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The recent observation of superconductivity at relatively high temperatures in hole-doped NdNiO2 has
generated considerable interest, particularly due to its similarity with the infinite layer cuprates. Building on
the observation that the Ni2+ ions resulting from hole doping are commonly found in the spin-triplet state, we
introduce and study a variant of the t-J model in which the holes carry S = 1. We name this model the type-II
t-J model. We find two distinct mechanisms for d-wave superconductivity. In both scenarios the pairing is driven
by the spin coupling J . However, coherence is gained in distinct ways in these two scenarios. In the first case,
the spin-one holes condense, leading to a d-wave superconductor along with spin-symmetry breaking. Different
orders, including spin-nematic orders, are possible. This scenario is captured by a spin-one slave boson theory.
In the second scenario, a coherent and symmetric d-wave superconductor is achieved from “Kondo resonance”:
spin-one holes contribute two electrons to form a large Fermi surface together with the spin-1/2 singly occupied
sites. The large Fermi surface then undergoes d-wave pairing because of spin coupling J , similar to heavy
fermion superconductors. We propose a three-fermion parton theory to treat these two different scenarios in one
unified framework and calculate its doping phase diagram within a self-consistent mean-field approximation. Our
study shows that a combination of “cuprate physics” and “heavy fermion physics” may emerge in the type-II t-J
model.
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I. INTRODUCTION

Recently, a tour de force materials synthesis effort cre-
ated a thin film of the hole-doped infinite-layer nickelate
NdNiO2 [1]. In this material, the uncommon Ni1+ in the
3d9 configuration is realized, similar to Cu2+ in the high-Tc

cuprate materials. Remarkably, a relatively high supercon-
ducting transition temperature Tc ≈ 9–15 K was reported [1].
Besides, according to LDA + U calculations [2–11], the band
at Fermi level is dominated by the dx2−y2 orbital of Ni, which
suggests that the main physics may also be governed by a
one-band Hubbard model as in the cuprates. However, in this
paper we argue that the physics of the hole-doped nickelate
is essentially different from that of the cuprates. In cuprates,
the near degeneracy of oxygen 2p and copper dx2−y2 orbitals
leads to the well-known fact that the doped hole enters the
oxygen 2p orbital and forms the Zhang-Rice singlet [12]. In
contrast, the oxygen 2p orbital is far away from the Fermi
level in the nickelate due to the lower oxidation state of the
Ni1+ ion compared to Cu2+. Therefore the doped hole enters
the 3d orbital and creates a Ni2+ state with 3d8 configuration.
The remaining question is whether the hole is in the low
(S = 0) or high (S = 1) configuration. The Ni2+ ion is often
found in the high-spin S = 1 state [13,14], thanks to Hund’s
first rule. For example, the spin-one Haldane chain is realized
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in the Ni2+, d8 configuration [15]. In this case, we expect
the hole-doped NdNiO2 to likely be described by a novel
t-J model with spin-one holes. However, in the absence of
a direct experimental measurement of the spin state of the
doped hole, one cannot rule out the possibility that Ni2+ is
in the low-spin state because of a larger energy splitting of
the two eg orbitals. Indeed, such a low spin configuration was
proposed in a different but related compound [16] based on
certain spectroscopic measurements, although more data may
be needed to confirm the conclusion. In this case one must
revert to a cupratelike t-J model [14,17–20], at least as far as
doped holes are concerned. In this paper we study the uncon-
ventional t-J model with spin-one holes, which we dub the
type-II t-J model. This model is of theoretical interest even as
its relevance to the hole-doped NdNiO2 awaits experimental
confirmation. Besides, we hope our theoretical analysis will
motivate more experimental searches for realizing this type-II
t-J model. Doping electrons into the 3d7 configuration is also
promising in this regard.

II. TYPE-II t-J MODEL

Let us sketch the form of the type-II t-J model; more de-
tails on the derivation from the microscopic Hubbard Hamilto-
nian can be found in the Appendixes. For convenience, we use
the hole picture in this paper and define the vacuum as the 3d10

state for each site, describing the particle-hole transformed
version of the original problem. In this picture, the undoped
parent compound has a single hole on each site, which we call
a singlon, while the state with two holes obtained on doping
is called a doublon. The doped hole enters the dz2 orbital and
creates a doubly occupied site with two holes sitting on the

2643-1564/2020/2(2)/023112(11) 023112-1 Published by the American Physical Society

https://orcid.org/0000-0001-9493-1743
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.023112&domain=pdf&date_stamp=2020-05-01
https://doi.org/10.1103/PhysRevResearch.2.023112
https://creativecommons.org/licenses/by/4.0/


YA-HUI ZHANG AND ASHVIN VISHWANATH PHYSICAL REVIEW RESEARCH 2, 023112 (2020)

two eg orbitals. Because of the interorbital Hund’s coupling,
the two holes form a spin-triplet (S = 1) state. We assume
that the singlon is always on the dx2−y2 orbital because of the
splitting between the two eg orbitals. Then the Hilbert space
at each site consists of two singlon states and three doublon
states. We label the spin-1/2 singlon with σ =↑,↓ and label
the triplet doublon with a = x, y, z. We also define a density
operator at each site: ni = ∑

a |a〉 〈a|. Thus ni measures the
number of doublons and is equal to the number of doped
holes. At the doping level x, the density of the singlon and
doublon is 1 − x and x, respectively, and we have 〈ni〉 = x.

The physical spin-1/2 and spin-one operators are Ss
a =

σ a
σσ ′
2 |σ 〉 〈σ ′| and Sd

a = −iεabc |b〉 〈c|, respectively. The hole
operator for the dx2−y2 orbital is zero (i.e., has vanishing matrix
elements) in the restricted Hilbert space, and the only hole
operator we have is the one corresponding to the dz2 orbital.
Microscopically this hole operator c†σ creates a hole on the dz2

orbital. In the restricted Hilbert space it acts as

ci;↑ =
∏
j<i

(−1)n j+1 1√
2

(|↑〉i 〈x|i − i |↑〉 〈y|i − |↓〉i 〈z|i ),

ci;↓ =
∏
j<i

(−1)n j+1 1√
2

(− |↓〉i 〈x|i − i |↓〉 〈y|i − |↑〉i 〈z|i ),

(1)

where
∏

j<i(−1)n j+1 is the Jordan-Wigner string to enforce
fermionic statistics.

