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Demystifying the success of empirical distributions in space plasmas
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Motivated by the recent result by Davis et al. [Phys. Rev. E 100, 023205 (2019)] that velocity distributions
of collisionless steady-state plasmas must follow superstatistics, we examine systematically the ability of
superstatistics to account for observations of anomalous distributions in plasma physics. We consider the two
possible scenarios: the case where empirical distributions are postulated to account for indirect measurements of
dispersion relations and the case where direct in situ measurements of the distributions are available. In the former
case, it is shown that the three universality classes of superstatistics allow one to account for measurements,
in opposition to previous claims that such measurements constitute a signature of the specific class of Tsallis
distributions. In the latter scenario, the two classes of χ 2 superstatistics and lognormal superstatistics are shown
to reproduce the profiles of typical observations. In particular, the class of lognormal superstatistics, ignored
in the plasma physics literature, allows reproducing typical observations while overcoming severe limitations
of the standard empirical distributions related to diverging moments. We further discuss how the superstatistical
picture may open up new prospects for investigating thermodynamic properties of space plasmas, by virtue of the
relationship between temperature fluctuations and the heat capacity, while still preserving the entropy extensivity.
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I. INTRODUCTION

It is now widely acknowledged that statistical properties of
space plasmas often depart from the canonical [read Maxwell-
Boltzmann (MB) or Jüttner] distributions. A number of empir-
ical distributions have been introduced phenomenologically
for that reason and, while their origin is debatable and remains
obscure to some degree, their success in modeling space
plasma phenomena is common knowledge. Among the most
studied distributions, the kappa suprathermal and the Cairns
nonthermal distributions play a privileged role. They consti-
tute a substantial and increasing part of the plasma physics
literature [1–7] and are, in some occasions, combined in
various ways to form hybrid distributions [8–10]. The success
of empirical distributions in modeling space plasma phenom-
ena is not surprising since, after all, canonical distributions
constitute a facet of equilibrium statistical mechanics, only
applicable for systems in equilibrium. In the evolution of a
system toward equilibrium, collisions play a fundamental role.
At low-pressure conditions, e.g., in the solar wind, collisional
events become negligible and the assumption that the system
has reached thermal equilibrium becomes hardly justified.
Hence, empirical distributions can be—and in general are—
regarded as a manifestation of a nonequilibrium steady state.
Finding the steady state of a nonequilibrium system is a
highly nontrivial matter because, in principle, it requires the
knowledge of the entire past history of perturbations that the

*kam.ourabah@gmail.com

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

system has undergone. One possible alternative to overcome
this issue, particularly well suited for systems exhibiting local
equilibrium, consists in describing the nonequilibrium system
provided only one or a few extra parameters over those
required to describe the system at equilibrium. One may think
for instance of using only two parameters: a nonequilibrium
temperature and a parameter measuring the distance from
equilibrium. The formalism of superstatistics and the related
concept of hyperensembles are centered around this very idea.

The main idea can nicely be illustrated by thinking of a
simple system: that of a Brownian particle that moves in an
inhomogeneous medium. The latter can safely be divided up
into cells, each characterized by a sharp value of the tempera-
ture in such a way that, within each cell, the whole machinery
of equilibrium statistical mechanics holds. As the particle
moves from one cell to another, it “sees” temperature changes,
ultimately produced by the complex dynamics of the environ-
ment. Provided that the particle stays long enough in each cell
to thermalize, the long-term stationary probability distribution
arises out of the canonical distribution, associated with each
cell, averaged over the distribution of the temperature across
the different cells. At the heart of this methodological attitude,
there is the adiabatic Ansatz [11]: During its evolution, the
system travels within its state space X which is divided up
into small cells, each characterized by a sharp value of some
intensive quantity ζ . Within each cell, the system is described
by the conditional distribution p(A|ζ ) to be found in a specific
state A ∈ X . As ζ varies adiabatically from cell to cell, the
joint distribution of finding the system with a sharp value of
ζ in the state A is p(A, ζ ) = p(A|ζ )p(ζ ), viz., the de Finetti–
Kolmogorov relation. The resulting statistics p(A) for finding
the system in the state A is obtained through marginalization
and reads as a superposition of statistics, i.e., superstatistics:

p(A) =
∫

p(A|ζ )p(ζ )dζ . (1)
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In plasma physics, one is usually interested in the veloc-
ity distribution, that is, A ≡ v, under a fluctuating (inverse)
temperature, that is, ζ ≡ β. While one locally has p(v|β ),
corresponding to a Maxwellian distribution, the emergent
distribution p(v) may deviate from it in a way dictated by the
specific class of fluctuations.

Superstatistics, as a formalism, was introduced in Ref. [12],
but the logic behind it has a long tradition in statistical
mechanics and similar Ansätze have previously been used in
quite different contexts [13–17]. The formalism has enjoyed
a considerable degree of success ranging from fields as dis-
parate as high-energy physics [18,19] and cosmology [20,21]
to mathematical finance [22] and power grid fluctuations
[23], among many others [24–26]. However, in spite of the
ubiquitous presence of noncanonical distributions in space
and laboratory plasmas, this paradigm has had little attention
so far in plasma physics. In this direction, we showed recently
[27] that the nonthermal and suprathermal distributions can
be mapped onto superstatistics. Later on, in a series of papers
[28–30] Davis et al. offered a number of formal results paving
the way for a more complete and rigorous implementation of
this paradigm in plasma physics. In particular, in Ref. [29]
they show that the single-particle velocity distributions of
collisionless steady-state plasmas must follow superstatistics.
Here, we take advantage of this result and (re)examine the
ability of superstatistics to explain the behavior of space plas-
mas with particular attention given to the following aspects:

