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Optomechanical transport of cold atoms induced by structured light
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Optomechanical pattern forming instabilities in a cloud of cold atoms lead to self-organized spatial structures
of light and atoms. Here, we consider the optomechanical self-structuring of a cold atomic cloud in the presence
of a phase structured input field, carrying orbital angular momentum. For a planar ring cavity setup, a model
of coupled cavity field and atomic density equations describes a wide range of drifting modulation instabilities

in the transverse plane. This leads to the formation of rotating self-organized rings of light-atom lattices. Using
linear stability analysis and numerical simulations of the coupled atomic and optical dynamics, we demonstrate
the presence of macroscopic atomic transport corresponding to the pattern rotation, induced by the structured

pump phase profile.

DOLI: 10.1103/PhysRevResearch.2.023126

I. INTRODUCTION

The spontaneous emergence of spatiotemporal order is a
prominent feature of physical systems driven far from equi-
librium [1]. Optical systems provide valuable platforms for
studying spatial self-organization, where the self-sustained
patterns are typically encoded in the internal excitations of
a nonlinear medium [2,3]. Besides their fundamental interest,
optical spatial structures offer potential applications in infor-
mation processing such as optical memories and registers [4].

Recent experiments have provided paradigmatic examples
of spatial self-organization in transverse nonlinear optics with
cold atoms such as density, electronic, and magnetic spatial
ordering [5-7]. In the first case, the bunching of atoms due
to optomechanical forces can provide positive feedback and
lead to spatial instabilities [8]. Other mechanisms for pattern
formation in cold atoms rely instead on optical pumping and
internal state nonlinearities. In the regime of quantum degen-
eracy, the nonequilibrium phase transition corresponding to
the onset of spatial self-organization has been interpreted as
a quantum phase transition [9,10]. Multimodal configurations
have been shown to significantly enrich the physical scenario,
allowing the realization of frustrated interactions and super-
solid states with ultracold atomic gases [11,12].

The introduction of orbital angular momentum of light
(OAM) and its relative ease of generation and control paved
the way to a plethora of applications in optical manipula-
tion and information technologies [13,14]. Focusing on cold
atoms, the use of OAM modes enables the transfer of angular
momentum to both motional and internal atomic degrees of
freedom [15]. Macroscopic rotation of cold atomic gases is
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also achieved in the dispersive regime by means of rotating
ring lattice trapping potentials [16,17]. Such geometries and
related configurations, when applied to cold atoms, offer the
possibility to engineer classical or quantum transport phenom-
ena and simulate topological condensed matter effects such as
fractional quantum Hall physics [18,19].

In this work we extend previous studies of transverse op-
tomechanical instabilities in cold atomic clouds, allowing the
input field to have a spatially dependent phase structure and
carrying nonzero OAM. Externally controlled phase gradients
are known to induce drifting pattern dynamics in the trans-
verse plane, as demonstrated with hot atomic vapors [20,21],
and can be applied to control the motion of spatial dissipative
solitons [22-24]. Moreover, drifting dynamics induced by
OAM was observed for patterned states in a single mirror
system with a photorefractive nonlinear crystal [25].

For a cold atomic gas placed within a ring cavity under
the action of an input beam with OAM and with a purely
optomechanical nonlinearity, we show that the coupled light-
atom dynamics in the plane transverse to the cavity axis
results in circular drift motions of bunched atoms. This novel
mechanism is inherently associated with the spontaneous
breaking of a continuous rotational symmetry via pattern
formation coupled to the optomechanics due to the input
OAM and can be used to engineer transport of cold atoms
via self-organized potentials with ring geometries for a wide
range of parameters that are experimentally achievable. Our
atomic ensemble is assumed to be kept at constant temperature
by means of optical molasses, providing strong damping
to the center-of-mass dynamics. Furthermore, dealing with
density redistribution-induced interactions, atoms behave as
a collection of linear scatterers. This opens the possibility
of extending the present results to soft matter candidates
for optomechanical self-organization such as suspensions of
colloidal particles [26-28].