In terms of ci;σ , ni = ∑
σ c†i;σ ci;σ , 	Sd

i = ∑
σ,σ ′ c†i;σ 	σσσ ′ci;σ ′ ,

and 	Ss
i = ∑

σ,σ ′ ci;σ ′ 	σσσ ′c†i;σ . Meanwhile ci;σ c†i;σ + c†i;σ ci;σ =
1 and {ci;↑, c†i;↓} = 0 do not hold anymore. Thus one should be
careful in treating ci;σ as a conventional electron operator. The
anticommutation relation between two operators of different
sites still holds.

With the above definition of Hilbert space and physical
operators, the type-II t-J model can be written as

Ht-J = Ht + HJ , (2)

Ht = −
∑
〈i j〉

ti jc
†
iσ c jσ + H.c., (3)

HJ =
∑
〈i j〉

[
JSs

i · Ss
j + Jd Sd

i · Sd
j + J ′

2

(
Ss

i · Sd
j + Sd

i · Ss
j

)

−
(

Jd + 1

4
J − J ′

)
nin j

]
. (4)

Generically we expect J ′ � J . Microscopically ti j is the
hopping of the dz2 orbital and thus it has a large value in the
z direction [21]. This means that the t-J model for nickelate
may need to be viewed as a three-dimensional (3D) model.
Here, for simplicity, we will study the two-dimensional (2D)
version of the t-J model and leave the 3D theory to future
work.

We need to emphasize that the ciσ operator in Eq. (4)
is defined in the restricted Hilbert space. Even if we set
J = J ′ = 0, Eq. (4) does not reduce to a free fermion model.
ciσ annihilates a doublon state and creates a singlon at the
same site. The hopping term in the t-J model is essentially
an exchange of singlon and doublon, which are therefore

better variables than the electron operator ciσ to describe
the underlying phases. At the limit J, J ′ → 0, we expect
a ferromagnetic ground state through the double exchange
mechanism [22]. However, superexchange terms J, J ′ should
suppress the ferromagnetism above a critical value. We will
focus on the region where the J, J ′ are large enough to favor a
paramagnetic or antiferromagnetic ground state.

Intuitively, there are two possible pictures in this t-J model.
(1) In the simple picture, we just assume singlon-doublon
separation. We can treat the doublon as a spin-one boson and it
naturally condenses at finite density x. With the condensation
of the doublon, fermionic singlons can move coherently and
form Fermi surfaces and then pair because of local antiferro-
magnetic spin coupling J . This is a simple generalization of
the resonating valence bond (RVB) theory [23,24]. However,
in our case the condensation of the spin-one doublon neces-
sarily breaks spin rotation symmetry. We call the resulting
phases spin-nematic d-wave superconductor (SN-dSC) and
spin-nematic Fermi liquid (SN-FL) phases. (2) In our t-J
model there is spin coupling J ′ between the singlon and the
doublon. Hence the singlon-doublon separation assumption
may not be valid. “Kondo resonance” between singlons and
doublons can be induced by J ′. One can imagine a “heavy
Fermi liquid” phase where each spin-one doublon contributes
two particles and forms large Fermi surfaces together with the
singlons, similar to “Kondo screening” in heavy fermion sys-
tems. Because the doublon carries spin one, Kondo screening
from the spin-1/2 singlon happens in two steps. In the first
stage, below a larger temperature T 1

K , half of the doublon is
screened by the singlons, while the other half forms a small
hole pocket. In a certain sense the physics can be understood
in the following intuitive way: the doped hole enters the
dz2 orbital and forms a small pocket while there is a local
spin-1/2 moment sitting on dx2−y2 orbital at every site. The
resulting phase is either a fractionalized Fermi liquid (FL*) or
an antiferromagnetic ordered Fermi liquid with small Fermi
surfaces. Then in the second stage, the small pocket absorbs
the local spin 1/2 to form a large Fermi surface below a Kondo
scale T 2

K . Because of spin coupling J , the large Fermi surface
gives way to a d-wave superconductor at lower temperature.

In this paper we will show that this Kondo resonance
picture can indeed naturally emerge in our t-J model and be
described by a parton mean-field theory. The parton theory
can also describe the “SN-SC” and “SN-FL” phase from
doublon condensation. Therefore we can study both scenarios
above within one unified framework. Our mean-field calcu-
lation shows that the Kondo resonance scenarios win unless
there is a large external spin rotation breaking anisotropy. In
the following we first give a brief discussion of the SN-dSC
phase through a doublon condensation lens. Then we propose
our parton theory to describe both doublon condensation and
Kondo resonance phases. A phase diagram based on mean-
field calculation is provided.

III. SLAVE BOSON THEORY

We introduce a spin-one slave boson to label the triplet
doublon, extending the popular slave boson theory of cor-
related electrons where the charge-carrying boson is a spin
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singlet [24]:

c↑ = 1√
2

f †↑ (bx − iby) − 1√
2

f †↓ bz ,

c↓ = − 1√
2

f †↓ (bx + iby) − 1√
2

f †↑ bz . (5)

	b = (bx, by, bz ) transforms as a vector under spin SO(3) rota-
tion. The spin operator of the doublon can be written as

	Sd
i = −i	b†i × 	bi. (6)

The constraint is nb;i + n f ;i = 1 and nb;i, n f ;i = 0, 1. On aver-
age we have 〈nb〉 = x and 〈n f 〉 = 1 − x.