First, we point out that not all empirical distributions
widely used in plasma physics have been directly observed
but are often postulated to account for indirect measurements.
This is the case for instance of the Cairns distribution [31] that
was not directly observed but postulated ad hoc to account
for the observation in the upper ionosphere of solitary elec-
trostatic structures involving density depletions. One natural
question then is whether the effect produced by such distri-
butions on the observed mechanism is specific to them or
whether other distributions, with a more transparent statistical
origin, produce the same effect. Second, even when the distri-
butions emerge from a direct observation, one relies on curve
fitting to construct a “smooth” function that approximately
fits the data. Here again, a natural question is whether other
distributions, more justified from the statistical mechanics
standpoint, can also do the job. Last but not least, owing to the
difficulty in space plasmas of realizing in situ measurements
of the temperature, the latter is usually measured indirectly
through the observation of velocity distributions. We will
demonstrate in the following that the superstatistical picture
not only clarifies the ambiguity between the observed tem-
perature and the mean temperature, but also, by virtue of the
link between temperature fluctuations and the heat capacity,
allows one to investigate the thermodynamic aspects of space
plasmas, while preserving the entropy extensivity.

II. NON-GAUSSIAN VELOCITY DISTRIBUTIONS
FROM SUPERSTATISTICS

To begin with, let us convince ourselves that velocity
distributions similar to those widely used in modeling space
plasmas emerge from temperature fluctuations. For this, con-
sider a system made of smaller subsystems, each of them in

thermodynamic equilibrium with an inverse temperature β.
Each subsystem is considered large enough to obey statistical
mechanics but has a different (inverse) temperature assigned
to it, according to a probability density f (β ). In principle,
there are infinitely many possible temperature distributions
but it is known [38] that three fundamental classes of f (β )
arise as universal limit statistics in the majority of known
superstatistical systems:

(a) χ2 superstatistics. In this case, the inverse temperature
β ≡ 1/kBT (henceforth, kB = 1) is distributed according to a
χ2 distribution of degree n. That is,

f (β ) = 1

�
(

n
2

)(
n

2β0

)n/2

βn/2−1e− nβ

2β0 , (2)

where β0 is the average of β and n a positive parameter. The
corresponding d-dimensional long-term velocity distribution
(marginal distribution), i.e., Eq. (1), reads as

B(v) =
∫ ∞

0
dβ f (β )

(
βm

2π

)d/2

exp

[
−βmv2

2

]

=
(
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(
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) (
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n
mv2

)− n+d
2

, (3)

which can be mapped onto the q-Gaussian distribution,
emerging within the formalism of nonextensive statistical me-
chanics (NSM), with an entropic index qNSM := 1 + 2/(n +
d ) and an effective inverse temperature β̃ := β0(n + d )/n. It
can also be mapped onto the family of kappa distributions
with the identification κ := −1 + (n + d )/2, and β̃ ≡ β0(n +
d − 2)/2n for the “traditional” kappa distribution, introduced
by Olbert [32] and Vasyliūnas [33], or β̃ := β0(n + d )/n for
a slightly different form introduced by Leubner [34] and
adopted by many authors [1,35,36]. In the statistics literature,
distributions in the form of Eq. (3) are known as Student’s t
distributions and they constitute a particular case of the Burr
type III distribution [37].

(b) Inverse-χ2 superstatistics. In this case, instead of β, the
temperature (β−1) itself is χ2 distributed with degree n. That
is, f (β ) is given by the inverse-χ2 distribution,

f (β ) = β0

�
(

n
2

)(
nβ0

2

)n/2

β−n/2−2e− nβ0
2β . (4)

The corresponding velocity distribution reads as

B(v) = β0

2�
(

n
2

)(
m

2π

)d/2(
β0n

2

)n/2(mv2

β0n

) 2−d+n
4

× K 2−d+n
2

(
√

nmβ0|v|), (5)

where Kα (x) is the modified Bessel function of the second
kind.

(c) Lognormal superstatistics. In this case, β follows a
lognormal distribution,

f (β ) = 1√
2πsβ

exp

⎧⎨⎩−(
ln β

μ

)2

2s2

⎫⎬⎭, (6)

with an average given by β0 = μes2/2. In this last case,
the velocity distribution B(v) cannot be obtained in closed
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FIG. 1. Examples of kappa distributions (a), χ 2 (b), inverse-χ 2 (c), and lognormal (d) superstatistics, in the one-dimensional case for
β0m = 1. Dashed lines correspond to the limiting cases: the MB distribution (κ = ∞ or q = 1) in one limit, and the critical value beyond
which the second moment diverges, i.e., κ = 1/2 (a) and q = 2 (b), in the other. For inverse-χ2 and lognormal superstatistics, the second
moment is always finite.

form but can easily be computed numerically. The above
distributions, i.e., Eqs. (2), (4), and (6), constitute the three
universality classes of superstatistics. Most experimentally
relevant situations fall into one of these classes or simple
combinations of them [38]. χ2 superstatistics corresponds to
the statistics arising from NSM and have been observed in
many situations [39]. Experimental evidence of lognormal
superstatistics has been found, for instance, in the context of
Lagrangian and Eulerian turbulence [38,40,41], and candidate
systems for inverse-χ2 superstatistics have been reported in
Refs. [17,42]. The velocity distributions arising from these
classes cover the main families of distributions encountered in
nature: velocity distributions associated with χ2 superstatis-
tics exhibit power-law tails for large |v|, those associated with
inverse-χ2 superstatistics exhibit exponential decays, while
lognormal superstatistics produces truncated power laws. In
this sense, these universality classes constitute the optimal
basis set onto which to expand f (β ) in an inverse problem,
i.e., in the process of inferring f (β ) given some available
information about B(v).

