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Topological wormholes: Nonlocal defects on the toric code
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Locality plays a fundamental role in quantum computation but also severely restricts our ability to store and
process quantum information. We argue that this restriction may be unwarranted and re-examine quantum error
correcting codes. We proceed to introduce new defects on the surface code called wormholes. These novel defects
entangle two spatially separated sectors of the lattice. When anyonic excitations enter the mouth of a wormhole,
they emerge through the other mouth. Wormholes thus serve to connect two spatially separated sectors of a flat
two-dimensional lattice. We show that these defects are capable of encoding logical qubits and can be used to
perform all gates in the Clifford group.
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I. INTRODUCTION

Locality plays a central role in condensed matter and
quantum information science. This is exemplified by Kitaev’s
toric code [1], its variants [2], and the color code [3]. These
physical models are defined by Hamiltonians composed en-
tirely of local terms of low weight and yet display topological
order—the ground states of the system cannot be discerned
using local measurements. From the perspective of quan-
tum computation, this means that the code space is robust
to local errors as perturbations must collude over a large
distance to induce a logical error. Furthermore, the locality
of the Hamiltonian is a boon for experimental realizations
of quantum error correction and considerably simplifies the
syndrome extraction circuits. For this and many other reasons,
such models are a promising blueprint for scalable quantum
computers [4–6].

Locality, however, poses severe restrictions on storing and
processing encoded quantum information [7–9]. Architectures
based on nitrogen vacancy (NV) centers and ion traps have
softer constraints on coupling qubits that are not adjacent
[10]. With the advent of deterministic methods to share en-
tanglement nonlocally on superconducting qubit architectures
[11–13], the strict restriction of locality in the design of
quantum error correcting codes may be unwarranted. Further-
more, modeling qubits as pointlike objects may not apply to
physical implementations which use extended objects such
as resonators to store quantum information [14]. In such an
architecture, the geometry of qubit couplings may not be suit-
ably represented by a two-dimensional grid. For these reasons,
we have chosen to bend the rules of locality and re-examine
quantum error correcting codes. The results presented here
are independent from the no-go results of Refs. [7] and [8]
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which places restrictions on two-dimensional quantum error
correcting codes.

In this article, we demonstrate how introducing a small
amount of nonlocality gives rise to novel defects on the toric
code which we call wormholes. These defects possess two
mouths that connect two spatially separated sectors of the
lattice that we refer to as the mouths of the wormhole. The
name is motivated by considering the movement of lattice ex-
citations called anyons. If an anyon were to enter the mouth of
a wormhole, then it emerges via the other. In turn, this means
that two anyons can be spatially separated by an arbitrary
distance and still share entanglement via the wormhole. Fur-
thermore, we shall show that we can use wormholes to encode
logical information. We then demonstrate how we can per-
form all Clifford operations on the logical information. This
can be seen as a unification of previous defect-based encoding
schemes combining puncture and twist defects [5,15–19].

If we eschew locality entirely, then we can obtain quan-
tum low-density parity-check (LDPC) codes that are capable
of encoding a number of qubits that grows with the block
size [20–22]. In a companion paper [23], we outline how
to generalize the techniques presented here to perform gates
on a certain class of LDPC codes called hypergraph product
codes [22,24]. Although engineering such connections may be
infeasible with current technology, hypergraph product codes
have the potential to reduce the overhead associated with
constructing quantum circuits in the long term [25,26]. This is
the first technique that provides a framework to fault tolerantly
perform gates on this family of error correcting codes. This
work can also be seen as a proposal for codes in the spectrum
between entirely local codes on the one end and quantum
LDPC codes on the other.