The paper is organized as follows. In Sec. II we review the
known features of optomechanical self-structuring in a ring
cavity for a spatially homogeneous input pump. In Sec. III
we discuss drifting pattern dynamics induced by OAM in the
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FIG. 1. Sketch of our cavity setup. A structured beam with am-
plitude A, (r) and phase exp (il¢) drives a single longitudinal cavity
mode. The ring cavity has effective length L and mirror transmittivity
7. The intracavity field E(r, ¢) interacts with a cloud of two-level
atoms of thickness /, average atomic density Ny, and temperature 7.

pump profile, which leads to the formation of self-organized
rotating ring lattices. Finally, in Sec. IV, we compare our
predictions with numerical results from particle dynamics
simulations, showing the presence of macroscopic optome-
chanical transport corresponding to the pattern rotation.

II. THE MODEL

In this section we discuss a theoretical model, adapted from
Refs. [29,30], describing the transverse dynamics of the cavity
field and the density of the atomic cloud. A linear stability
analysis provides the threshold condition for optomechanical
modulation instabilities (MI) of the flat stationary states.

A. Model equations

We consider a cold thermal cloud of two-level atoms within
a planar ring cavity geometry of effective length L, sketched
in Fig. 1.

Theoretical models describing the coupled dynamics of
cavity field and density modulations of a cold atomic gas
involve the paraxial wave equation for a single longitudinal
mode of the cavity field E(r, ¢) coupled to the atomic density
distribution N(r, t) = Ny n(r, t), where N, is the average den-
sity of the sample and r denotes the transverse spatial coordi-
nate [30]. The field equation is derived in the slowly varying
envelope, rotating wave, and mean-field approximations as
follows [31]:

oE .
= —K{(l +i0)E + Af(r) —

)4 )
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ey

where 0 is the cavity-pump detuning, describing the linear
shift on the cavity field, A;(r) represents a spatially dependent
pump, and diffraction is described by the transverse Laplacian
V2. Here we focus on a pump profile of the form A;(r) =
Aj(r)exp (ilp), where A;(r) is a generic radial profile and
r, ¢ are the radial and azimuthal coordinates, respectively.
In addition, k = ct /L represents the cavity linewidth and

Ja = /AL/4xt the diffraction length, where A is the light
wavelength, T the mirror trasmissivity, and ¢ the speed of light
in vacuum. The response of the two-level saturable medium'
is parametrized in terms of the complex susceptibility y =
2C(1 +iA), with A =2§/I", where § is the light detuning
with respect to the atomic resonance. Finally, the parameter
C = by/27(1 4+ A?) is known as the cooperativity parameter
and it depends on the optical thickness of the sample at
resonance by, t, and A. For our description of atomic motion,
we focus on the limit when the population of the excited
atomic state is negligible. This is captured by the saturation
parameter’ s = |E(r,¢)|>. In general, the resulting dipole
force fyip acting on the atom center of mass can be derived
from the AC Stark potential:

ATA Vs(r,t)

faip = — V1 Usip(r, 1) = 4 1+s(r, 1)

2

Note the dependence of Eq. (2) on the detuning A, such
that the atom is trapped in high- (low-) intensity regions when
A < 0 (A > 0). Assuming the presence of optical molasses,
we adopt a classical treatment of positions r; and momenta

p; (i, j =1,...,N),leading to the canonical set of stochastic
differential equations:
dr; _pj  dp;

_ P o) — Y g
dl’ - m’ dt _fdlp(rj3t) Vm +‘S;:j(t)9 (3)

where m is the atomic mass, y describes friction (momen-
tum damping), and &;(7) is a stochastic variable such that
(§;(t)) =0 and (g,(r)g}(r’» =2D,8;y8(t —t'), with D, be-
ing the diffusion constant in the space of momenta. In the
thermodynamic limit (N — o00), the above equations map to
the Chandrasekhar equation for the phase space distribution
function f(r, p, t) in the one-particle picture [27,32]:

0 p m_,
gf = n_1 “Vif+ fdip(rv t)- fo + )/|:Vp(fp) + Evpfil,

“

where 8 = 1/kgT. Note that, in the presence of momentum
damping, the collisional contribution in Eq. (4) is replaced by
the term Vp(fp) + %Vﬁ f, describing relaxation in momen-
tum space. In the limit of strong viscous damping (more gen-
erally, when 7 > 1/y), the momentum p is eliminated from
the dynamics and one derives the Smoluchowski equation for
the density distribution n(r, t), by direct integration of Eq. (4)
in momentum space, namely,
on 5

ol —BDV | - [nf4p] +DVin, )
where diffusive dynamics, as an effect of the optical molasses,
is characterized by the constant D = 1/ymp [33]. Clearly,
in the case of hot atoms (8 — 0), the diffusive term dom-
inates and one has n(r,t) =~ 1, i.e., the homogeneous state.

!'The characteristic dependence is obtained by adiabatic elimination
of the atomic variables.

The cavity field E is rescaled by the saturation intensity at de-
tuning A, i.e., [Ly(1 + A?)]'/2, where I, represents the saturation
intensity at resonance.
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Generally speaking, MI in our system is due to a competition
between two-level and density-driven nonlinearities. In what
follows, we perform a linear stability analysis, showing that
density inhomogeneities alone are sufficient to achieve (op-
tomechanical) MI. The features of the resulting self-organized
states in the presence of OAM are discussed in Sec. II1.

B. Linear stability analysis

The family of homogeneous stationary states of our system
is simply found imposing that all derivatives in both Eqs. (1)
and (5) vanish. For the cavity field, i.e., dEy/dt = 0 and
V2 Ey = 0 in Eq. (1), this yields

A,=|:1+i0—|— 4 :|Eo ©)

1+ |E|?

with ng = 1. A consequence of the two-level nonlinear term
in Eq. (6) is that the homogeneous field intensity |Ey|?, as a
function of the pump intensity A;, is not necessarily single

J

—1—i(q®? +2CA +0)
M=i" 0
—D'q*0 Epx

By imposing the marginal stability condition, i.e., v =0 or
det(M) = 0, one finds the following analytical threshold:
By — 1+ (g2 46 +2CA)»>
O T 4CAG (2 + 6 +2CA)

(10)

leading to the critical wave vector g> = 1 — (9 + 2CA). Here
we study the linear stability properties by spanning two
different parameter regions. The two instability diagrams in
Fig. 2 show the dependence of the linear growth rate (GR) as
a function of |Ey|?> vs detuning A [Fig. 2(a)]® and |E|? vs.
temperature T [Fig. 2(b)]. The values of the growth rate are
obtained by computing numerically the spectrum of eigenval-
ues and eigenvectors of the matrix M in Eq. (9) for the critical
wave vector q..* Finally, the homogeneously pumped system
spontaneously selects a hexagonal patterned state for values
of |Ey| close to the threshold in Eq. (10) [34]. We remark
here that, assuming low saturation, purely optomechanical
structures occur in the proximity of the threshold only since,
for stronger pumping, the electronic nonlinearity becomes
relevant.

III. PATTERN DYNAMICS WITH STRUCTURED PHASE

In this section we analyze the effect of the spatially depen-
dent pump A;(r’) on the transverse geometry and dynamics of

3Only the case A > 0 is shown as we have symmetric behavior for
A < 0.

