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Shortcut-to-adiabaticity quantum Otto refrigerator
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We investigate the performance of a quantum Otto refrigerator operating in finite time and exploiting local
counterdiabatic techniques. We evaluate its coefficient of performance and cooling power when the working
medium consists of a quantum harmonic oscillator with a time-dependent frequency. We find that the quantum
refrigerator outperforms its conventional counterpart, except for very short cycle times, even when the driving
cost of the local counterdiabatic driving is included. We moreover derive upper bounds on the performance
of the thermal machine based on quantum speed limits and show that they are tighter than the second law of
thermodynamics.
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I. INTRODUCTION

Heat engines and refrigerators are two prime examples
of thermal machines. While heat engines produce work by
transferring heat from a hot to a cold reservoir, refrigerators
consume work to extract heat from a cold to a hot reservoir
[1,2]. Refrigerators thus appear as heat engines functioning in
reverse. According to the second law of thermodynamics, the
coefficient of performance (COP) of any refrigerator, defined
as the ratio of heat input and work input, is limited by the
Carnot expression, εC = T1/(T2 − T1), where T1,2 denote the
respective temperatures of the cold and the hot reservoirs
[1,2]. However, this maximum coefficient of performance is
only attainable in the limit of infinitely long refrigerator cycles
when the cooling power vanishes. At the same time, any re-
frigerator cycle that runs at finite speed necessarily dissipates
energy, which leads to irreversible entropy production and a
reduction of its coefficient of performance. An important issue
is to optimize the finite-time performance of thermal machines
[3]. Although the optimal performance of real heat engines
is usually characterized when conditions of maximum output
power are achieved, there is no clear corresponding criterion
for refrigerators [4]. A meaningful figure of merit to consider
when aiming to characterize a refrigerator is the optimized
product of the coefficient of performance ε and the cooling
power of the refrigerator, the coefficient of performance at
maximum figure of merit, ε∗ = 1/

√
1 − T1/T2 − 1 [5–8].

Techniques based on shortcuts to adiabaticity (STA) [9,10]
have recently been suggested as promising candidates to
approach such a desired regime of performance-optimized
finite-time quantum thermal machines. The implementation
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of STA methods on an evolving system mimics its adiabatic
dynamics in a finite time [10–24]. Among the STA techniques
put forward so far is the local counterdiabatic (LCD) driving,
which cancels the possible nonadiabatic transitions induced
by the dynamics of a given system by introducing an aux-
iliary local control potential [15]. It offers a wide range of
applicability and has been experimentally realized in state-
of-the-art ion trap setups [19,20]. Such STA strategies hold
the potential to enhance the performance of both classical
and quantum heat engines [25–31]. However, these studies
have so far mainly focused on the unattainability of zero
temperature (according to the third law of thermodynamics) in
a quantum refrigerator context [32]. We here intend to perform
a full-fledged investigation of the application of STA schemes
to enhance the overall performance of a quantum refrigerator.
Moreover, the implementation of STA protocols is not without
an energetic cost, which is induced by the additional control
potentials. In this regard, the cost of performing STA drivings
has only recently been included in the performance analysis
of quantum heat engines [30,31,33–37].

In this paper, we study the STA quantum Otto refrigerator
taking into account the cost of the driving in the performance
analysis. We explicitly evaluate the coefficient of performance
and the cooling power of such refrigerator. We find that its
performance can exceed its conventional counterpart even
when the cost of the STA driving is included, except for very
short cycle times. We further use the concept of quantum
speed limits for driven unitary dynamics [38] to derive generic
upper bounds on both the coefficient of performance and the
cooling rate of the superadiabatic refrigerator.

The remainder of this paper is organized as follows. In
Sec. II we introduce the quantum Otto refrigerator and illus-
trate the formalism and notation in use in the rest of the paper.
Section III is dedicated to the analysis of the quantum refrig-
erator under local counterdiabatic STA driving with Sec. IV
discussing its performance. Section V is further dedicated to
the establishment of upper bounds on such a performance of
the refrigerator as set by the use of the quantum speed limit
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FIG. 1. Energy-frequency diagram of a generic quantum Otto
refrigerator. The thermodynamic cycle consists of two adiabatic
processes (strokes 1 and 3) and two isochoric processes (strokes 2
and 3). During one complete cycle, work 〈W1〉 + 〈W3〉 is consumed
by the quantum refrigerator to pump heat 〈Q4〉 from the cold to the
hot reservoir.

valid for the dynamics that we explore here. Finally, in Sec. VI
we draw our conclusions and discuss the possibility for further
developments opened by our assessment.