Last, our construction could contribute to the discussion
on the connection between entanglement and the geometry of
spacetime [27]. We first note that the geometry that an anyon
experiences is dictated by the entanglement in the underlying
spin substrate. This is reminiscent of the ER = EPR conjecture
in quantum gravity [28]. Second, if we define the entropy of a
wormhole as the entanglement entropy between two mouths,
then we find that it scales with the size of the boundary of the

2643-1564/2020/2(2)/023116(7) 023116-1 Published by the American Physical Society

https://orcid.org/0000-0002-2027-6448
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.023116&domain=pdf&date_stamp=2020-05-01
https://doi.org/10.1103/PhysRevResearch.2.023116
https://creativecommons.org/licenses/by/4.0/


ANIRUDH KRISHNA AND DAVID POULIN PHYSICAL REVIEW RESEARCH 2, 023116 (2020)

mouths rather than the size of the mouths. This mirrors the
Bekenstein entropy [29] which also scales proportionally to
the area of a black hole.

II. BACKGROUND AND NOTATION

The toric code [2] is a quantum error correcting code
defined on a square lattice with periodic boundary condi-
tions. Qubits are placed on the edges of the lattice and the
vertices and plaquettes of the lattice serve to define a local
Hamiltonian H. For ease of representation, we introduce some
notation.

:= :=

Circles on edges represent single-qubit operators on the cor-
responding qubits—empty circles represent single-qubit Pauil
X operators and filled circles represent single-qubit Pauli Z
operators. We will later see multiple circles arranged in some
pattern and this corresponds to products of the respective
Pauli operators. Likewise, each local term or stabilizer is
a product of Pauli operators and is denoted using a square
node—empty square nodes on vertices represent X stabilizers,
and dark square nodes on plaquettes represent Z stabilizers.
The Hamiltonian is the sum of local terms,

The first sum is over vertices of the lattice and the second sum
is over faces of the lattice. The code space is the ground space
of H.

III. TORIC CODE DEFECTS

The Clifford group is the set of unitary gates which is
generated by the Hadamard, phase, and CNOT gates. These
gates occupy a special role in the theory of fault tolerance.
We begin by describing defects on the toric code that are
capable of encoding qubits in a manner that facilitates Clifford
gates.

Punctures are defects on the surface code that appear in
two varieties, smooth and rough, as shown in Fig. 1. A smooth

(a) (b) (c)

FIG. 1. Smooth and rough punctures on a lattice. (a) Measure-
ments that serve to create the smooth and rough punctures are de-
noted using empty and filled circles, respectively. (b) Corresponding
lattice-free representation with smooth puncture in black and rough
puncture in white. (c) Encoding a logical qubit in a pair of smooth or
rough punctures.

(a) (b)

FIG. 2. (a) Two-qubit measurement indicated by two circle
nodes and line connecting them. Hybrid stabilizer indicated by
square nodes and line connecting them. (b) Lattice-free representa-
tion of two-qubit measurement, indicated by a white line, and product
of stabilizers, indicated by a black line.

puncture is created by measuring X on the support of a set of X
stabilizers, whereas a rough puncture is created by measuring
Z on the support of a set of Z stabilizers. A pair of smooth
or rough punctures can be used to encode a logical qubit as
shown in Fig. 1(c). The logical Z (X) assigned to a pair of
smooth (rough) punctures is a loop of Z’s (X’s) encircling a
puncture; the conjugate logical X (Z) operator is a chain of
X’s (Z’s) between two smooth (rough) punctures.

Braiding punctures results in a logical CNOT with the
smooth puncture serving as control and the rough puncture
serving as target [5,30]. However, braiding is limited; as
such, it maps X operators to X operators and Z operators to
Z operators. We need to break this restriction to perform a
broader class of gates.