“In our representation 8E(q, t') = ae’ @) 4 pre=iar' ) he
modes with the fastest growth in time are those with the lowest values
of —Im[v]. Figure 2 shows density plots of —Im[v] as a function of
field intensity and detuning (a) and temperature (b).

valued [31]. It is easy to see that, in the low saturation limit,
our model Egs. (1) and (5) read as follows:

JoF

o =—(14+i0)E +A;(x") —2iCARE + iViE, @)
on / 2 /72
o =oD'V, - [nV,|E*]+D'Vn, )

where time and space coordinates are rescaled as t’ = «z, 1’ =
r//a, D' = D/ka, while the constant o = Al'A/4kpT de-
notes an optomechanical coupling strength. Moreover, Eq. (6)
now simply reads A; = [1 4+ i(6 + 2CA)] Ey, so that there
is always a one-to-one correspondence between the values
of |A;]? and |Ey|? in the low saturation limit. Perturbations
around steady-state values E( and ng are introduced in Fourier
space as SE(q, 1) = ae' @7 4 pre= @) 5u(q, 1)) =
ce @) 4 o=@+ Thyg, defining the variable x =
(a, b, ¢)T, the linearized system obtained from Egs. (7) and (8)
can be cast in the usual matrix form (M — vI)x = 0, where M
is the following matrix:

0 —2iCAE,
—1+i(q* +2CA +6) 2CAE; |. )
—D’q2aE0 _D/q2

(

the patterned states of our system. Before presenting numeri-
cal results, we show how drifting pattern dynamics arises from
Egs. (7) and (8), based on the argument from Refs. [22,35].

A. Drifting pattern dynamics

In order to include OAM in our system, the pump rate
A;(r') must have an azimuthally dependent phase exp(ilg),
where [ € Z. Indeed, the factor exp (il¢) generates [ inter-
twined phase fronts and a nontrivial topological structure
due to the phase singularity at r' = 0 [14]. In general, any
phase profile including the factor exp (il¢) is responsible for
a nonvanishing contribution of OAM through the transverse
plane. Let us further simplify the analysis recalling that the
stationary solution of Eq. (8) is given by the Gibbs distribution
[29]:

expl—BUaip(rHl exp[—a|E(')*]
Jv expl—BUap(x)] [, expl—o [E@)]

an

Neq (l‘/) =

The steady states of the coupled system above MI can
in principle be obtained by integrating numerically Eq. (7),
simply eliminating the density distribution. Thus, Eq. (11) acts
back as the nonlinear term in the field equation, namely [30],

oE

Fi —(1+i0)E +A;(x') — 2iCA neg(|EI*)E +iV3E,
(12)
where we emphasize here the dependence of n.q(r’) on the
field intensity. Therefore, the coupled system of Egs. (7)
and (8) reduces now to Eq. (12) only. Let us consider

the local transformation E(r',t) = E(r',t)exp(ilg). The

023126-3



BAIO, ROBB, YAO, AND OPPO

PHYSICAL REVIEW RESEARCH 2, 023126 (2020)

@) ~Tm[v]
010 1%10°5
0.08 _
I 8x 107
0.06/
N? 6x10°°
=
0.04
4% 1076
0.02
| 2% 1076
0.00 L — ia s :
5 10 15 20 25 30
0
Detuning A (adim.)
© ~Im{v] 8.x 107
0.08 — A
0.06 6.x 1073
Lﬂo 0.04 4.x10°°
0.02
- 2.x107°
0.00

50 100 150 200 250 300
Temperature T (uK)

FIG. 2. 2D diagrams from linear stability analysis showing the
growth rate (—Im[v]) dependence in two parameter spaces. (a) GR
as a function of |Ep|*> and A, sufficiently far from the atomic
resonance (low saturation) at & = 12. (b) GR as a function of |Ey|?
and temperature 7', at |A| = 20. Parameters are chosen as follows:
6 = —100, D’ = 107%, and ¢*> = ¢?. Instability regions are obtained
above the threshold in Eq. (10), represented here by the solid black
line.

corresponding equation for £ (r', t') reads now as follows:

0E 21 . P\~ | [\ -~
+A;(r') = 2iCA neq(IE|*)E +iViE.
(13)
One can recognize that the left-hand side of Eq. (13) has
the form of a covariant derivative D, = % + vy -V, e,
the expression of a time derivative in a locally comoving

reference frame, according to the velocity vq (r') = 2IV, ¢ =
%(Z). Thus, in the presence of OAM, the family of patterned

solutions is seen in the laboratory frame drifting with a
velocity vg(r’) [22]. Furthermore, such an argument carries
implications also for the geometry of the patterned state in our
case. Indeed, the right-hand side of Eq. (13) shows a spatially
dependent contribution to the decay rate and cavity detuning.
Therefore, the spatial rigidity of the patterned phases is broken
according to the spatial symmetry of the pump A;(r") and the
stationary solution is retrieved in a rotating reference frame
defined (in polar coordinates) by @(',t') = ¢ — w(¥')t’, with
the angular frequency w(r') = 21/r'2. This corresponds to a
differential rotation of the concentric patterned solutions at a
fixed radius, as found in Ref. [35]. In what follows, we support
the above observation by integrating Eq. (12) numerically.

B. Numerical results

We shall restrict here our analysis to a two-dimensional
(2D) radial “top hat” profile with rapidly vanishing tails. A
commonly used example is given by the following:

A
Ar) = 31{1 — tanh[n(r' —rp)l}exp (ilp),  (14)

where the constant n > 0 determines the side steepness of the
flat part with radius rj. The advantage of using Eq. (14) is
twofold: the used boundary conditions do not affect numerical
results and allow us to investigate the transverse 2D dynamics
induced by the structured phase factor exp (il¢) on a wide
area inside the integration domain. We integrate Eq. (12)
using a Fourier split-step method. A domain of ten critical
wavelengths is discretized in 256 x 256 points and time step
dt' =5 x 1073, Figure 3 shows an example of optomechan-
ical self-structuring with OAM index [ = 1. The presence
of a helical phase exp (il¢) in the pump profile (14) causes
the field to vanish at r' = 0 and induces the formation of
diffractive rings whose intensity exceeds the MI threshold.
By measuring peak distances in the radial profiles of the
intensity [see Fig. 3(a)], we found that the diffractive rings
are approximately spaced by the critical wavelength of the
transverse MI although this is slightly perturbed by the radial
size of the input pump. Since the intensity between contiguous
rings is below the MI threshold, each ring undergoes a one-
dimensional (1D) angular instability independently, leading
to a set of concentric ring lattice structures [35]. By varying
n and r{, one can also influence the features of the patterned
states. For example, increasing the steepness with  may lead
to outer diffraction rings faster achieving azimuthal MI. For
any balanced choice of such parameters, self-structuring dy-
namics always leads to a set of ring light-density lattices, each
one rotating independently from the others. Similar behavior
is found with higher-order OAM modes (/ > 1).

The self-organized light-atom ring lattices display differen-
tial rotation, in accordance to the angular frequency w(r') =
21/r'?. To show this, we consider the field in Eq. (12) at
a fixed radius ' = r;, mapping the variation of ¢ € [0, 2]
to an effective 1D model with periodic boundary conditions
and an input pump of the form A;(p) = Ase’?. The same
argument is repeated in Sec. IV for studying atomic trans-
port. Figure 4 shows a comparison, for [ = 1,2, 3, of the
rotation frequency estimated at several radial distances and
showing good agreement with the predicted w(r’). Analogous
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(a) I(r)

FIG. 3. Formation of bright self-organized ring lattices with a red
detuned pump intensity 5% above threshold and with OAM (I = 1).
The 2D intensity I(r) (left) and density nq(r) (right) are shown
at different times, i.e., kt = 20 (a), «t = 100 (b), and «t = 200
(c). Parameters are chosen as follows: § =4, CA =-3.5 (A <
0), o = —25.

rotational behavior can be expected for the case of bistable
optomechanical dissipative solitons, as those found in [36].
OAM or other structured phase pump profiles can thus be used
in this case to control the motion and the effective interactions
of such localized dissipative structures [23,24].