Note that for small fluctuations, the three superstatistical
distributions can be expanded around the MB distribution as
[12,27]

B(v) ∝
(

1 + σ 2
f β

2
0 m2v4

8

)
e− β0mv2

2 , (7)

where σ 2
f is the variance of f (β ). That is, in this limit the

three classes of superstatistics exhibit a universal behavior
corresponding to the Cairns nonthermal distribution [31], with
an index α ≡ σ 2

f /8. In Fig. 1, we show examples of velocity
distributions emerging from the three universality classes of
superstatistics, i.e., χ2 [Eq. (3)], inverse χ2 [Eq. (5)], and
lognormal (computed numerically), for different degrees of
fluctuations [see Eq. (13) below], together with the tradi-
tional kappa distribution for comparison. Clearly, inverse-χ2

superstatistics are not suitable for modeling space plasma
phenomena since they exhibit exponential decays in |v|. From
another hand, both χ2 and lognormal superstatistics have
profiles very similar to the observed velocity distributions,
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usually fitted with the kappa distribution. One difficulty with
the lognormal superstatistics is that the associated velocity
distribution cannot be obtained in closed form and has to be
treated numerically. Note however that the velocity moments
〈vl〉 can be computed analytically, opening up the possibility
of a macroscopic (fluidlike) formulation in an exact fashion.
Besides, lognormal velocity distributions admit a complete
(infinite) set of velocity moments that are well defined for all
parameter values, overcoming therefore one major problem-
atic of the kappa distribution [43]. To show this, let us write
the superstatistical velocity moments as follows:

〈vl〉 f =
∫

vl B(v)ddv = 〈〈vl〉MB〉 f (β ), (8)

where 〈·〉MB stands for an average over the (d-dimensional)
MB velocity distribution and 〈·〉 f (β ) an average over the
temperature distribution f (β ). Combining the moments of the
three distributions, i.e., Eqs. (2), (4), and (6),

〈β l〉χ2 = �
(

n
2 + l

)
�

(
n
2

) (
2

n

)l

β l
0,

〈β l〉inv-χ2 = �
(

n
2 + 1 − l

)
�

(
n
2

) (
n

2

)l−1

β l
0,

〈β l〉LN = el (l−1)s2/2β l
0,

(9)

with the moments of the MB (Gaussian) distribution

〈vl〉MB = (l + d − 2)!!

(βm)l/2
(10)

(l even), one may obtain all velocity moments in an exact
form. In particular, the first-order (velocity) and second-order
(stress tensor per unit mass) moments read as

M1 =
∫

vB(v)ddv = 0,

↔
M

2
=

∫
v ⊗ vB(v)ddv. (11)

The first-order moment M1 vanishes due to the isotropy of the
MB distribution. Assuming that the stress tensor is described
by an isotropic pressure so that the dyadic product can be
contracted, v ⊗ v → v2, one has for the three superstatistics

〈v2〉χ2 = n

n − 2
〈v2〉MB (n > 2),

〈v2〉inv-χ2 = n + 2

n
〈v2〉MB, (12)

〈v2〉LN = es2〈v2〉MB.

To draw a comparison between the different classes of fluc-
tuations, it is convenient to define the universal parameter
(different from the entropic index qNSM used in NSM) as
q := 〈β2〉/〈β〉2 that measures the strength of fluctuations. It
can be thought of as a “geometric variance” that reduces to
1 in the absence of fluctuations, i.e., when the temperature
distribution f (β ) shrinks to a Dirac delta. For the three
universality classes, it can be expressed as

q := 〈β2〉χ2

β2
0

= 1 + 2

n
(n > 2),

q := 〈β2〉inv-χ2

β2
0

= n

n − 2
,

q := 〈β2〉LN

β2
0

= es2
, (13)

from which Eq. (12) can be rewritten in a unified manner as

〈v2〉i = d · φi(q)
T0

m
(i = 1, 2, 3), (14)

where T0 ≡ β−1
0 is the mean temperature and

φ1(q) ≡ 1

2 − q
(1 < q < 2),

φ2(q) ≡ 2q − 1

q
, (15)

φ3(q) ≡ q,

with i = 1, 2, and 3 corresponding, respectively, to χ2,
inverse-χ2, and lognormal superstatistics. In the limit q → 1,
the distribution f (β ) approaches a Dirac delta centered at
β0 and 〈v2〉i reduces to the MB second-order moment, i.e.,
d · T0/m. Note that the requirement for having a finite energy
(and pressure) necessarily narrows the acceptable parameter
range for χ2 superstatistics to 1 � q < 2. A similar restriction
applies to the family of kappa distributions, imposing that κ >

d/2 [43]. Such a limitation restricts the derivation of a closed
system of fluid equations and imposes constraints in fitting
observations. Parameter values leading to diverging moments
are usually excluded from observational reports [44], although
there is some recent indication [45] of parameter values
lying outside the allowable range. This motivates recently the
introduction of regularized kappa distributions [43] by adding
an extra parameter that acts as a cutoff at high velocities. In-
terestingly, velocity distributions corresponding to lognormal
superstatistics do not suffer from this drawback and remain
valid in fitting data for high values of q. A word of caution is
however in order; likewise for all heavy-tailed distributions,
lognormal velocity distributions are not immune from pos-
sible unphysical character related to superluminal particles.
In fact, since all moments are obtained through integration
over the velocity space which, in the nonrelativistic treatment,
extends to infinity, the presence of heavy tails may lead to
a significant contribution from particles with superluminal
velocities, which necessitates truncating their contribution.