In the mean-field theory, the boson b and fermion f
decouple. At finite density x, the bosonic spin-one doublon
condenses to a spin-rotation breaking “superfluid” (which,
of course, does not immediately imply a physical superfluid,
since the slave bosons also carry gauge charge). For exam-
ple, consider the simple ansatz with 〈bx〉 = 0. It breaks spin
rotation but preserves the time-reversal symmetry. Equation
(5) shows that cσ ∼ f †σ and f can now be viewed as an
electron operator. Depending on the ansatz for f , we can
obtain either a d-wave superconductor or a Fermi liquid, with
broken SO(3) spin rotation symmetry. In the presence of spin-
orbit coupling, the crystal structure will need to be considered
to determine if there is actually any lowering of symmetry.
The mean-field theory assuming slave boson condensation is
exactly the same as that of the conventional t-J model [24],
and one expects a d-wave superconducting dome at small x.
However, other condensates such as 〈	b〉 = 	ψ1 + i 	ψ2, where
	ψ1 × 	ψ2 �= 0, will correspond to ordered magnetic moments

that break time-reversal symmetry. We leave it to future work
to determine the details of the symmetry breaking.

IV. THREE-FERMION PARTON THEORY

The spin-one slave boson approach does not include the
possibility of Kondo resonance and can only describe FL/SC
with spin rotation breaking. In this theory, the singlon and
doublon decouple. However, because of the J ′ term, we expect
that the singlon and doublon couple with each other through
Kondo resonance. Obviously, we need a framework which can
get access to both the Kondo resonance regime and the Kondo
breakdown regime. In this section we show that this is possible
in a new parton construction. We introduce two spin-1/2
fermions �σ = (ψ1σ , ψ2σ )T to label the doublon state. We
label the doublon states by |a〉 = − 1

2
√

2
�†τyσaσy(�†)T |0〉,

where τ is the Pauli matrix in orbital space. In the restricted
five-dimensional Hilbert space at each site,

c↑ = f †↑ψ1↑ψ2↑ + 1
2 f †↓ (ψ1↑ψ2↓ + ψ1↓ψ2↑),

c↓ = f †↓ψ1↓ψ2↓ + 1
2 f †↑ (ψ1↑ψ2↓ + ψ1↓ψ2↑), (7)

under the constraints n f ;i + nψ1;i = 1 and �
†
i,σ τa�i,σ = 0. The

latter one constrains ψi;1, ψi;2 to form an orbital singlet, spin
triplet at each site. Again, f and ψ1, ψ2 are hard-core fermions
whose density at each site can only be zero or 1. On average
we have 〈n f 〉 = 1 − x and 〈ψ1〉 = 〈ψ2〉 = x.

We can see that the original electron (hole) operator is now
written as a combination of three-fermionic parton operators.

We dub this parton construction as a “three-fermion parton.”
A similar construction has been proposed for the SU (4)
Hubbard model at total filling νT = 1 + x [25]. There is a
SU (2) gauge symmetry: �σ → U�σ for U ∈ SU (2). There is
another U (1) gauge symmetry shared by f and ψ : fi → fieiαi

and �i → �iei 1
2 αi . We assign the physical change in the way

that ψ1, ψ2 carries 1/2 charge while f is neutral.
The spin operator is standard:

	Ss = 1
2 f †α 	σαβ fβ, (8)

and

	Sd = 1

2

∑
a=1,2

ψ†
a,α 	σαβψa,β . (9)

HJ in the t-J model can be written using the above expres-
sions. We can also rewrite the hopping term t2 using the three-
fermion operators. It is of the form: f †j fi(ψ

†
i;2ψ

†
i;1 )(ψ j;1ψ j;2 )

(see Appendix B for more details).
We can have a mean-field theory by decoupling the original

Hamiltonian:

HM = −t f

∑
〈i j〉

f †iσ f jσ + H.c. − tψ

ab

∑
ab=1,2

∑
〈i j〉

ψ
†
i;aψ j;b + H.c.

− 
a

∑
〈i j〉

( f †iσψ j;aσ + ψ
†
i;aσ f jσ ) + H.c.

− 
0
a

∑
i

( f †i ψi;a + ψ
†
i;a fi )

− μ f

∑
i

n f
i − μ1

∑
i

nψ

i;1 − μ2

∑
i

nψ

i;2

− μx

∑
i

(ψ†
i;1ψi;2 + H.c.)

+
∑
〈i j〉

� f ;i j ( f †i;↑ f †j;↓ − f †i↓ f †j;↑) + H.c.

+
∑
〈i j〉

� f ,ψa;i j ( f †i;↑ψ
†
j;a↓ − f †i;↓ψ

†
j;a↑) + H.c.

+ �t

∑
i

(ψ†
i;1↑ψ

†
i;2↑ + ψ

†
i;1↓ψ

†
i;2↓) + H.c. (10)

μ f , μ1, μ2 are introduced to fix the density 〈n f 〉 = 1 − x
and 〈nψ1〉 = 〈nψ2〉 = x. Meanwhile, we need μx to fix the
constraint that �

†
i τx,y�i = 0.

We have two sets of Kondo-like couplings: (1) 
0
a is on-

site and is from the hopping term, while 
a is between two
nearest-neighbor sites and originates from the J ′ coupling.
By using SU (2) gauge invariance we can remove one of
them. Here we choose to fix 
0

2 = 0; (2) from J ′ coupling we
also decouple a pairing term � f ψa . � f ψa encodes the Kondo
resonance that the singlon f and ψa want to form into a Kondo
singlet. As we show later, to form a Fermi liquid with large
Fermi surface, we need 
1 �= 0 and � f ψ2 �= 0.

We also introduce spin-singlet pairing terms between f
and between �. From our mean-field calculation, we find that
the spin-singlet pairings are favored to be of d-wave form.
Meanwhile, we allow for an on-site triplet pairing �t for �,
which is decoupled from the hopping term.
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Depending on the competition between different order
parameters, we can have different phases in this framework.
Here we list the most relevant ones in the following (see
Appendix. E for more details):

(i) 
1 �= 0 (or 
0
1 �= 0) and � f ψ2 �= 0. We find this solution

at small x. Both 
1 and � f ψ2 can be viewed as Kondo
coupling from the J ′ term. As we argue below, the resulting
phase is a Fermi liquid with large Fermi surfaces (FL). If
we further include � f �= 0, we get a d-wave superconductor
(dSC). The gauge fluctuations are completely Higgsed in this
case.