Twists are yet another defect on the toric code that address
this issue [15]. These objects are created by measuring two-
qubit operators composed of one X and one Z on adjacent
qubits. The measurement is depicted in Fig. 2(a) by the two
circle nodes and the line connecting them. The individual
plaquette and vertex stabilizers incident to these qubits an-
ticommute with this measurement. This pair of stabilizers
is replaced by its product to resolve this frustration. It is
depicted by the line connecting the two square nodes in
Fig. 2(a). As shown in Fig. 3, we can perform two-qubit
measurements along a line referred to as a defect line; the
hybrid stabilizers at either end of this line are called twists.
X and Z stabilizer generators across the defect line pair up to
form hybrid stabilizers of weight 6. These objects can be used
to supplement the set of possible operations on punctures—a
smooth puncture that crosses the defect line is transformed
into a rough puncture and vice versa. Furthermore, two pairs
of twists can be used to encode a logical qubit in their own

(a) (b) (c)

FIG. 3. A twist on a lattice. (a) Measure the pairs of qubits using
the two-qubit operator X ⊗ Z; X on the vertical edges and Z on the
horizontal edges. (b) Lattice-free representation of the twist. The
twists are marked as white crosses. (c) Encoding a logical qubit in
two pairs of twists.
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right as shown in Fig. 3(c). The logical Z is the loop of Z’s
encircling a pair of twists and the shared defect line. The
logical X is a loop that runs between the pair that contains
both X and Z operators. We can perform single-qubit Clifford
gates on encoded qubits by exchanging twists [15–17,31,32].

IV. WORMHOLES

We introduce a new type of defect called a wormhole that
can be seen as a marriage of puncture and twist defects.
Consider the two-qubit measurement that was used to create a
twist but with spatially separated X (white circle) and Z (dark
circle) operators as shown.

These are measured on the support of a plaquette and vertex
stabilizer respectively. To resolve the anticommutation, we
replace these objects by the hybrid stabilizer indicated by
the line joining the plaquette and vertex stabilizer generators.
We highlight that the support of this object lies in spatially
separated parts of the lattice. We remark that in Appendix A 1,
we also demonstrate how to move a wormhole using only
local measurements. Thus a wormhole can be prepared using
short-range connections and then moved to the right location.

All hybrid stabilizers are a product of one plaquette and
one vertex generator and thus this code remains LDPC. We
can go further by noting that there is no reason to restrict
ourselves to measurements along a line. We can measure two-
qubit operators along boundaries of punctures as shown in
Fig. 4. This creates two entangled punctures that are spatially
separated that we refer to as the mouths of the wormhole.
These new hybrid stabilizers have weight 6; this is the product
of two stabilizers on the boundary, minus their support inside

(a)

(b)

FIG. 4. Creating a wormhole. (a) Measuring two-qubit Pauli
operators along the boundary of a puncture. (b) Side view of lattice
free representation of the wormhole. The two white circles represent
the mouths of the wormhole. The wire mesh underneath the lattice
represents the entanglement between these two patches. The mesh is
merely a visual aid and does not represent an extension of the lattice.

(a) (b) (c) (d)

FIG. 5. Stabilizer and logical generators of the wormhole.
[(a) and (b)] The stabilizer generators of the wormhole. [(c) and (d)]
The logical operators of each logical qubit. The logical Z is a loop
of Z operators encircling the mouth of a wormhole. The logical X
is composed of two strings that runs between the two mouths of
the wormholes, one string of Z operators and another string of X
operators.

the puncture. As shown in Appendix A 2, this weight can be
reduced by spreading the weight among some of the local
checks adjacent to these stabilizers.

The mouths of a wormhole are topologically indistinguish-
able. For this reason, we drop the color of the mouths and
without loss of generality, depict both mouths in white. On en-
tering one mouth, an anyon emerges via the other mouth with
the opposite charge label. Other types of wormholes are pos-
sible that preserve the topological charge of the excitations.
In general, wormhole types correspond to topological domain
walls. In Ref. [33], Barkeshli and Freedman enumerate the
different boundaries that can be used to transform one type
of charge to another. In contrast, the focus of our work is to
understand how to actually construct wormholes and how to
use them for performing gates on LDPC codes.