II. QUANTUM OTTO REFRIGERATOR

The quantum Otto cycle is a paradigm for thermodynamic
quantum devices [7,8,27,32,39–48]. The cycle consists of two
adiabatic and two isochoric processes. At the end of a cycle,
work is consumed by the refrigerator to pump heat from a
cold to a hot reservoir. In this paper we make the choice
of a working medium embodied by a quantum harmonic
oscillator with controllable time-dependent frequency ωt and
corresponding Hamiltonian

HO(t ) = 1

2m
p2 + 1

2
mω2

t x2. (1)

Here m is the mass of the oscillator while x (p) is its posi-
tion (momentum) operator. The device is alternately coupled
to two heat baths at inverse temperatures βi = 1/(kBTi ) (i=
1, 2), where kB is the Boltzmann constant. Concretely, the
Otto cycle consists of the following four steps as shown in
Fig. 1.

(1) Adiabatic compression. Corresponding to the transfor-
mation A(ω1, β1) → B(ω2, β1) in Fig. 1. The frequency is
varied during time τ1, while the system is isolated from the
baths. The corresponding evolution is unitary and the von
Neumann entropy of the oscillator is constant.

(2) Hot isochore. Associated with the transformation
B(ω2, β1) → C(ω2, β2) in Fig. 1. In this process, the oscil-
lator is weakly coupled to the reservoir at inverse temperature
β2 at fixed frequency and for a time τ2. Notice that no request
is made for thermalization of the oscillator.

(3) Adiabatic expansion. Described by the transformation
C(ω2, β2) → D(ω1, β2) in Fig. 1. The frequency of the work-

ing medium is unitarily changed back to its initial value during
time τ3. No change of entropy occurs during this stroke.

(4) Cold isochore. At constant frequency, illustrated by the
D(ω1, β2) → A(ω1, β1) process in Fig. 1. This transformation
is obtained by weakly coupling the oscillator to the reservoir
at inverse temperature β1 > β2 and letting the relaxation to
the initial thermal state A(ω1, β1) occur within a (in general
short) time τ4.

The total cycle time is τcycle = ∑4
j=1 τ j . In the rest of our

analysis, we assume, as commonly done [8,32,43,46], that the
time needed to accomplish the isochoric transformations is
negligible with respect to the compression or expansion times,
so that the total cycle time can be approximated by τcycle �
τ1 + τ3 = 2τ for equal stroke duration. This assumption does
not affect the generality of our results.

During the first and third strokes (compression and ex-
pansion), the quantum oscillator is isolated and only work
is performed by changing the frequency in time. The mean
work of the unitary dynamics can be evaluated by using the
exact solution of the Schrödinger equation for the parametric
oscillator for any given frequency modulation [49,50]. The
mean work under scrutiny is then given by [8]

〈W1〉 = h̄ω2

2

(
Q∗

1 − ω1

ω2

)
coth

(
β1h̄ω1

2

)
,

〈W3〉 = h̄ω1

2

(
Q∗

3 − ω2

ω1

)
coth

(
β2h̄ω2

2

)
. (2)

We have introduced the dimensionless quantities Q∗
1,3 that,

by depending on the speed of the frequency driving [51],
embodies a parameter of adiabaticity of the dynamics. In gen-
eral, we have Q∗

1,3 � 1, with the equality being satisfied for a
quasistatic frequency modulation. Its expression is not crucial
for the present analysis and can be found in Refs. [49,50], to
which we refer for details.