(ii) 
1 �= 0,
0
1 �= 0 while � f ψ2 = 
2 = 0. In this case f

is only coupled to ψ1. The f and ψ1 hybridize to form a band
with total filling n = 1 per site. ψ2 can now be identified as
the physical hole operator and forms a small hole pocket with
carrier density x. Analysis of the gauge field (see Appendix E)
shows that f , ψ1 is neutral and they form a U (1) spin liquid
with spinon Fermi surfaces or Z2 spin liquid with Dirac nodal
fermions, depending on whether � f = 0 or not, respectively.
The resulting phase is the so-called FL* phase, with a small
hole pocket of a Fermi liquid coexisting with a spin liquid
[26]. In the FL* phase, there is a deconfined U (1) or Z2

gauge field, depending on whether there is pairing term for the
spinon. The gauge fluctuation is important for the spin sector
but does not couple to the Fermi liquid part.

For a fixed set of order parameters in the mean-field theory,
we can write down a variational wave function: |�〉 = P |�̃〉,
where |�̃〉 is a Slater determinant fixed by the mean-field
theory. At each site, the operator P projects to the five
states specified by f †i;σ |0〉 and (�†)T τyσa�

† |0〉. The order
parameters in the mean-field theory should be determined by
minimizing the energy corresponding to the projected wave
function.

In the following we try to determine the order parameters
in the level of mean-field theory. As is well known in the
standard slave boson theory [24], the calculation based on
mean-field treatment without considering the projection can
only be qualitatively correct. For quantitative prediction, one
may need a more sophisticated numerical method such as a
variational Monte Carlo. The focus of this paper is at zero tem-
perature. At finite temperature, mean-field treatment may not
be valid due to both thermal and quantum fluctuations, and we
leave it to future for studies at finite temperature. From solving
the self-consistent equations (shown in the Appendixes), we
get a plot of order parameters shown in Fig. 1. The dominant
order parameters are 
1, � f ψ2 , and � f . First let us ignore
� f . We want to show that 
1 and � f ψ2 are Kondo couplings
which merge f , ψ1, ψ2 to form a conventional Fermi liquid.
We have two U (1) gauge fields: a is shared by f and ψa,
α parameterizes part of the SU (2) gauge field generated by
τz. f couples to a, ψ1 couples to 1

2 a + 1
2α + 1

2 A. Now, ψ2

couples to 1
2 a − 1

2α + 1
2 A. The condensation of 
1 and � f ψ2

locks the gauge fields to be a = −A and α = −2A. Then f
and ψ1 couple to −A while ψ2 couples to A. This means that
we can view ψ2 as physical hole operator while viewing f , ψ1

as physical electron operator. Let us redefine f̃i;σ = f †i;σ and

ψ̃i;1σ = ψ
†
i;1σ . Then f̃ , ψ̃1, ψ2 are all hole operators and they

hybridize together to form a Fermi liquid with large Fermi
surfaces, as shown in Fig. 2.

FIG. 1. Mean-field solution from the three-fermion parton mean-
field theory using t = 2J and J ′ = 4J . We set J = 1 and only show
the dominant mean-field amplitudes.

At small x, we find � f �= 0, and thus the ground state is a
d-wave superconductor. � f decreases with doping, resulting
a dome similar to that of the cuprates. Here in the under-doped
region, Tc is decided by the onset of 
1 and � f ψ2 . In a certain
sense, the destruction of the superconductor is from “Kondo
breakdown.”

In the above we used J ′ = 4J to get a stable Fermi liquid
or superconductor. For smaller J ′/J , there is zero or just one
Kondo coupling when x < xc in the mean-field calculation,
resulting in a “pseudogap metals” phase or a FL* phase in the
underdoped region. It is not clear whether this is just an arti-
fact of mean-field treatment. Our mean-field theory suggests
that the phase diagram at the small x region is like that shown
in Fig. 3. One can see that this phase diagram is similar to that
from slave boson theory for cuprates [24]. The difference is
that here the Tc (or coherence scale) is determined by Kondo
breakdown instead of slave boson condensation.

V. ROLE OF Nd ORBITAL

In the undoped sample, resistivity shows metallic behavior
above 50 K and an upturn below 50 K. The metallic behavior
can be attributed to the electron pocket from the Nd orbital
[5–7,17], leading to self-doping. We can extend our t-J model
to include the Nd orbital (see the Appendixes):

H = Ht-J +
∑

k

ξNd (k)d†
σ (k)dσ (k)

+ V
∑

i

c†i di + H.c. + JK 	Ss
i · 	SNd

i , (11)

where d†
i creates a hole for the Nd orbital. Note here c†i creates

the spin-one doublon and thus is different from the model in
Ref. [7]. If the density of Nd holes is nNd = 1 − δ, then the
density for spin-one holes is nc = x + δ. In principle δ can
have both doping and temperature dependence. Especially, δ

is expected to decrease when we increase x [5]. One can see
that nc = δ �= 0 even for x = 0 if there is electron pocket from
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FIG. 2. Band structure at x = 20% in terms of ψi;2σ , f̃i;σ = f †i;σ , and ψ̃i;1σ = ψ
†
i;1σ . We use t = 2J and J ′ = 4J . The pairing term is

suppressed by hand. For this specific choice of parameters, the resulting n(k) in (b) shows two electron pockets.

Nd in the Fermi level. This self-doping effect can explain why
the undoped compound is metallic and does not have magnetic
order.