When a wormhole is created from the vacuum, it is sta-
bilized by a pair of nonlocal operators shown in Figs. 5(a)
and 5(b). At first glance, it appears that the weight of these
stabilizers scales with the size of the puncture. However, these
operators are merely products of the hybrid stabilizers on
the boundary. We can use a wormhole to encode two logical
qubits as shown in Figs. 5(c) and 5(d) that we label 1 and
2. We represent the logical Z operators as a loop of physical
Z operators that encircle one mouth. The conjugate logical
operators are pairs of strings, one of X type and another of
Z type that run to the mouths. We assume that the strings
terminate at a “sink” wormhole elsewhere on the lattice.

V. CLIFFORD GATES

We now turn our attention to performing Clifford gates
on a qubit encoded in a wormhole. To this end, we use an
ancilla qubit initialized in a wormhole to perform single-qubit
Clifford gates.

Suppose we have two qubits, labeled 1 and a, denoting the
qubit of interest and the ancilla, respectively. The following
lemma summarizes what exactly is needed in order to perform
single-qubit Clifford gates on qubit 1.

Lemma 1. Let A and B be distinct, nontrivial single-qubit
Pauli operators. Let P and Q be two Pauli operators, not
necessarily distinct. The two-qubit measurements A1Pa and
B1Qa, together with all single-qubit Pauli measurements on
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FIG. 6. A measurement-based circuit to perform controlled-Z.
We introduce an ancilla prepared in the |0〉 state. The double-boxes
indicate a nondestructive projective measurement. The labels PQ
on these measurements indicate that the projection is performed
along the +1 and −1 eigenstates of the two-qubit Pauli operator
PQ. Finally, we perform a Hadamard and destructively measure the
ancilla qubit in the computational basis.

qubit a are sufficient to generate the single-qubit Clifford
group on qubit 1.

Proof. A logical Clifford operation proceeds in three steps.
Without loss of generality, let P = Q = A and consider the
measurement of A1Pa.

(1) Initialize qubit a by preparing it in the B basis.
(2) Next, perform a joint measurement A1Pa(= A1Aa) of

qubits 1 and a.
(3) Finally, measure qubit a in the basis C( �= A �= B �= I).
The following flowchart tracks the transformation of the

generators of the associated stabilizer and normalizer groups,
S and N .

S = {Ba} → {A1Aa} → {Ca}
N = {B1, C1} → {B1Ba, C1Ba} → {C1Ca, B1Ca}.

We have used the fact that Pauli operators are cyclic, i.e., the
product of any two distinct operators yields the third (up to a
phase). Up to stabilizer, the result of this transformation is to
map B to C and vice versa. The result follows. �

In addition to single-qubit Clifford gates, we need one
entangling gate to generate the Clifford group. This can be
performed using just X and Z measurements and an ancilla
prepared in the |0〉 state as shown in Fig. 6.

We now need to demonstrate how to perform such a set of
operations fault tolerantly. To this end, we shall use a qubit
encoded in a pair of smooth or rough punctures. This qubit,
referred to as the needle, can be used to stitch logical operators
of interest as we shall demonstrate. It will therefore not require
any more long-range connectivity beyond what is required to
initialize the wormholes

Braiding the needle around one mouth of a wormhole
results in the controlled-Z operation between the needle and
an encoded qubit. The evolution of the logical X operator of
the puncture is shown in Fig. 7.

(a) (b) (c) (d)

FIG. 7. Braiding the needle around the wormhole results in a
controlled-Z operation between the needle and encoded qubit.

(a) (b) (c) (d)

FIG. 8. Passing the puncture through the mouth of the wormhole
results in the controlled-X between the needle and encoded qubit.
Between panels (c) and (d), the puncture goes through the sink
wormhole so as to return to the appropriate type.

Since the wormhole is traversable, a puncture can enter one
mouth of the wormhole and emerge via the other. We call
this operation stitching. Stitching results in the controlled-X
operation between the needle and the encoded qubit. The
evolution of the logical X of the puncture is shown in Fig. 8.