Before closing this section, it is worth noting that we are
tacitly adopting here a type-B formulation of superstatistics
since we are considering locally normalized MB distributions
that are averaged over f (β ) [see for instance Eq. (3)]. The
other alternative, known as type-A superstatistics [12], con-
sists of working with unnormalized canonical distributions
and normalize the marginal distribution at the end of the
process. One may, however, easily switch from type-B super-
statistics to type-A superstatistics, and vice versa, by properly
redefining the distribution f (β ). Since we are adopting type-B
superstatistics, the parameter q used here [Eq. (13)], in the
case of χ2 superstatistics, is different from the one used
in NSM. The latter is obtained within the transformation
qNSM := 1 + [2(q − 1)]/[2 + d (q − 1)], and the restriction
for having a finite second-order moment implies qNSM < 5/3.
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III. INDIRECT OBSERVATION: DISPERSION RELATIONS

When direct in situ measurements of the distribution func-
tion are not available, one may seek the signature of particular
distributions in a number of physical processes. In this case,
noncanonical velocity distributions are not directly observed
but postulated in order to account for indirect measurements.
A meaningful example is that of the Cairns nonthermal distri-
bution [31] that was introduced ad hoc to account for the ob-
servation of solitary electrostatic structures involving density
depletions in the upper ionosphere. Among measurements that
have led to the consideration of noncanonical distributions
are those concerned with plasma oscillations. In this case,
experiments provide dispersion relations that deviate from
what one would expect in the case of the MB distribution.
One particularly studied example is the set of data provided
by Van Hoven [46] in the 1960s that has been argued to be a
manifestation of nonextensivity [47] and subsequently used to
constrain the entropic index [48]. Here we wish to show that
such an effect on plasma oscillations is not associated with
the particular case of Tsallis statistics but is a general feature
of nonequilibrium stationary distributions. To show this, we
consider a field-free plasma, of uniform density n, which is not
initially in an equilibrium state but in a stationary nonequilib-
rium state, described by a distribution B(v) = 〈 fMB(v)〉 f [cf.
Eq. (1)], where fMB(v) is the MB distribution. If at a given
time t , a small amount of charge is displaced in the plasma,
the distribution function is perturbed accordingly,

f (r, v; t ) = B(v) + δ f (r, v; t ). (16)

For time intervals shorter than the binary collision time τ ,
the distribution f (r, v; t ) obeys the collisionless Boltzmann
(Vlasov) equation

∂ f (r, v; t )

∂t
+ v · ∂ f (r, v; t )

∂r
+ e∇φ

m
· ∂ f (r, v; t )

∂v
= 0, (17)

where e is the elementary charge and φ the electrostatic po-
tential produced by the perturbation. For small perturbations
(δ f � B), one may linearize Eq. (17) and couple it with the
Poisson equation to form a closed set of equations as follows:

∂δ f

∂t
+ v · ∂δ f

∂r
+ e

m
∇φ · ∂B

∂v
= 0,

∇2φ = −4πen
∫

δ f d3v. (18)

The above set of equations may be solved simultaneously,
following the line of the “Landau school” [49], by using
standard integral transformation techniques, or equivalently
by performing a decomposition in Fourier modes. That is,

δ f ∼ ei(k·r−ωt ) and φ ∼ ei(k·r−ωt ). (19)

We consider here, without loss of generality, the x axis to
be along the direction of the wave vector k and let v ≡ vx.
Equation (18) leads to

D(k, ω) := 1 − 4πe2

k2m

∫
∂B/∂v

v − ω/k
d3v = 0. (20)

FIG. 2. Circles correspond to the experimental data set of Van
Hoven [46]. The dashed line represents the Bohm-Gross relation,
arising from the MB distribution, and the solid line the best fit using
Eq. (22), corresponding to ω/ω0 =

√
1 + 4.85408(kλD )2.

For v � ω/k, one may Taylor-expand the integrand of
Eq. (20) in powers of k. Bearing in mind that

∂B

∂v
= ∂〈 fMB〉 f

∂v
=

〈
∂ fMB

∂v

〉
f

, (21)

one obtains the following dispersion relation

ω2

ω2
0

= 1 + 3φi(q)(λDk)2, (22)

where ω0 ≡ (4πne2/m)1/2 is the natural oscillation plasma
frequency and λD ≡ (T0/4πne2)1/2 is the Debye screening
length defined at the mean temperature T0, while the cor-
rection terms φi(q) (i = 1, 2, 3), due to temperature fluctu-
ations, are given in Eq. (15) for the three superstatistics. In
the absence of fluctuations, one has φi(1) = 1, and Eq. (22)
reduces to the standard Bohm-Gross relation [50]. In Fig. 2,
the dispersion relation (22) is confronted by the experimental
data set of Van Hoven [46]. One may see that the three
classes of fluctuations have qualitatively the same effect on the
dispersion relation that tends to show a better agreement with
experimental data. From the measurements, one may estimate
the strength of fluctuations, i.e., q = 〈β〉/β2

0 , for each class, by
curve fitting. For this particular data set, the estimated values
of q are shown in Fig. 2.

Note that, at this order of approximation, the form of the
dispersion relation is independent of the precise form of the
velocity distribution. Equation (22) has the same form as
the standard Bohm-Gross relation while the only difference
appears in the factor associated with the thermal motion. As
a consequence, it can only fit the data points that depart
the most from the standard expression (those in the large-k
region) at the expense of data points in the low-k region. To
achieve a better agreement with measurements, one has to go
beyond the idealized linear dispersion and consider extensions
of the dispersion relation accounting for other effects that may
come into play, such as the effects of a finite geometry or
plasma nonuniformity (see for instance [51]). Such dispersion
relations are however quite challenging and in general do not
allow for an analytic investigation.
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FIG. 3. The damping rate as a function of the wave number for (a) χ2 [Eq. (25)], (b) inverse-χ 2 [Eq. (26)], and (c) lognormal superstatistics
[Eq. (27), computed numerically], for different values of q := 〈β2〉/β2

0 .