During the thermalization steps (isochoric processes), heat
is exchanged with the reservoirs. Such contributions can be
quantified by calculating the corresponding variation of en-
ergy of the oscillator, which gives us

〈Q2〉 = h̄ω2

2

[
coth

(
β2h̄ω2

2

)
− Q∗

1 coth

(
β1h̄ω1

2

)]
,

〈Q4〉 = h̄ω1

2

[
coth

(
β1h̄ω1

2

)
− Q∗

3 coth

(
β2h̄ω2

2

)]
. (3)

In order to operate as a refrigerator, the system should absorb
heat from the cold reservoir, so that 〈Q4〉 � 0, and release
it into the hot reservoir, which entails 〈Q2〉 � 0. Accord-
ing to Eq. (3), the condition for cooling is therefore that
ω2/ω1 > β1/β2.

The coefficient of performance ε of the quantum Otto
refrigerator is given by the ratio of the heat removed from the
cold reservoir to the total amount of work performed per cycle,
ε = 〈Q4〉/(〈W1〉 + 〈W3〉). It explicitly reads [8]

ε = ω1[c(x1) − Q∗
3c(x2)]

(ω2Q∗
1 − ω1)c(x1) − (ω2 − ω1Q∗

3 )c(x2)
, (4)

where we have defined x j = β j h̄ω j/2 ( j = 1, 2) and the
function c(x1,2) = coth(x1,2). For slow (adiabatic) driving
processes, Q∗

1,2 = 1, the coefficient of performance of the
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refrigerator becomes [8]

εAD = ω1

ω2 − ω1
, (5)

which is positive provided that ω2 > ω1.
An upper bound to the coefficient of performance in Eq. (4)

follows from the second law of thermodynamics, which states
that the total entropy production of a cyclic thermal device is
non-negative [1]. Employing the quantum relative entropy of
two density operators, S(ρ1||ρ2) = tr{ρ1 ln ρ1 − ρ1 ln ρ2} �
0, the total entropy production for one complete cycle can be
written as

�Stot = S(ρA||ρB) + S(ρB||ρC ) + S(ρC ||ρD) + S(ρD||ρA)

= −β2〈Q2〉 − β1〈Q4〉 � 0, (6)

where we have assumed that the quantum relative entropy
during the adiabatic processes AB and CD is negligible, as
the von Neumann entropy is constant. Moreover, the quantum
relative entropy of the isochoric processes BC and DA corre-
sponds to the entropy production associated with the heating
and cooling steps. From Eq. (4), the total entropy production
is then [42,47]

�Stot = x2[Q∗
1c(x1) − c(x2)] − x1[c(x1) − Q∗

3c(x2)] � 0. (7)

Equality to zero is reached for the Carnot cycle scenario for
which β2/β1 =ω1/ω2 and Q∗

1,3 =1. Based on the first law of
thermodynamics, we have in addition

−(〈W1〉 + 〈W3〉) = 〈Q2〉 + 〈Q4〉. (8)

Combining Eqs. (6) and (8), we obtain the following upper
bound on the refrigerator performance:

〈W1〉 + 〈W3〉
〈Q4〉 � β2

β1 − β2
= T1

T2 − T1
= εC. (9)

The above equation shows that the coefficient of performance
of the quantum refrigerator is always bounded by the Carnot
coefficient of performance.

III. DRIVING A QUANTUM REFRIGERATOR
WITH SHORTCUTS TO ADIABATICITY

Let us now consider the situation when the compression
and expansion strokes of the Otto refrigerator cycle is sped up
by addition of a counterdiabatic driving control field HCD

STA(t )
to the original harmonic oscillator Hamiltonian HO(t ). Scope
of this term is to suppress the nonadiabatic transitions induced
by the finite-time evolution of the oscillator and, as a conse-
quence, quench the entropy production all the way down to
the value taken in the adiabatic manifold of the initial sys-
tem Hamiltonian. The resulting effective Hamiltonian reads
[11,12]

HCD(t ) = HO(t ) + HCD
STA(t )

= HO(t ) + ih̄
∑

n

(|∂t n〉〈n| − 〈n|∂t n〉|n〉〈n|), (10)

where |n〉 ≡ |n(t )〉 denotes the nth eigenstate of the original
Hamiltonian HO(t ). For a harmonic working medium, the

counterdiabatic term HCD
STA(t ) is [10,13]

HCD
STA(t ) = − ω̇t

4ωt
(xp + px). (11)