VI. CONCLUSION

In summary, we propose a t-J model with spin-one hole
(doublon in hole picture) to model the hole-doped NdNiO2.
We introduce two distinct parton theories to analyze this
unconventional model. Specifically, we find that a Fermi
liquid or d-wave superconductor is possible in this model,
arising from the Kondo resonance between the spin-one dou-
blon and spin-1/2 singly occupied state. This suggests that
a combination of heavy fermion physics and cuprate physics
may emerge in this model. We hope the proposed model and
the parton framework introduced in this paper will motivate
further theoretical and numerical studies, as well as experi-
ments probing the spin-orbital nature of doped holes in this
superconductor.

FIG. 3. Sketch of phase diagram in the T − x space extrapolating
from the zero-temperature mean-field theory. There are two “Kondo”
scales: T 1

K and T 2
K . T 1

K is associated with � f ψ2 . T 2
K is associated with


2. T ∗ determines the onset of � f .
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APPENDIX A: MICROSCOPIC DERIVATION OF t-J
MODEL WITH SPIN-ONE DOUBLON

1. Distinction from cuprates: Spin-one hole

Because the oxygen p orbital is far away from Fermi level
in NdNiO2, the doped hole will enter the d orbitals. From the
LDA + U calculation [5,7], the energy splitting of the two
eg orbitals is 0.7 eV and smaller than the interaction scale.
Therefore we need to include both dx2−y2 and dz2 orbitals. We
choose to study the following model in the hole picture:

H = HK + U1

2

∑
i

n1;i(n1;i − 1) + U2

2

∑
i

n2;i(n2;i − 1)

+U ′ ∑
i

n1;in2;i − 2JH

∑
i

(
S1;i · S2;i + 1

4
ni;1ni;2

)
,

(A1)

where na;i is the density of orbital a at site i, a = 1, 2 denotes
the dx2−y2 and the dzz orbital, respectively, U1, U2 are the
intraorbital Hubbard interaction, U ′ is the interorbital inter-
action, and JH is the interorbital Hund’s coupling. We expect
U1 = U2 = U and U − U ′ = 2JH [27].

The kinetic energy is

HK =
∑

i

εdd n2;i +
∑
〈i j〉

t1;i jc
†
1;ic1; j +

∑
〈i j〉

t2;i jc
†
2;ic2; j

+
∑
〈i j〉

t12;i jc
†
1;ic2; j + H.c., (A2)

where εdd is the splitting between the two eg orbitals.
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At zero doping, because εdd > 0, the ground state has one
hole on the dx2−y2 orbital at each site. Next we discuss the fate
of the doped hole. The energy cost for the hole to enter the
orbital 1 is U1, while the energy cost for the hole to be at or-
bital 2 is εdd + U ′ − JH . In the case that εdd < U − U ′ + JH ,
the orbital-singlet, spin-triplet configuration is energetically
favored. In this paper we take U = 3.4 eV, U ′ = 2 eV [6], and
εdd = JH = 0.7 eV [5,6]. We conclude that the doped hole in
nickelate creates a spin-one d8 site. Therefore the low-energy
physics is governed by an unconventional t-J model with a
spin-one hole.

2. t-J model

Next we drive the low-energy t-J model. First we need to
define the Hilbert space.

Relation to the SU(4) symmetric model. The model in
Eq. (A1) can be viewed as descending from a SU (4) symmet-
ric model but with anisotropies that lower the symmetry. At
the SU (4) symmetric point, at the filling νT = 1 + x, the t-J
model at the U � t limit has a Hilbert space with dimension
10 = 4 + 6 at each site. These 10 states can be divided to four
singly occupied states and six doubly occupied states [25].
For simplicity, let us call them singlon and doublon. Singlon
is in the fundamental representation of SU(4), while the
doublon is in the SO(6) representation [25]. In the nickelates,
anisotropies can further constrain the Hilbert space to be five
dimensions at each site. There are three large anisotropies:
εdd , U − U ′, and JH .

We note here that the relevant hopping t is entirely deter-
mined by t2, the hopping between the dz2 orbitals. The hopping
within the dx2−y2 is blocked since we have eliminated dou-
blons living in a single orbital (U ′ � U limit), and interorbital
hopping is also eliminated for the same reason. We have not
found an estimate for t2, but we can estimate this to be of
the order of t1 ∼ 0.1 eV [6]. Thus, we may assume we are
in the εdd � t , U − U ′ � t , and JH � t limit, where we can
further restrict the doublon states by doing the t

U−U ′ and t
JH

expansion.
First, the eg orbital splitting εdd ∼ 0.7 eV [5]. Therefore

there are only two singlon states: |1 ↑〉 and |1 ↓〉. The |2σ 〉
should not be included in the low-energy Hilbert space. How-
ever, it does appear when we consider the doublons. For the
six doublon states, because of the large U − U ′ ∼ 1 − 2 eV,
we should only consider the four states |1σ1〉 ⊗ |2σ2〉. If
JH << t , all of these four doublon states should be kept
and we have 2 + 4 = 6 states at each site. However, in the
opposite limit JH � t which we assume, we should only
include three doublon states corresponding to the three spin
triplets. Therefore in total we only have 2 + 3 = 5 states at
each site in the low-energy theory.

a. Labeling the Hilbert space

We focus on the U, εdd ,U − U ′, JH � t limit and project
to the five states at each site. The Hilbert space at each site
consists of a spin-1/2 singlon and a spin-one doublon. We
label the singlon with σ =↑,↓ and label the doublon with
a = x, y, z. In terms of a microscopic electron, |σ 〉 = c†1σ |0〉

and

|x〉 = − 1√
2

(c†1↑c†2↑ − c†1↓c†2↓) |0〉 ,

|y〉 = i√
2

(c†1↑c†2↑ + c†1↓c†2↓) |0〉 ,

|z〉 = 1√
2

(c†1↑c†2↓ + c†1↓c†2↑) |0〉 . (A3)

We also define a density operator at each site: ni =∑
a |a〉 〈a|. ni measures the number of doublons. In this re-

stricted Hilbert space, the matrix elements of c1σ vanish, i.e.,
c1σ = 0. Also, c2σ has the following matrix elements:

ci;2↑ =
∏
j<i

(−1)n j
1√
2

( |↑〉i 〈x|i − i |↑〉 〈y|i − |↓〉i 〈z|i
)
,

ci;2↓ =
∏
j<i

(−1)n j
1√
2

( − |↓〉i 〈x|i − i |↓〉 〈y|i − |↑〉i 〈z|i
)
,

(A4)

where
∏

j<i(−1)n j is the Jordan-Wigner string to enforce
fermionic statistics.