Note that due to the singularity in velocity space, the inte-
gral (20) is not properly defined. This singularity induces an
imaginary part in the dispersion relation, responsible for the
Landau damping. It is worth studying the effect of fluctuations
on this process. We restrict ourselves to the case of weak
damping (the imaginary part ωi is considered much smaller
than the real part ωr) which remains tractable analytically for
the first two classes of superstatistics. By making the analytic
continuation of the integral over v, along the real axis, which
passes under the pole at v = ω/k, one may explicitly find
the real and imaginary parts of the dielectric function (20) as
follows:

Dr (k, ωr ) = 1 − 4πne2

mk2
PV

∫
∂B(v)/∂v

v − ωr
k

dv,

Di(k, ωr ) = −π

(
4πne2

mk2

)[
∂

∂v
B(v)

]
v= ωr

k

, (23)

where PV
∫

denotes the Cauchy principal value. By ne-
glecting second-order terms in ωi/ωr , one may obtain the
imaginary part ωi from the relation [50]

ωi = − Di(k, ωr )

∂Dr (k, ωr )/∂ωr
. (24)

Following these standard lines, one may compute ωi for the
different universality classes of superstatistics. For χ2 and
inverse-χ2 superstatistics, we obtain closed form expressions
as follows:

ωi = −
√

π

8

�
[

3
2 + 1

q−1

]
�

[
1

q−1

] (q − 1)3/2ω0

(λDk)3

[
1 + (q − 1)

2λ2
Dk2

] 1
1−q − 1

2

,

(25)

ωi = −
√

π

8

2
q−3

4(q−1) + 1
2

�
[ q

q−1

] (
q

q − 1

) q
q−1

[
q − 1

qλ2
Dk2

] 1+q
4(q−1)

× ω0

λ3
Dk3

K q+1
2(q−1)

(√
2q

(q − 1)λ2
Dk2

)
, (26)

where Kα (x) is the modified Bessel function of the second
kind. For lognormal superstatistics, one has

ωi = −
√

π

8

∫ ∞

0
dβ

(βm)3/2ω4
0√

2π ln(q)βk3
e− [ln(β/

√
q)]2

2 ln(q) − βmω2
0

2k2 , (27)

for which there is no closed-form solution, so it will be treated
numerically. One may easily check that Eqs. (25)–(27) reduce
to the standard Landau result [50]

ωi = −
√

π

8

ω0

(kλD)3 e
− 1

2(kλD )2 (28)

in the limit of vanishing fluctuations, that is, for q → 1 or
equivalently f (β ) → δ(β − β0).

Figure 3 shows the damping rate ωi/ω0 as a function of the
wave number for the three universality classes, with different
values of q := 〈β2〉/β2

0 . Here again, one may note that the
effect of the different classes of fluctuations is qualitatively
the same. For the three universality classes, the damping rate
shows two different stages: for wave numbers smaller than
a (q-dependent) critical value, the damping increases due to
fluctuations, while for bigger wave numbers, the damping de-
creases for larger values of q. This is similar to the effect pre-
dicted for a nonextensive plasma [47,52] in the suprathermal
regime, that is, for Tsallis statistics without thermal cutoff.
Similar behavior was also reported recently [53] in the case of
Kaniadakis distributions [54]. It is worth observing that for all
superstatistics, one always has ωi < 0, giving rise to damped
modes, while growing (unstable) modes do not appear. This
is because the velocity distributions emerging from super-
statistics, being merely a superposition of MB distributions at
different temperatures, are single humped, viz., the Gardner
theorem. This implies that there are always more particles
having velocities slightly less than the phase velocity ω/k,
hence gaining energy from the wave, than particles having
velocities slightly greater, hence losing energy to the wave.

Before closing this section, it is worth highlighting the
generality of the present approach. In fact, although we are
mainly concerned here with plasma excitations, the same
picture is applicable in other contexts. One may think for
instance of hybrid-phonon modes, Bogoliubov excitations in
dipolar condensates, or the Jeans instability of self-gravitating
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matter. In this last example, the superstatistical generalization
may be straightforwardly addressed, by virtue of the formal
analogy between the Jeans analysis and plasma oscillations.
By coupling the Vlasov equation with the Poisson equation for
the gravitational field, and making use of the so-called “Jeans
swindle,” one may arrive at the gravitational counterpart of the
dispersion relation (22) as

ω2 = −ω2
J + k2〈v2〉i, (29)

where ωJ ≡ (4πGmn)1/2 is the Jeans frequency. Equation
(29) indicates that the Jeans instability can be saturated
by thermal effects associated with a finite value of the
mean-squared velocity 〈v2〉i of the self-gravitating matter.
As thermal fluctuations tend to increase the second-order
velocity moment [see Eq. (14)], they tend to stabilize the
self-gravitating instability for smaller values of k, or larger
wavelengths. More precisely, the Jeans wavelength, above
which gravitational instability occurs, can be deduced from
Eq. (29) as

λ̃J =
√

φi(q)λJ , λJ ≡
√

πT0

Gm2n
, (30)

where λJ is the Jeans wavelength in the absence of fluctua-
tions. Here again, in the particular case of χ2 superstatistics,
the whole picture reduces (with a different notation) to the
Jeans analysis in the context of NSM, in the suprathermal
regime, addressed by many authors from the kinetic [55] or
the hydrodynamic [56,57] point of view.