In the rest of this section, we discuss the effect of varying
atomic diffusion on the ring lattice rotational dynamics. In
order to take this dependence into account and obtain values
of the rotation frequency comparable with experiments, we
numerically integrate the coupled cavity equation (7) and the
Smoluchowski equation (8), for the 1D azimuthal case at fixed
radius.” Note that, since we have D = 1/ym§f, any variation
of D at constant temperature is inversely proportional to a
variation in the momentum damping coefficient y, in the
particle Egs. (3). Results are shown in Fig. 5, where values
of the estimated angular frequency are plotted against the

By means of a second-order Crank-Nicolson scheme for coupled
equations.
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FIG. 4. Results from the 1D integration of Eq. (12). Values of the
angular velocity of the patterned states are estimated at different radii
(in units of half the domain size r;). Each radius is chosen by simply
adjusting the size of the integration domain. Solid lines represent the
predicted angular frequencies w for the three OAM cases [ = 1, 2, 3.

rescaled diffusion coefficient D' = D/ka. For higher values of
D' (decreasing the friction y), one observes a faster ring lattice
rotation speed which saturates to a value roughly proportional
to the index /. On the other hand, by increasing the friction
y, the rotation of the ring lattices created by the dipole
interaction between atoms and light is affected by a drag, due
to slower atomic diffusion. In the limit of very small diffusion

3
20010
oo [ =1
T1.75 e el
T 1.50 =3 P 5
S N = B "
=125 "
> o
S1.001
= /’
g ¢
& 0751 . PO R -
5 o
Eoo.so P
__________ _._____--_--o——-———-——-o——-——-——-—-o
< 025] o
0.00 . : : . :
2.0 5.0 75 10.0 12.5

Diffusion D’

FIG. 5. Results from the 1D integration of the coupled model of
Egs. (7) and (8). Estimated values of the pattern rotation frequency
are plotted against the rescaled diffusion coefficient D' (at fixed
temperature T') for the cases [ = 1, ..., 4. As aresult, faster diffusion
processes imply higher values of experimentally measurable ring
rotation frequency.
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(D' « 1), this drag can compensate the effect of the phase
gradient introduced by the pump OAM and the concentric ring
lattices would be expected to remain stationary. The above
observations have profound consequences from the point of
view of atomic center-of-mass dynamics since drifting self-
organized light-density modulations induce transport of the
self-trapped atoms, as shown in the next section.

IV. ATOMIC TRANSPORT

In this section we demonstrate OAM-induced atomic trans-
port corresponding to the rotation of the self-organized ring
lattices. This is done by simply addressing the average mo-
mentum of the atomic distribution which quantifies the macro-
scopic rotational motion of the atoms, occurring at the onset
of self-organization. We restrict ourselves to the 1D case, i.e.,
atoms confined in a ring geometry at a fixed radius within
the cavity 2D transverse domain. Such a case can be realized
experimentally by appropriately using Laguerre-Gauss beams
of a given OAM in order to excite a single patterned ring [15].

A. Average momentum

We start our observations by recalling that, at equilibrium,
the Chandrasekhar equation (4) for a dilute 1D atomic gas at
constant temperature 7 is solved by the Maxwell-Boltzmann
distribution f(p), namely [37],