We define certain properties of the logical operators. First
we notice that the needle operators X and Z are efficiently
preparable and can be measured fault tolerantly. If we need to
measure the stringlike operator that runs between punctures
for instance, then we could make the punctures larger and
bring them closer together. Alternatively to measure the loop-
type operator, we can move the punctures apart, make them
small and measure the boundary. The logical X and Z opera-
tors will thus be referred to as needle-measurable operators.
On the other hand, the logical Y operator associated to a
puncture is not needle-measurable as this would necessitate
shrinking the boundary as well as bringing the punctures close
together. In turn, the measurement would no longer be fault
tolerant.

An operator Q is traceable if there exists a way to map a
needle-measurable operator P to PQ. The logical Z operator
of a puncture was already traceable. We highlight that by
converting a puncture to a wormhole, the logical X operator
is now also traceable.

The final ingredient required to perform logical single-
qubit Clifford gates as stipulated by Lemma 1 is a Y measure-
ment. Unfortunately, logical Y operators of wormholes are
not traceable as the Y operator crosses itself. To be precise,
let Yw denote the logical Y of the wormhole and Yn be the
logical Y of the needle. In following the path of a logical
Yw associated to a wormhole, we find that it is the logical
Yn operator of the needle that is mapped to YnYw. Since the

FIG. 9. The product YaYb does not cross itself and is therefore
traceable.
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logical Yn of the needle is not needle-measurable, the logical
Y of the wormhole is not traceable.

This is remedied with a resource state as follows. We let a
wormhole that can encode 2 qubits serve as the ancilla.

Lemma 2. Let the ancilla be composed of two qubits la-
beled a and b such that one of its stabilizer generators is IaYb.
It is possible to apply the measurement YaIb on qubit a fault
tolerantly without affecting the state of the generator IaYb.

Proof. Let a and b refer to the qubits encoded in a worm-
hole. However, the product YaYb is traceable as shown in
Fig. 9. This is because the operator does not intersect itself.
This can be used to measure YaIb by initializing the wormhole
in a state such that IaYb is a stabilizer generator. We can
then measure YaYb, which up to action of an element of the
stabilizer, is equivalent to YaIb. The generator IaYb commutes
with the measurement and is therefore unaffected. It can
therefore be used for the next gate as well and in this sense,
the gate is catalytic. �

The intuition behind this claim is that the operator YaYb

does not cross itself and hence is traceable. Assuming such
a resource state is provided ahead of time, we can perform
catalytic Clifford gates. Together with stitching and braiding,
this completes the requirements to generate the Clifford group
as per Lemma 1.

VI. DISCUSSION AND CONCLUSION

We have introduced a new defect on the toric code called
a wormhole using entangled measurements along the bound-

aries of punctures. This leads to interesting physics when we
consider the movement of anyons on the surface of the lattice.
Wormholes are capable of encoding a logical qubit and facil-
itate all gates in the Clifford group. Importantly, wormholes
provide a way to perform fault-tolerant gates on a class of
quantum LDPC codes called hypergraph product codes.
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APPENDIX

1. Moving defects

In this section, we demonstrate how to move an elemen-
tary defect using only local two-qubit measurements. This
elementary defect is the product of X and Z stabilizers that
are spatially separated. We demonstrate how to move this
defect on only one side as shown in Fig. 10. In particular,
we shall move the Z support of the stabilizer using only local
measurements. In the diagram, stabilizer operators shall be

(a)

(b) (c) (d) (e)

FIG. 10. Translating a wormhole using local measurements. Panel (a) shows the support of the hybrid stabilizers. These stabilizers could
potentially be in separate regions of the surface code lattice. This panel also establishes the names of the different nodes that we have used in
the main body of the text. Panels (b)–(e) show step-by-step the measurements that need to be performed in order to translate the Z-type support
of the defect.
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labeled using greek letters and qubits shall be labeled using
latin lowercase letters. Furthermore, Xα shall represent X
stabilizer α and Xa will denote the single-qubit X operator on
the qubit a.