IV. DIRECT OBSERVATION: ULYSSES ELECTRON
DISTRIBUTIONS

When direct in situ measurements of the distribution func-
tion are not available, it is not surprising that different distribu-
tions may lead to the same effect on observable quantities, but
does this also hold true when direct observations of the dis-
tribution functions are involved? Here again, it is not ensured
that one can distinguish between different distributions. One
may find examples within the kappa distribution itself: The
original distribution introduced by Olbert [32] and Vasyliūnas
[33] slightly differs from the one introduced by Leubner
[34]. Further, even by adopting one or the other, yet two
slightly different distributions arise depending on whether one
identifies the width of the distribution with a “fundamental”
temperature that—by definition—should not depend on κ

[58] or, alternatively, associate it with the temperature in
the kinetic sense (that is related to the second-order velocity
moment 〈v2〉) and therefore does depend on κ [59]. These
two alternatives are known in the literature as kappa A and
kappa B (see for instance [59–61] for an elaborate discussion).
An important consequence of these two possible representa-
tions of the kappa distribution appears in defining the proper
Maxwellian limit. As pointed out in Ref. [59], when the kappa
distribution is used to fit a set of measurements, depending
on its interpretation as kappa A or kappa B, two Maxwellian
limits, with different temperatures, may arise. The supersta-
tistical picture dispels such an ambiguity by regarding such
distributions as a manifestation of a nonequilibrium situation.
In a nonequilibrium state, attributing a single temperature to
the whole system is elusive. This is even more so given that

the (inverse) temperature β is not an observable in such a sce-
nario, as demonstrated in [30,62]. Nevertheless, the formalism
of superstatistics draws a clear distinction between the mean
temperature T0, which characterizes the MB distribution in the
limit of vanishing fluctuations, i.e., q → 1, and the kinetic
temperature (proportional to 〈v2〉) that depends on both the
class of fluctuations and their strength [cf. Eqs. (14) and (15)].

Here, we confront the velocity distributions emerging from
superstatistics with typical observations of non-Gaussian ve-
locity distributions in a collisionless plasma. We ignore the
class of inverse-χ2 superstatistics since the velocity distribu-
tions, in this case, clearly depart from typical observations
[see Fig. 1(c)]. We will only consider velocity distributions
emerging from χ2 superstatistics (2) and lognormal super-
statistics (6).

More precisely, we use observed 3d electron velocity
distributions obtained with the solar wind electron plasma
instrument on board the Ulysses spacecraft [63]. This instru-
ment measures velocity distributions of electrons with central
energies ranging from 0.86 eV to 814 eV, which are known to
be well fitted with the kappa distribution [64].

To fit with the observations, the superstatistical velocity
distributions are renormalized to the density, that is, B(v) →
neB(v), where ne is fixed as the total electron density obtained
from observations. Fixing the temperature is less straight-
forward: One might be tempted to identify the observed
temperature with the mean temperature T0. Indeed, in an in
situ experiment, if the temperature is measured in an event-by-
event analysis, one would expect that the average of measure-
ments would converge to T0. In space plasmas, however, the
temperature is often measured indirectly by analyzing the ob-
served velocity distributions; it is obtained by integrating the
observed electron distributions over the whole velocity range
(see for instance Ref. [64]). In this case, the temperature Tobs,
deduced from the observed velocity distributions, is affected
by fluctuations and must be taken as an effective temperature.
It is proportional to the second-order velocity moment 〈v2〉i

and hence depends on q. Using Eq. (14), one may link the
effective temperature Tobs and the mean temperature T0 as

Tobs = φi(q)T0 ⇔ T0 = φi(q)−1Tobs (i = 1, 2, 3) (31)

with φi(q) (i = 1, 2, 3) given in Eq. (15) for the three super-
statistics.

After rewriting the χ2 [Eq. (2)] and the lognormal [Eq. (6)]
distributions in terms of Tobs and q, we use the associated ve-
locity distributions to fit typical Ulysses electron distributions.
Results are shown in Fig. 4 where ln[B(v)] is plotted to better
characterize the importance of the tails. In Table I, we give
the values of q that produce the best fits together with the
corresponding normalized root-mean-square error (RMSE),
defined as

RMSE :=
√√√√1

n

∑
i

(
y(q)

i − yi

yi

)2

, (32)

where y(q)
i are the predicted values of ln[B(v)] for the two

superstatistical models and yi the measured values. One
may see that both superstatistics reproduce quite well the
observational data. In particular for low densities, the lognor-
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FIG. 4. Four typical Ulysses electron distributions. The open circles represent averages of the observed electron distributions over all
spatial angles from Ref. [64]. The solid line corresponds to the best fit obtained with χ2 superstatistics [Eq. (3)] and the dashed line represents
the best fit with lognormal superstatistics (treated numerically). Parameter values and mean-squared errors are given in Table I.

mal superstatistics nicely fit the data and even outperform the
χ2 model in the lowest density case (a).

V. THERMODYNAMIC ASPECTS

Let us discuss here some thermodynamic aspects that
emerge within the superstatistical picture, and show how the
paradigm clarifies those aspects. The first aspect to be con-
sidered is the heat capacity. A possible link between the heat
capacity and noncanonical distributions can be traced back
to some textbooks [65] where power-law distributions appear
in an intermediate step in the derivation of the canonical
distribution, the latter being obtained by letting the system
size go to infinity. Quite naturally, early attempts [66] at
explaining Tsallis statistics have associated the entropic index
q to the heat capacity.

The underlying idea is that both the canonical and the mi-
crocanonical ensembles, in equilibrium statistical mechanics,
represent ideal cases: the canonical ensemble applies to the
case of a system in contact with an infinite heat bath
(the temperature is fixed and the energy may fluctuate) and
the microcanonical ensemble applies to the case of an isolated
system (the energy is fixed and the temperature fluctuates).
Between these two extreme cases lie more realistic cases of
physical systems in contact with finite heat baths, where both
energy and temperature may fluctuate. For those intermediate

cases, one may consider the Lindhard equation [67] which
is supposed to remain valid all the way from the canonical
ensemble to the microcanonical one,

Var(U ) + C2
V Var(T ) = T 2

0 CV , (33)

where U is the energy and CV is the heat capacity under con-
stant volume. In the canonical ensemble, one has Var(T ) = 0
(the temperature is fixed) and the system’s heat capacity can
be expressed in terms of energy fluctuations as

CV = Var(U )

T 2
0

, (34)

while for an isolated system, the energy is fixed Var(U ) = 0
and the heat capacity can be computed through temperature
fluctuations (see for instance Landau and Lifschitz [68]):

〈(T − T0)2〉
T 2

0

= 1

Cv

. (35)

For intermediate cases, one may write [69]

Var(U ) = T 2
0 CV ξ, ξ ∈ (0, 1), (36)

where ξ depends on the size of the system. ξ = 0 corresponds
to the case of an isolated system and ξ = 1 to a system in
contact with an infinite heat bath, i.e., canonical ensemble.