3/2 _ 2
f(p)=(%) exp[—W], (15)

where (p) is the average (bulk) momentum around which the
distribution f(p) is centered. Since we are interested in the
strong friction limit, we assume that the total phase space
distribution has the following factorized form [29,37]:

f(r,p.t) = f(p) n(r1), (16)

where r varies over a finite interval, depending on the chosen
radius. Macroscopic transport in this regime can be addressed
by looking at the average momentum (p), whose time evolu-
tion is obtained multiplying Eq. (4) by the momentum p and
integrating over momentum space [38]:

an(p) 1 / of /
= — —d g —d
Jt m ar pttap [ P P

+pr —(pf)dp+—fp —dp, (17)

where fg, is the dipole force in Eq. (2), expressed in the
low saturation limit. We now rearrange Eq. (17), accord-
ing to the following simple manipulations. Firstly, we have
that [ p*3Ldp = Ln(p?), where (p?) = (mp)~" is the sec-
ond moment of f(p) in Eq. (15). Moreover, fp%dp = —n,
\ 2 .

fp%)(pf)dp = —n{p), and fpg—lf;dp = 0, by simple calcu-
lus arguments. Thus, at equilibrium, Eq. (17) reads

0 t
= gt

Atomic currents can thus be obtained integrating Eq. (18)
along the 1D azimuthal domain. However, the first term in its

(Laip(r, ) + ¥ (P)In(r, 7). (18)

right-hand side vanishes in our case® so that, after integration,
the average momentum finally reads

1
(PO aensiy = ——— / a1, O (r, 1)
)/m

= —D,B/fdip(r,t)n(r,t)dr. (19)

This quantifies the steady-state mass current along a ro-
tating ring in the overdamped limit, from the knowledge of
n(r, t) only. In what follows, we compare (p(t))density With the
ensemble averages obtained from simulating particle dynam-
ics.

B. Particle model

Since a critical wave number ¢, is selected at the MI
threshold of Eq. (7), it is convenient to redefine here atomic
position 7; = g.r; and momenta p = p;/lq., so that the set
of particle equations (3) in 1D now reads [39]

dr; _

a2l

dp; raAs . _ , R,

a = 2 g EG=TOP =7 p 450D, 20)

where w, = liq./2mk defines characteristic energy scales of
an atom oscillating in a standing-wave potential of modulation
q.- In the overdamped case, one imposes momenta p; at their
steady-state values, leading to the following expression of the
average momentum or afomic current:

A

4Ky<8_|E(r_r,,z‘)| > 21

<15j(t/)>panicles =
i.e., simply obtained as an ensemble average. Most impor-
tantly, this provides an expression of the relative constants in
Eq. (5) in terms of microscopic parameters:
2 2
D = 4o q D 4& §2
p? 4

oA TA
2yD" 8kwigl’

(22)

where the diffusion D’ and o have been expressed in terms
of the (scaled) momentum spread ¢;. Note that D), = ;.
We now integrate numerically the particle equations (20) in
the overdamped limit. Those are coupled to the field equation
in 1D through a density profile n(7,t’), numerically recon-
structed at all times from the particle positions 7;(z").

A typical outcome of our simulations is presented in
Figs. 6(a) and 6(b), for the case of 5 x 10* atoms. Consistently
with the 2D numerical integration in Sec. III, we observe
drifting pattern dynamics in the 1D azimuthal geometry,
i.e., ring lattice rotation at a fixed radius, induced by the
OAM carried by the input pump. The results displayed in
Fig. 7 show that, at the onset of self—organization,7 the atoms
spontaneously develop net mass current along 1D rings, in
the presence of OAM. This corresponds to the slope (drift)
of the patterned field intensity /(7,¢’) and atomic density

%Since the density n(r,t) is always a periodic function in our
azimuthal domain at fixed radius.
"This happens at roughly ¢ = k¢ ~ 5 in our case.
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FIG. 6. Numerical results from the 1D particle dynamics simu-
lation for a set of 5 x 10* atoms. (a) k¢ vs 7 plot showing the time
evolution (kty. = 60) of the 1D cavity field intensity /(7). (b) Self-
ordering of the density n(7, t), numerically reconstructed from the
particle trajectories. For blue detuned light (A > 0), atoms bunch
in the minima of /(7). The OAM-dependent slope of the patterned
phase in this graph corresponds to the rotation of the pattern in a ring
geometry. Parameters are chosen as follows: OAM index [ = 3, 5 =
o, =y =1, {, =0.707, A =100, such that D' ~ 2, o ~ 25.

