition in the Dicke model
of superradiance, Phys. Rev. A 7, 831 (1973).

[48] H. A. Kramers and G. H. Wannier, Statistics of the two-
dimensional ferromagnet. Part I, Phys. Rev. 60, 252 (1941).

[49] L. den Ouden, H. Capel, and J. Perk, Systems with sep-
arable many-particle interactions. II, Physica A 85, 425
(1976).

[50] H. Capel, L. D. Ouden, and J. Perk, Stability of critical be-
haviour, critical-exponent renormalization and first-order tran-
sitions, Physica A 95, 371 (1979).

[51] S. Gammelmark and K. Mølmer, Phase transitions and
Heisenberg limited metrology in an Ising chain interacting
with a single-mode cavity field, New J. Phys. 13, 053035
(2011).

[52] P. Nevado and D. Porras, Rabi lattice models with dis-
crete gauge symmetry: Phase diagram and implementation in
trapped-ion quantum simulators, Phys. Rev. A 92, 013624
(2015).

[53] S. Viola Kusminskiy, H. X. Tang, and F. Marquardt, Coupled
spin-light dynamics in cavity optomagnonics, Phys. Rev. A 94,
033821 (2016).

[54] J. Gelhausen, M. Buchhold, A. Rosch, and P. Strack, Quantum-
optical magnets with competing short- and long-range interac-
tions: Rydberg-dressed spin lattice in an optical cavity, SciPost
Phys. 1, 004 (2016).

[55] X.-L. Deng, D. Porras, and J. I. Cirac, Effective spin quantum
phases in systems of trapped ions, Phys. Rev. A 72, 063407
(2005).

[56] F. Mivehvar, H. Ritsch, and F. Piazza, Cavity-Quantum-
Electrodynamical Toolbox for Quantum Magnetism, Phys. Rev.
Lett. 122, 113603 (2019).

[57] M. Landini, N. Dogra, K. Kroeger, L. Hruby, T. Donner, and
T. Esslinger, Formation of a Spin Texture in a Quantum Gas
Coupled to a Cavity, Phys. Rev. Lett. 120, 223602 (2018).

[58] J. A. Muniz, D. Barberena, R. J. Lewis-Swan, D. J. Young,
J. R. K. Cline, A. M. Rey, and J. K. Thompson, Exploring non-
equilibrium phases of matter with a million long-lived optical
dipoles in a cavity, arXiv:1910.00439.

023131-15

https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevLett.108.067204
https://doi.org/10.1103/PhysRevLett.108.067204
https://doi.org/10.1103/PhysRevLett.108.067204
https://doi.org/10.1103/PhysRevLett.108.067204
https://doi.org/10.1103/PhysRevB.94.201111
https://doi.org/10.1103/PhysRevB.94.201111
https://doi.org/10.1103/PhysRevB.94.201111
https://doi.org/10.1103/PhysRevB.94.201111
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.90.044101
https://doi.org/10.1103/PhysRevLett.90.044101
https://doi.org/10.1103/PhysRevLett.90.044101
https://doi.org/10.1103/PhysRevLett.90.044101
https://doi.org/10.1088/0953-4075/46/22/224007
https://doi.org/10.1088/0953-4075/46/22/224007
https://doi.org/10.1088/0953-4075/46/22/224007
https://doi.org/10.1088/0953-4075/46/22/224007
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1103/PhysRevA.96.013849
https://doi.org/10.1103/PhysRevA.96.013849
https://doi.org/10.1103/PhysRevA.96.013849
https://doi.org/10.1103/PhysRevA.96.013849
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1016/0003-4916(73)90039-0
https://doi.org/10.1016/0003-4916(73)90039-0
https://doi.org/10.1016/0003-4916(73)90039-0
https://doi.org/10.1016/0003-4916(73)90039-0
https://doi.org/10.1007/BF01036490
https://doi.org/10.1007/BF01036490
https://doi.org/10.1007/BF01036490
https://doi.org/10.1007/BF01036490
https://doi.org/10.1016/0378-4371(75)90044-8
https://doi.org/10.1016/0378-4371(75)90044-8
https://doi.org/10.1016/0378-4371(75)90044-8
https://doi.org/10.1016/0378-4371(75)90044-8
https://doi.org/10.1103/PhysRevA.7.831
https://doi.org/10.1103/PhysRevA.7.831
https://doi.org/10.1103/PhysRevA.7.831
https://doi.org/10.1103/PhysRevA.7.831
https://doi.org/10.1103/PhysRev.60.252
https://doi.org/10.1103/PhysRev.60.252
https://doi.org/10.1103/PhysRev.60.252
https://doi.org/10.1103/PhysRev.60.252
https://doi.org/10.1016/0378-4371(76)90019-4
https://doi.org/10.1016/0378-4371(76)90019-4
https://doi.org/10.1016/0378-4371(76)90019-4
https://doi.org/10.1016/0378-4371(76)90019-4
https://doi.org/10.1016/0378-4371(79)90024-4
https://doi.org/10.1016/0378-4371(79)90024-4
https://doi.org/10.1016/0378-4371(79)90024-4
https://doi.org/10.1016/0378-4371(79)90024-4
https://doi.org/10.1088/1367-2630/13/5/053035
https://doi.org/10.1088/1367-2630/13/5/053035
https://doi.org/10.1088/1367-2630/13/5/053035
https://doi.org/10.1088/1367-2630/13/5/053035
https://doi.org/10.1103/PhysRevA.92.013624
https://doi.org/10.1103/PhysRevA.92.013624
https://doi.org/10.1103/PhysRevA.92.013624
https://doi.org/10.1103/PhysRevA.92.013624
https://doi.org/10.1103/PhysRevA.94.033821
https://doi.org/10.1103/PhysRevA.94.033821
https://doi.org/10.1103/PhysRevA.94.033821
https://doi.org/10.1103/PhysRevA.94.033821
https://doi.org/10.21468/SciPostPhys.1.1.004
https://doi.org/10.21468/SciPostPhys.1.1.004
https://doi.org/10.21468/SciPostPhys.1.1.004
https://doi.org/10.21468/SciPostPhys.1.1.004
https://doi.org/10.1103/PhysRevA.72.063407
https://doi.org/10.1103/PhysRevA.72.063407
https://doi.org/10.1103/PhysRevA.72.063407
https://doi.org/10.1103/PhysRevA.72.063407
https://doi.org/10.1103/PhysRevLett.122.113603
https://doi.org/10.1103/PhysRevLett.122.113603
https://doi.org/10.1103/PhysRevLett.122.113603
https://doi.org/10.1103/PhysRevLett.122.113603
https://doi.org/10.1103/PhysRevLett.120.223602
https://doi.org/10.1103/PhysRevLett.120.223602
https://doi.org/10.1103/PhysRevLett.120.223602
https://doi.org/10.1103/PhysRevLett.120.223602
http://arxiv.org/abs/arXiv:1910.00439