TABLE I. Values of q := 〈β2〉/〈β〉2 for the two universality classes of superstatistics corresponding to observations for high and low speed
streams.

f (β ) (a) (b) (c) (d)

χ 2 q ∼ 1.674 q ∼ 1.633 q ∼ 1.371 q ∼ 1.328
RMSE: 0.47% RMSE: 0.38% RMSE: 0.29% RMSE: 0.54%

lognormal q ∼ 7.010 q ∼ 6.828 q ∼ 2.266 q ∼ 1.761
RMSE: 0.32% RMSE: 0.59% RMSE: 0.51% RMSE: 0.92%
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Using Eqs. (33) and (36), one has

〈(T − T0)2〉
T 2

0

= 1 − ξ

Cv

. (37)

Changing the variable from T to β,

〈(T − T0)2〉
T 2

0

= β2
0 − 〈β2〉
〈β2〉 =

( β2
0

〈β2〉
)2〈β2〉 − β2

0

β2
0

, (38)

and focusing on the case of small fluctuations, one may write
for the three superstatistics(

β2
0

〈β2〉χ2

)2

=
(

1

1 + 2/n

)2

�
n large

1 − 4/n,

(
β2

0

〈β2〉inv-χ2

)2

=
(

n − 2

n

)2

�
n large

1 + 4/n, (39)

(
β2

0

〈β2〉LN

)2

=
(

1

es2

)2

�
s small

1 − 2s2,

where, in the last step, we considered the limit of small
fluctuations, i.e., q := 〈β2〉/β2

0 close to 1. In this limit, one
has

〈(T − T0)2〉
T 2

0

� 〈β2〉 − β2
0

β2
0

, (40)

and the heat capacity can be estimated as

Cv = 1 − ξ

q − 1
. (41)

That is, once interpreted as emerging from fluctuations, the
observation of non-Maxwellian velocity distributions may
provide an estimate of the heat capacity of space plasmas,
opening up new prospects for investigating their thermody-
namic properties.

Note that although widely used in the literature to estimate
the heat capacity from fluctuations, the above relations and the
nature of fluctuations have been the subject of controversy.
In particular, Eq. (35) has received different interpretations,
including the assertion that it is meaningless [70] or a mere
formality [71]. We note in this regard recent molecular dy-
namics simulations [72] that validate these relations in a
context similar to ours, that is, for a quasiequilibrium system
composed of small subsystems that remain infinitely close to
equilibrium.

Other thermodynamic aspects that gain clarity in the super-
statistical picture are those related to entropy considerations.
In this paradigm, the noncanonical distributions are not con-
structed from a generalized (nonextensive) entropy functional,
as in the case of NSM [39], and the entropy preserves its
extensivity. To show this, let us consider the general definition
of entropy, valid for both equilibrium and nonequilibrium
systems,

S = −
∫∫

f [ln( f ) − 1]d3rd3v − N ln

(
h3

m3

)
, (42)

where f ≡ nB(v) is the phase space distribution function
normalized to the density n, and h is the Planck constant.
Equation (42) was originally introduced by Gibbs [73] and
(re)discussed more recently in the context of plasma physics

FIG. 5. The scaled entropy � as a function of q := 〈β2〉/〈β〉2 for
the three universality classes of superstatistics, with β0m = 1.

[4,74]. It accounts for the quantum mechanical lower limit
of the phase space volume occupied by a single particle
and contains the Gibbs factor, avoiding therefore the Gibbs
paradox associated with particles’ indistinguishability.

Assuming a homogeneous density, one has

S = − ln(n)
∫∫

f (v)d3rd3v

−
∫∫

f (v) ln[B(v)]d3rd3v

+
∫∫

f (v)d3rd3v − N ln

(
h3

m3

)
. (43)

Using the normalization condition∫∫
f (v)d3rd3v = n

∫∫
B(v)d3rd3v = N, (44)

Eq. (43) simplifies to

S = N

[
1 + ln

(
m3

nh3

)
+ �

]
, (45)

where � is the “scaled entropy,” defined as

� := −
∫

B(v) ln [B(v)]d3v. (46)

Equation (45) is a generalization of the Sackur-Tetrode en-
tropy in the presence of fluctuations. In the case of vanishing
fluctuations, the scaled entropy becomes

lim
q→1

� = 1

2

[
3 + ln

(
8π3T 3

0

m3

)]
, (47)

and Eq. (45) reduces to the Sackur-Tetrode entropy

S = −N ln

(
nh3

(2πmT0)3/2

)
+ 5

2
N. (48)

One may see, in light of Eq. (45), that the entropy extensivity
(limN→∞ S/N �= ∞) is preserved in the superstatistics sce-
nario, as long as � �= ∞. Figure 5 shows the effect introduced
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by fluctuations on �, for the three universality classes of
superstatistics. Clearly, fluctuations appear to increase the
scaled entropy �, and therefore the total entropy (45). That
is, fluctuations tend to increase the uncertainty in the velocity
space. This is the result one would expect from the discus-
sion in Sec. II, where fluctuations are shown to increase the
second-order velocity moments [Eq. (12)]. As one compares
between the three universality classes, one may observe that,
for the same q, the class of χ2 superstatistics is the one
that increases the most the second-order moment, while the
inverse-χ2 superstatistics class has less effect on 〈v2〉. The
same “hierarchy” of the three universality classes is recovered
by looking into the scaled entropy �.