Although this additional control removes the requirement of
slow driving, the (nonlocal) counterdiabatic potential, which
induces squeezing of the oscillator, makes its experimental
application/implementation a challenging task. As a result, in
order to circumvent this difficulty, it is natural to construct a
unitarily equivalent Hamiltonian with a local potential. This
is achieved by applying the operator Ux = exp (imω̇t x2/4h̄ω),
which cancels the squeezing term and gives the new effective
local counterdiabatic (LCD) Hamiltonian [15]

HLCD(t ) = U †
x (HCD(t ) − ih̄U̇xU

†
x )Ux = p2

2m
+ m	2

t x2

2
,

(12)

where the modified time-dependent frequency is 	2(t ) =
ω2

t − 3ω̇2
t /4ω2

t + ω̈t/2ωt . By requesting that the initial and
final state of the working medium ensuing from HLCD(t )
equal that from the original Hamiltonian HO(t ), one gets the
boundary conditions

ω0 = ωi, ω̇0 = 0, ω̈0 = 0,

ωτ = ω f , ω̇τ = 0, ω̈τ = 0,
(13)

where ωi, f = ω1,2 correspond to the initial and final frequency
of the compression/expansion strokes. A suitable ansatz is
[15,16]

ωt = ωi + 10(ω f − ωi )s
3 − 15(ω f − ωi )s

4 + 6(ω f − ωi )s
5

(14)

with s = t/τ . In order to ensure that the trap is not inverted,
one must also guarantee that 	(t )2 > 0 is always fulfilled
[27]. The mean value of the local counterdiabatic Hamiltonian
HLCD(t ) may be calculated explicitly for an initial thermal
state and reads [30]

〈HLCD(t )〉 = h̄ωt

2

(
1 − ω̇2

t

4ω4
t

+ ω̈t

4ω3
t

)
coth

(
β h̄ωi

2

)
,

= ωt

ω0
Q∗

LCD〈H (0)〉, (15)

where we have introduced the LCD parameter

Q∗
LCD(t ) = 1 − ω̇2

t

4ω4
t

+ ω̈t

4ω3
t
. (16)

The expectation value of the control field HLCD
STA (t ) follows

therefore as

〈
HLCD

STA (t )
〉 = h̄ωt

2

(
− ω̇2

t

4ω4
t

+ ω̈t

4ω3
t

)
coth

(
β h̄ωi

2

)
, (17)

where we have used 〈HO(t )〉= h̄ωt coth(β h̄ωi/2)/2 [50].
Based on the boundary conditions in Eq. (13), we have
〈HLCD

STA (t )〉=0 for t = 0 and τ , while the time-averaged value
is non-null. We also remark that the local counterdiabatic con-
trol has been implemented in various experimental platforms
[19,21], specifically in Paul traps [21], which are a potential
candidate for building quantum thermal devices [52].
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FIG. 2. Entropy production rate �Stot/τcycle of the quantum Otto
refrigerator plotted against the driving time τ . The blue (small
dashed) line shows the nonadiabatic expression Eq. (7) in the absence
of STA driving, while the red (dotted) line represents the correspond-
ing result including STA techniques. Local counterdiabatic driving
is seen to greatly reduce the irreversible entropy production rate to
the adiabatic value (black large dashed). Parameters are h̄ = 1, ω1 =
0.1, ω2 = 0.5, β1 = 1, and β2 = 0.75.

Figure 2 shows the rate of entropy production �Stot/τcycle

as a function of the time τ for adiabatic and nonadiabatic driv-
ing. We see that for short cycle time, the entropy production of
nonadiabatic transition processes dramatically increases (blue
dashed), thus leading to lower performance of the thermal
machine. On the other hand, the application of STA methods is
effective in suppressing such over-shooting of irreversible en-
tropy (red dotted) to the adiabatic value (black large dashed).