We can define the spin operator Ss for the spin-1/2 singlon
and spin operator Sd for the spin-one doublon. It is easy to
show that

Ss
a = 1

2

∑
σ,σ ′

σ a
σ,σ ′ |σ 〉 〈σ ′| ,

Sd
a = −i

∑
b,c

εabc |b〉 〈c| , (A5)

where the Pauli matrices σ and the antisymmetric tensor ε are
used.

b. Hamiltonian

The t-J Hamiltonian can be written as

H = t2
∑

i j

c†i;2σ c j;2σ + H.c. + HJ . (A6)

We need to emphasize that the Hamiltonian is defined in the
restricted five-states Hilbert space. Therefore ci;2σ should not
be confused with a conventional electron operator. In other
words, HJ = 0 does not reduce the Hamiltonian to a free
fermion model.

We should include superexchange terms involving virtual
hopping, which leads to the following spin coupling:

HJ = J
∑
〈i j〉

(
	Ss
i · 	Ss

j − 1

4
ns

i n
s
j

)
+ Jd

∑
〈i j〉

( 	Sd
i · 	Sd

j − nd
i nd

j

)

+ 1

2
J ′ ∑

〈i j〉

[(
	Ss
i · 	Sd

j − 1

2
ns

i n
d
j

)
+

(
	Sd
i · 	Ss

j − 1

2
nd

i ns
j

)]
,

(A7)

where s, d label the spin operator for the singlon and doublon.
ns

i = 1 − ni and nd
i = ni are the density of singlon and dou-

blon states.
The spin coupling parameters are obtained from

standard second-order perturbation theory. We have
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J = 4 t2
1

U , Jd = t2
1

U + t2
2

U + 2 t2
12
U . J ′ = 1

2 (J1 + J2) + t2
2

2JH
−

t2
12( 1

εdd
− 1

εdd +JH
), where J1 = 2( t2

1
U1+U ′ + t2

1
U1−U ′ ) and

J2 = 2( t2
12

U2+U ′+εdd
+ t2

12
U1−U ′−εdd

). The J ′ term contains a

contribution proportional to t2
2

2JH
, which is from integrating

the orbital-triplet, spin-singlet doublon. The final value of
J ′ depends on the details of the material, but it is definitely
reasonable to assume that J ′ > J . Actually, if we assume
U = 2U ′ = 4JH , εdd = JH , t1 = t12, and t2 = 0 (t2 should be
smaller in the xy plane because it is associated with the dz2

orbital), we find J ′ ≈ 1.3J . In the following we view J ′
J as a

phenomenological parameter. The J ′ term can be viewed as
a Kondo coupling between the spin-1/2 singlon and spin-1
doublon. It can cause Kondo resonance between them.

APPENDIX B: HAMILTONIAN IN THE SPIN-ONE SLAVE
BOSON AND THREE-FERMION PARTON THEORY

In the main text we introduced two different parton con-
structions: spin-one slave boson and a three-fermion parton.
Here we show that there is a connection between these two
parton theories. The three-fermion parton can be derived from
the slave boson parton by further fractionalizing the spin-one
slave boson to two spin-1/2 fermions:

b†x = − 1√
2

(ψ†
1↑ψ

†
2↑ − ψ

†
1↓ψ

†
2↓),

b†y = i√
2

(ψ†
1↑ψ

†
2↑ + ψ

†
1↓ψ

†
2↓),

b†z = 1√
2

(ψ†
1↑ψ

†
2↓ + ψ

†
1↓ψ

†
2↑). (B1)

The physical hole operator can then be written as

c↑ = 1√
2

f †↑ (bx − iby) − 1√
2

f †↓ bz

= f †↑ψ1↑ψ2↑ + 1

2
f †↓ (ψ1↑ψ2↓ + ψ1↓ψ2↑),

c↓ = − 1√
2

f †↓ (bx + iby) − 1√
2

f †↑ bz

= f †↓ψ1↓ψ2↓ + 1

2
f †↑ (ψ1↑ψ2↓ + ψ1↓ψ2↑). (B2)

In terms of the slave boson construction, the hopping term
in the t-J model can be rewritten as

HK = − t2
2

∑
〈i j〉

f †j↑ fi↑(b†i;xb j;x + b†i;yb j;y + b†i;zb j;z )

− t2
2

∑
〈i j〉

f †j↓ fi↓(b†i;xb j;x + b†i;yb j;y + b†i;zb j;z )

− t2
∑
〈i j〉

∑
a=x,y,z

( f †j S f
a fi )(b

†
i Sb

ab j ). (B3)

In terms of the three-fermion parton construction, the
kinetic part is

HK = −1

4
t2

∑
σ

∑
〈i j〉

f †jσ fiσ (ψ†
i;2↓ψ

†
i;1↑ + ψ

†
i;2↑ψ

†
i;1↓)

× (ψ j;1↑ψ j;2↓ + ψ j;1↓ψ j;2↑)

− t2
∑

σ

∑
〈i j〉

f †j;σ fi;σ ψ
†
i;2σ ψ

†
i;1σ ψ j;1σ ψ j;2σ

−1

2
t2

∑
〈i j〉

f †j;↑ fi;↓[(ψ†
i;2↓ψ

†
i;1↑+ψ

†
i;2↑ψ

†
i;1↓)(ψ j;1↑ψ j;2↑)