VI. CONCLUSIONS

In the present analysis we discuss the possibility of ex-
plaining the variety of noncanonical distributions observed
in space plasmas, within a general framework, relying solely
on statistical arguments. The central concept in this analysis
is the paradigm of superstatistics that allows explaining the
emergence of a large diversity of anomalous distributions as
a consequence of fluctuations, with three possible univer-
sal statistical origins. The present approach generalizes our
previous effort in this direction [27] and is motivated by
the recent proof by Davis et al. [29] that the distributions
characterizing collisionless steady-state plasmas necessarily
follow superstatistics.

We discuss the two possible scenarios: the case where
noncanonical distributions are postulated a priori to account
for indirect measurements and the case where a direct mea-
surement of the distributions is available. In this former case,
it is pointed out that deviations from canonical distributions
found in dispersion relations can be reproduced by the three
universality classes of superstatistics, contrary to previous
claims [47,48] that they constitute a signature of the partic-
ular class of Tsallis statistics. By adopting the paradigm of
superstatistics, the nonextensivity is not postulated a priori.
Rather, the mechanism is explained by the presence of fluc-
tuations that are known to be present in such experiments,
and the extra parameter used to fit the data is no longer a
free parameter but is connected to temperature fluctuations.
In the case when direct measurements are available, it is
shown that, in addition to the class of χ2 superstatistics that is
known to correctly reproduce typical observations, the class
of lognormal superstatistics also shows similar profiles and
constitute a promising alternative, permitting us to overcome
limitations of the standard distributions used in the literature,
associated with diverging moments [43].

It is instructive to note that the issue addressed here
represents a particular case of inverse problem, that is, to
construct the distribution f (β ) characterizing temperature
fluctuations, given some experimental knowledge about the
velocity distribution B(v). Inverse problems are known to be
ill conditioned, meaning that a small deviation in B(v) may
lead to large uncertainties in the assessment of f (β ). In order
to reduce this issue, one usually resorts to regularization.
In our case, f (β ) is constrained within a set of candidate
distributions corresponding to the three universality classes
of superstatistics. In the scenario where a direct measurement

of the velocity distributions is available, one can in principle
construct the temperature distribution. Indirect measurements,
however, such as those associated with dispersion relations,
are not sensible to the precise form of the distribution function
but depend only on its first moments. In this case, one can
no longer construct the full temperature distributions, and the
three universality classes yield qualitatively the same effect
[see Eq. (22)].

It is shown that the superstatistical picture clarifies the am-
biguity of defining the proper Maxwellian limit and offers new
perspectives for investigating thermodynamic properties of
space plasmas, by virtue of the close relationship between the
temperature fluctuations and the heat capacity. Furthermore,
the extensivity of the entropy is preserved, overcoming there-
fore possible inconsistencies [75] in considering generalized
(nonextensive) entropy functionals.

The present analysis may open up new prospects for
future investigations. In particular, the class of lognormal
distributions, which has been ignored so far in the plasma
physics literature, may find many applications since it is able
to potentially reproduce a large range of observations. As
shown here, although the distribution has to be treated numer-
ically, the corresponding velocity moments are well defined
and accessible in closed form, opening up the possibility of
implementing lognormal superstatistics in fluidlike models.
Furthermore, our discussion related to plasma oscillations and
Landau damping is very general and remains applicable for
investigating the effect of fluctuations on other excitations.
This includes, but is not limited to, hybrid-phonon modes,
Bogoliubov excitations in Bose-Einstein condensates, or the
Jeans analysis of self-gravitating systems.

Of course, previous attempts to explain the variety of
noncanonical distributions observed in plasma physics have
been already considered in the literature from different per-
spectives. Those attempts can arguably be classified into two
categories: on one hand, those focusing on very specific
circumstances, for instance in the case of particles interact-
ing with external radiation [76]; on the other hand, those
attempting to explain these distributions in a more general
context, mostly relying on generalized entropy functionals
and nonextensive statistical mechanics. Both approaches face
some limitations: While the former is restricted to systems
under very special conditions, resulting in a narrow class
of distributions with a limited range of allowable parameter
values, the latter requires dealing with a free parameter, whose
origin remains obscure, and a nonextensive entropy, possibly
resulting in thermodynamic inconsistencies [75].

Other attempts at explaining the emergence of noncanon-
ical distributions in space plasmas from statistical arguments
include the approach put forward by Shizgal [36] that relies on
the use of Fokker-Planck equations. Our approach is not op-
posed to but rather complements it. This raises questions such
as how to link superstatistics to the Fokker-Planck equations
and whether the class of lognormal distributions may arise
from similar considerations (results in this direction, although
in a different context, may be found in Ref. [24]).

Finally, note that we were not much concerned here in
interpreting the formalism of superstatistics itself; our am-
bition is of a more practical nature. It should be noted
however that by speaking about “fluctuations,” we are tacitly
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adopting a frequentist interpretation of the formalism. That
is, the temperature distribution is understood as representing
temperature fluctuations that are actually taking place in the
system. This may however not be taken too literally. One may
alternatively adopt a Bayesian interpretation of the formalism
[77], in which the temperature distributions do not correspond
to fluctuations but rather express some kind of uncertainty.
In this context, the so-called thermodynamic uncertainty

relations (see for instance Ref. [14], pp. 195–199) may shed
new light on the ubiquitous presence of noncanonical distri-
butions in space plasmas.
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