IV. PERFORMANCE OF A SUPERADIABATIC
QUANTUM REFRIGERATOR

We now study three important quantities characterizing
the performance of a refrigerator, namely its coefficient of
performance ε, its cooling rate Jc

STA and its figure of merit
χ . Taking into account the energetic cost of the STA driving,
we define the coefficient of performance of the superadiabatic
quantum Otto refrigerator as the ratio of the heat removed
from the cold reservoir to the total amount of energy added
per cycle

εSTA = 〈Q4〉∑
i=1,3

(〈Wi〉STA + 〈
Hi

STA

〉
τ

) , (18)

where 〈Hi
STA〉

τ
= (1/τ )

∫ τ

0 dt〈Hi
STA(t )〉 (i = 1, 3), is the time

average of the mean value of the local potential for the
compression/expansion strokes and quantifies the energetic
cost of the transitionless driving. When the energetic cost
of the STA protocol is ignored [which corresponds to set-
ting 〈Hi

STA〉
τ

= 0 in Eq. (18)], the coefficient of performance
reduces to the adiabatic expression εAD given by Eq. (5)
[8,32,40,45].

Figure 3 shows the coefficient of performance of the
superadiabatic quantum refrigerator εSTA (red dotted) as a
function of time τ , together with the adiabatic εAD (black large
dashed) and nonadiabatic εNA = 〈Q4〉/(〈W1〉 + 〈W3〉) (blue
small dashed) counterparts. We observe that the superadia-
batic driving significantly enhances the performance of the
quantum Otto refrigerator, εNA � εSTA � εAD, for all driving

FIG. 3. Coefficient of performance of the quantum Otto refrig-
erator as a function of time τ . The blue (small dashed) line shows
the exact nonadiabatic case (NA), Eq. (4), while the red (dotted)
line and the green (solid) lines respectively display the STA results,
Eq. (18) and the quantum speed limit (QSL) bound, Eq. (21). The
black (large dashed) line corresponds to the adiabatic case, Eq. (5).
Same parameters as in Fig. 2.

times larger than τ ≈ 2.0, even though the energetic cost of
the STA is explicitly included. We additionally note that the
superadiabatic coefficient of performance εSTA is remarkably
close to the adiabatic value εAD for τ � 25, indicating that the
energetic STA cost is relatively small for larger times. Yet,
the nonadiabatic coefficient of performance εNA is already
greatly reduced compared to the adiabatic value in this regime.
The STA techniques thus appear here to be highly effective at
suppressing nonadiabatic transitions at a little energetic cost.

On the other hand, the cooling power of the superadiabatic
refrigerator is given by the ratio of heat flowing from the cold
reservoir into the system to the cycle time

Jc
STA = 〈Q4〉STA

τcycle
. (19)

An infinitely long cycle time, which would allow us to achieve
the maximum coefficient of performance, would thus also give
zero cooling power. In this regard, the main advantage of the
STA approach is to realize the same amount of heat output as
in the adiabatic case, but in a shorter cycle time. Hence, the
STA strategy ensures that Jc

STA (red dotted) is always greater
than the nonadiabatic cooling rate Jc

NA = 〈Q4〉NA/τcycle (blue
dashed) for fast cycles, as shown in Fig. 4(a). However, there
still exists a trade off between cooling power and coefficient
of performance of STA refrigerator for fast cycles.

Following Feldmann and Kosloff [53], such trade off can
be illustrated as in Fig. 4(b), where the dependence of 1/ε on
the inverse cooling power 1/Jc is illustrated for both the STA
driving and the nonadiabatic protocol. The former simultane-
ously enhances both the coefficient of performance and the
cooling power, thereby clearly demonstrating the benefits of
the STA quantum Otto refrigerator over the conventional ones.

We finally consider the figure of merit χ =ε〈Q4〉/τcycle =
εJc defined as the product of the coefficient of performance
ε and the cooling power of the refrigerator [6,8,42,43].
The corresponding expression for a heat engine, χengine =
η〈Q2〉/τcycle =−〈W 〉/τcycle, is equal to its power output 〈Q2〉
being in this case the heat absorbed from the hot reservoir.
In optimization problems, the maximum figure of merit (and
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FIG. 4. (a) Cooling power of the quantum Otto refrigerator as a function of time τ . The blue (dashed) line shows the exact nonadiabatic
case, while the red (dotted) line and the green (solid) lines respectively represent the STA-based result in Eq. (19) and the quantum speed limit
bound in Eq. (22). The black (large dashed) line is the adiabatic case, Eq. (4). (b) Inverse coefficient of performance as a function of the cooling
power for the time duration τ = 0.5–45, for the same cases as in (a). (c) Figure of merit χ [see Eq. (23)] as a function of the driving time τ for
the same cases as above. Same parameters as in Fig. 2.

not the maximum cooling power) condition for refrigerators is
often used in analogy to the maximum power criterion for heat
engines [6,8,42,43]. Figure 4(c) presents the corresponding
values as a function of τ for the case of adiabatic, nonadiabatic
and STA strategies. Similar to the cooling power (19), a
clear hierarchy emerges as χNA � χSTA � χAD, except for
short driving times, with the equality holding in the long-time
limit. Compared to the nonadiabatic case, the STA approach
increases the area under the curve, which determines the
overall performance of the device.