+ (ψ†
i;2↓ψ

†
i;1↓)(ψ j;1↑ψ j;2↓ + ψ j;1↓ψ j;2↑)]

−1

2
t2

∑
〈i j〉

f †j;↓ fi;↑[(ψ†
i;2↓ψ

†
i;1↑+ψ

†
i;2↑ψ

†
i;1↓)(ψ j;1↓ψ j;2↓)

+ (ψ†
i;2↑ψ

†
i;1↑)(ψ j;1↑ψ j;2↓ + ψ j;1↓ψ j;2↑)] + H.c. (B4)

APPENDIX C: MEAN-FIELD THEORY AND
SELF-CONSISTENT EQUATIONS

We list the mean-field theory from the three-fermion parton
and self-consistent equations for a very general mean-field
ansatz here. We include the spin-triplet pairing term of � in
the mean-field ansatz. Triplet pairing breaks the SO(3) spin
rotation, and we choose the pairing channel to be ψi;1↑ψi;2↑ −
ψi;1↓ψi;2↓. This pairing has the same spin rotation symmetry
as b†x .

We can have a mean-field theory by decoupling the original
Hamiltonian:

HM = −t f

∑
〈i j〉

f †iσ f jσ + H.c. − tψ

ab

∑
ab=1,2

∑
〈i j〉

ψ
†
i;aψ j;b + H.c.

− 
a

∑
〈i j〉

( f †iσψ j;aσ + ψ
†
i;aσ f jσ )

+ H.c. − 
0
a

∑
i

( f †i ψi;a + ψ
†
i;a fi )

− μ f

∑
i

n f
i − μ1

∑
i

nψ

i;1 − μ2

∑
i

nψ

i;2

− μx

∑
i

(ψ†
i;1ψi;2 + H.c.)

+
∑
〈i j〉

� f ;i j ( f †i;↑ f †j;↓ − f †i↓ f †j;↑) + H.c.

+
∑
〈i j〉

� f ,ψa;i j[( f †i;↑ψ
†
j;a↓ − f †i;↓ψ

†
j;a↑)

+ (ψ†
i;a↑ f †j;↓ − ψ

†
i;a↓ f †j;↑)] + H.c.

+ �t

∑
i

(ψ†
i;1↑ψ

†
i;2↑ + ψ

†
i;1↓ψ

†
i;2↓) + H.c. (C1)

μ,μ1, μ2 are introduced to fix the density 〈n f 〉 = 1 − x and
〈nψ1〉 = 〈nψ2〉 = x. Meanwhile we need μ12 and μ21 to fix the
constraint that �

†
i τx,y�i = 0.
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FIG. 4. Order parameters from mean-field equations.

Although there is triplet pairing, there is still time-reversal
symmetry. Therefore any correlation for spin up and spin
down is guaranteed to be equal. This can greatly simplify our
self-consistent equations.

Following the standard variational principle [28], self-
consistent equations can be derived:

t f = 3

8
Jχ f + 3

8
t (χ1χ2 − χ21χ12) + 1

4
t |χ�t |2

tψ

1 = 3

8
tχ f χ2 − 9

16
tC2 jC2i

tψ

2 = 3

8
tχ f χ1 − 9

16
tC1 jC1i

tψ

12 = −3

8
tχ f χ21 + 9

16
tC1C2

�i j = 3

8
Jχ�

�t = −1

2
tχ f χ�t

� f ψa = 3

16
J ′χ� f ψa


a = 3

16
J ′Ca


0
1 = t

∑
j∼i

(
−5

8
C1χ2 + 5

8
C2χ12

)


0
2 = t

∑
j∼i

(
−5

8
C2χ1 + 5

8
C1χ12

)
, (C2)

where

χ f =
∑

σ

〈 f †j;σ fi;σ 〉

χψ
a =

∑
σ

〈ψ†
j;aσ ψi;aσ 〉

χ
ψ

12 =
∑

σ

〈ψ†
j;1σ ψi;2σ 〉

C0
a =

∑
σ

〈ψ†
j;aσ f j;σ 〉

Ca =
∑

σ

〈ψ†
j;aσ fi;σ 〉

χ� = 〈 fi↑ f j↓ − fi↓ f j↑〉
χ� f ψa

= 〈ψi;a↑ f j↓ − ψi;a↓ f j↑〉
χ�t = 〈ψi;2↑ψi;1↑ + ψi;2↓ψi;1↓〉. (C3)

The mean-field solutions are shown in Fig. 4. In our mean-
field calculation, the Kondo couplings 
1 and � f ψ2 decrease
rapidly when decreasing J ′. It is not clear whether this is an
artifact of our naive mean-field treatment or not.

APPENDIX D: JH → 0 LIMIT: HEAVY FERMION PHYSICS

As we argued previously, a proper model for nickelate is
a t-J model with a spin-one doublon, which is derived from
JH � t limit. In this section we show that a heavy-fermion-
like model can be written down at finite JH . The model then
reduces to the t-J model with a spin-one doublon if we take
the JH → ∞ limit. As we will see later, this model at small
JH actually captures some of the essential physics connecting
to the JH � t limit.

At finite JH , we should keep 2 + 4 = 6 states at each site.
At each site the 6 = 2 × 3 dimensional Hilbert space has a
tensor product structure: Hi = H1

i ⊗ H2
i , where Ha

i means the
Hilbert space for orbital a = 1, 2 at site i. H1

i is a spin-1/2 on
orbital one, and H2

i is a three-dimensional space generated by
the hole operator c†2σ with the constraint ni;2 = 0, 1. Basically,
the doped hole enters orbital 2 while the density on orbital 1
is fixed to be one per site. Therefore the final theory consists
of xNs c2σ particles moving and interacting with spin-1/2
moment at each site.
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The final model is quite similar to a Kondo-Heisenberg
lattice model:

H = t2
∑
〈i j〉

Pc†i;2σ c j;2σ P + H.c. − μ
∑

i

c†i;2σ ci;2σ

− 2JH

∑
i

	S2
i · 	S1

i + J
∑
〈i j〉

	S1
i · 	S1

j

+ 1

2
(J1 − J )

∑
〈i j〉

[ni;2(1 − n j;2 ) + (1 − ni;2 )n j;2] 	S1
i · 	S1

j

+ 1

2
J2

∑
〈i j〉

( 	S1
i · 	S2

j + 	S2
i · 	S1

j

) + Jd

∑
〈i j〉

	S2
i · 	S2

j , (D1)

where J1, J2 is the spin coupling between the singlon and the
spin of the doublon. The (J1 − J ) term reflects the fact that the
coupling between two nearest-neighbor spins on orbital 1 is
different if one site is a singlon and the other one is a doublon.
P constrains ni;2 = 0, 1. On average we have 〈ni;2〉 = x.