n(7,t'), displayed in the ¢’ vs 7 plots in Fig. 6. In particular,
in Fig. 7(a), we compare the values of the current (5;(t')) (in
units of /ig.) obtained by means of both the above approaches,
i.e., from Eq. (19) (density) and Eq. (21) (particles). In both
cases (I = 3, 4), one observes an exponential-like increase of
(pj(t")), which eventually evolves to fluctuations around a
steady-state value. Moreover, the two series show a highly

(a)
0.141 —— [ =3, density
0.12 —— [ =3, particles
—— [ =4, density
, 010 A —— [ =4, particles
=
L
=

(b)

0.12 _—

~ ~~ ~ ~~
ol
B W o =

0 10 20 30 40 50
t

FIG. 7. Results from the 1D particle dynamics simulations.
Atoms initially at rest and homogeneously distributed in the 1D do-
main display nonzero atomic current at the onset of self-organization.
(a) Time evolution of the atomic current (p;(¢')), in units of 7gq.,
with OAM index [ = 3,4, comparing the values arising from the
ensemble average in Eq. (19) and from the reconstructed density
profile n(7, t) in Eq. (21). (b) Evolution to steady-state values of the
atomic current, in units of /ig. at different values of the OAM index
[. Each plotted line is in turn obtained by averaging over a set of ten
identical launches for each /. These results demonstrate the presence
of atomic transport along the 1D azimuthal rings, induced by the
pump OAM.

correlated behavior. Finally, as shown in Fig. 7(b), in order to
obtain more precise values of the steady-state currents (p;(¢'))
for different OAM indices [ =1, ..., 4, we averaged over a
set of ten simulations with the same set of parameters for each
value of /. As a final remark, we observe from Fig. 7(b), that
the steady-state current values increase nonlinearly with the
OAM index [. This might suggest that the optomechanical
transfer of OAM considered here, i.e., from the cavity field
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to the atoms, occurs more efficiently with higher-order OAM
modes input. However, a detailed analysis of this mechanism
in such a configuration is out of the scope of this work and
will be investigated in future studies.

V. CONCLUDING REMARKS

Clouds of cold atoms in optical cavities, under the action
of a coherent beam of light carrying OAM, can spontaneously
form concentric rings of rotating light-atom lattices in the
transverse plane, by means of optomechanical self-structuring
(see Fig. 3). The rotation of these spatiotemporal structures
is due to the gradient of the transverse phase distribution
externally imposed on the pump beam. The observed angular
velocity is directly proportional to the OAM and inversely
proportional to the square of the ring radius (see Fig. 4).
Moreover, for increasing friction and decreasing diffusion, the
atoms introduce a drag that slows down the rotation of the
patterned rings (see Fig. 5). By means of numerical evidences,
we showed that such ring lattice rotation sustains macroscopic
atomic motion along azimuthal 1D rings in the 2D transverse
domain (see Figs. 6 and 7). Therefore, optomechanical trans-
port and azimuthal mass currents induced by the OAM in

the structured pump have been predicted for a cold thermal
gas in the assumption of overdamped motion. A possible
generalization of the case considered here is that of rotat-
ing optomechanical instabilities without momentum damping
[40]. Similarly, extensions to the dynamics of optomechanical
dissipative solitons and their interaction in the presence of an
OAM carrying pump are also of interest for future theoretical
studies and experimental realizations. Finally, our results can
be applied to the case of a quantum degenerate gas, in order to
study vortex formation and turbulent regimes [41]. The OAM
transfer mechanism discussed here represents a potential plat-
form to induce persistent currents of ultracold atoms, where
such states are indeed an ideal candidate for the realization of
atomtronic devices in circular atomic traps [14,15].
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