V. PERFORMANCE BOUNDS BY QUANTUM SPEED LIMIT

The maximum performance of a classical thermal ma-
chine (refrigerator/engine) is limited by the second law of
thermodynamics [2]. However, quantum mechanics imposes
restrictions on the time of evolution of quantum processes.
Understanding such restrictions is important for the success-
ful implementation of STA techniques [30]. We next derive
general upper bounds for both the STA-based coefficient
of performance and the cooling rate of the quantum Otto
refrigerator using the concept of quantum speed limits, which
can be regarded as an extension of the energy-time uncertainty
relation [38,54–57].

For unitary driven dynamics, a Margolus-Levitin-type
bound [57] on the evolution time given by [58]

τ � τQSL = h̄L(ρi, ρ f )

〈HSTA〉τ
, (20)

is appropriate. Here L(ρi, ρ f ) = arccos
√

F (ρ f , ρi ) denotes
the Bures angle between initial and final density operators of
the system, with F (ρ f , ρi ) the fidelity between the two, and
〈HSTA〉τ the time-averaged superadiabatic energy. Equation
(20) becomes a proper bound for compression and expansion
phases, when the refrigerator dynamics is dominated by the
STA driving for small τ .

From Eqs. (18) and (20), an upper bound on the STA-based
coefficient of performance of the quantum Otto refrigerator is
obtained as

εSTA � ε
QSL
STA = 〈Q4〉AD

〈W1〉AD + 〈W3〉AD + h̄(L1 + L3)/τ
, (21)

where Li (i=1, 3) are the respective Bures angles for com-
pression/expansion steps. Likewise, an upper bound on the

STA-based cooling power [Eq. (19)] reads

Jc
STA � JcQSL

STA = − 〈Q4〉AD

τ 1
QSL + τ 3

QSL

, (22)

where τ i
QSL (i=1, 3) are the respective speed-limit bounds in

Eq. (20) for the compression/expansion phases. In addition,
an upper bound for the figure of merit χ follows as

χSTA � χ
QSL
STA = ε

QSL
STA JcQSL

STA . (23)

The above upper bounds are displayed in Figs. 3, 4(a),
4(b), and 4(c) (green solid). We observe that the quantum
bound on the coefficient of performance [Figs. 3 and 4(b)] is
much tighter than the adiabatic bound (black large dashed)
imposed by the second law of thermodynamics (discussed
in Sec. II). They are hence more useful for applications.
We emphasize that these results are general and do not de-
pend on the choice of the refrigerator cycle or on the STA
driving protocol.

VI. CONCLUSIONS

We have studied the performance of a quantum Otto
refrigerator with a working medium consisting of a time-
dependent harmonic oscillator, exploiting STA mechanisms.
We have explicitly analyzed the coefficient of performance,
the cooling power, as well as the related figure of merit,
for the case of local counterdiabatic driving. We have found
that the STA quantum refrigerator outperforms its conven-
tional nonadiabatic counterpart, except for short cycle du-
rations, by strongly minimizing the nonequilibrium entropy
production, even when the energetic cost of the STA driving
is included. We have further derived generic upper bounds
on the coefficient of performance of the Otto refrigerator by
using the concept of quantum speed limits. Such bounds are
tighter than those based on the second law and therefore more
useful. The possibility to achieve simultaneous enhancements
of coefficient of performance and cooling power should be
of advantage for the future design of micro- and nanodevices
operating in the quantum regime.

Note added in proof. The application of counterdiabatic
driving techniques to speed up a quantum Otto refrigerator
based on a superconducting qubit was recently studied in
Ref. [59].
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