Step 0. Figure 10(a) depicts the initial step. Joint mea-
surements are labeled using the same latin lowercase letters.
Therefore, the black node a (on the left) and the white node
a (on the right) refer to a joint measurement of ZaXa and so
on. This induces the hybrid stabilizers; these are also labeled
using the same Greek letters. Thus the hybrid stabilizers
would be XαZα and so on. The objective will be to move the
support of the smooth puncture down by one lattice unit. The
new lattice is labeled similarly using primed alphabets.

Step 1. As in Fig. 10(b), measure the operators Xb′Xc′ . This
measurement anticommutes with

(1) the hybrid stabilizers Xγ Zγ and XδZδ; and
(2) the plaquette operators Zγ ′ and Zδ′ .
We replace these stabilizers with the products Xγ Zγ Zγ ′ and

XδZδZδ′ . Perform the measurement ZdZd ′ .
Step 2. As shown in Fig. 10(c), measure the plaquette

operators Zγ and Zδ . These measurements anticommute with
(1) the two-qubit operators ZbXb and ZcXc; and
(2) the single-qubit operator Xb′ and Xc′ .
We replace these operators by the products ZbXbXb′ and

ZcXcXc′ . It also anticommutes with ZdXd and XdXd ′ ; we re-
place them with their product ZdXd ′ . Measuring the plaquette
operators Zγ and Zδ returns them to the stabilizer. We can now
update the hybrid stabilizers by multiplying them by these
stabilizers as

Xγ Zγ Zγ ′ → Xγ Zγ ′ XδZδZδ′ → XδZδ′ .

Step 3. As shown in Fig. 10(d), measure the single-qubit
operators Xb and Xc. These measurements anticommute with

(1) the plaquette operators Zγ and Zδ; and
(2) the hybrid operators XαZα and XβZβ .
We replace these operators by the products XαZαZγ and

XβZβZδ . Perform the measurement XaXd . We can also per-
form the following reductions:

ZbXbXb′ → ZbXb′ ZcXcXc′ → ZcXc′ .

Step 4. As shown in Fig. 10(e), measure the plaquette
operators Zα and Zβ . These measurements anticommute with

(1) the single-qubit operators Xb and Xc; and
(2) the two-qubit operators ZaXa and XaXd .
We replace these operators by the product ZaXd . We can

also perform the following reductions

XαZαZγ → XαZγ XβZβZδ → XβZδ.

This completes the translation.

FIG. 11. Using CNOT gates to lower the weight of hybrid
stabilizers.

2. Reducing the weight of stabilizers

In this subsection, we indicate how one can reduce the
weight of the hybrid stabilizers. The idea is to use local
measurements to “trade” the weight of the hybrid stabilizers
with that of the neighboring stabilizers. This is illustrated
in Fig. 11. The figure shows one mouth of a wormhole,
and we perform CNOT gates along the boundary as shown.
This changes the weights of the some stabilizers that are
adjacent to the mouth. In addition to the hybrid stabilizers, the
weight of the adjacent plaquette operators increases, and the
weight of the adjacent vertex operators decreases. Consider
the stabilizers labeled α, β, and γ .

α β

γ

The Z stabilizer α, previously a regular plaquette operator
becomes a five-qubit operator. Its weight has increased by 1.
The operator β, which is part of the hybrid stabilizer, becomes
a three-qubit operator. Together with its X counterpart, the
weight of the hybrid stabilizer is now also 5. Finally, the X
stabilizer γ , previously a vertex operator, becomes a three-
qubit operator. Its weight has decreased by 1.

This intuition extends to larger punctures as well. In this
way, we can use CNOT gates to reduce the weight of hybrid
stabilizers from 6 to 5 by using CNOT gates to spread the
weight among the neighboring stabilizers.
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