We have J = 4 t2
1

U1
, Jd = 4 t2

2
U2

. J1 = 2( t2
1

U1+U ′ + t2
1

U1−U ′ ) and

J2 = 2( t2
12

U2+U ′+εdd
+ t2

12
U1−U ′−εdd

). Assuming U1 = U2 = U and

U ′ = 1
2U and εdd = 1

4U , we have J1 = 4
3 J . If we further

assume t12 = t1, then J2 = 4
3 J .

In the following we assume J1 = J for simplicity. Then
the above model resembles the models for heavy fermion
systems. Basically the particle on orbital 1 contributes a local
spin-1/2 moment while orbital 2 provide itinerant particles.
In this model, the itinerant electrons couple to the local
moment through both ferromagnetic JH and antiferromagnetic
“Kondo” coupling. The model in Eq. (D1) reduces to the
model in Eq. (4) if we take the JH → ∞ limit. (Interestingly,
the JH → −∞ limit gives the conventional t-J model in
cuprate.)

When JH = 0, itinerant holes from c2σ couple to the spin-
1/2 moment. A “heavy Fermi liquid” or heavy fermion super-
conductor may show up through Kondo resonance. However,
the large JH limit is not clear at all from the above Hamil-
tonian. With a large JH , c2σ itself cannot move coherently
because it strongly couples to the spin-1/2 at the same site.
Then the t-J model in Eq. (4) may be a better starting point.
However, as we show in the main text, even in the JH → ∞
limit, a similar heavy fermion physical may emerge in the
low energy. But there the small hole pocket is formed by
fermion ψ2σ below T 1

K (see Fig. 3), which is not identical
to the microscopic c2σ . We may view this ψ2σ operator as a
“renormalized” operator in the infrared limit of RG flow. Our
mean-field theory of the t-J model in the JH → ∞ limit shows
that this renormalized hole ψ2σ can move coherently and does
not feel frustration from JH (after all, JH disappears in the
t-J model). Depending on whether there is Kondo resonance
between ψ2σ and the spin-1/2 moment, we have a Fermi
liquid with a large Fermi surface (or superconductor) or a
fractionalized Fermi liquid (FL*) phase.

APPENDIX E: DIFFERENT PHASES IN THE
THREE-FERMION PARTON THEORY

We discuss different phases described by the mean-field
theory in Eq. (C1) in the three-fermion parton theory. For

simplicity, we focus on the ansatz with � f = 0. The pairing
term can be added later. Our parton construction has a U (1) ×
SU (2) gauge invariance. We can always choose a SU (2)
gauge to remove the f †i ψi;2 term. We can have different phases
corresponding to the remaining gauge structure [invariant
gauge group (IGG)].

1. U (1) × SU (2): Kondo breakdown

If 
0
1 = 
1 = 
2 = � f ψa = 0 and tψ

1 = tψ

2 , tψ

12 = 0, our
mean-field ansatz still has the full U (1) × SU (2) structure.
In this case f and ψ are decoupled. From the decoupling of
HK , ψ can get both a hopping and triplet-pairing term. Let
us forget the triplet-pairing term first. Then ψ1 and ψ2 form
two separate hole pockets, which couple to U (1) gauge field a
and SU (2) gauge field α. SU (2) gauge field always mediates
attractive interaction in the orbital singlet, spin-triplet channel.
Therefore we conclude that there is no stable phase with
the IGG U (1) × SU (2). � is always gapped out by a spin-
triplet pairing term �t , and then the SU (2) gauge field is
confined. In this case, the resulting phase is exactly the same
as that accessed by condensing the spin-one slave boson in the
previous section. Depending on the ansatz of f , we can have
either a spin-nematic d-wave superconductor or spin-nematic
Fermi liquid.

2. U (1)a × U (1)α: U (1) pseudogap metal

In this IGG, we still need 
0
1 = 
2 = 
0 = � f ψa = 0.

However, we introduce tψ

1 �= tψ

2 to Higgs SU (2) to U (1).
U (1) is generated by τz, and let us label it as α. Meanwhile,
there is another U (1) gauge field a shared by f and �. They
have the following charge: f couples to a, ψ1 couples to
1
2 A + 1

2 a + 1
2α, and ψ2 couples to 1

2 A + 1
2 a − 1

2α.
If � f = 0, we have a large Fermi surface from f and two

smaller Fermi surfaces from ψ . This is a very exotic metal
similar to the “deconfined metal” proposed in Ref. [25] for
the SU (4) model.

If � f �= 0, a is Higgsed down to Z2 and we can ignore
it. We still have two small Fermi surfaces formed by ψ1 and
ψ2. Meanwhile ψ1 couples to 1

2 A + 1
2α while ψ2 couples

to 1
2 A − 1

2α. Because f forms d-wave pairing, the physical
electron must have an antinode gap. Around node ( π

2 , π
2 )

there should still be gapless excitations from convolution
of f , ψ1, ψ2. We dub this phase a “U (1) pseudogap metal”
because of its similarity to the pseudogap metal in cuprates
and a deconfined U (1) gauge field.

3. U (1)a: Deconfined metal and Z4 pseudogap metal

We assume ansatz tψ

1 �= tψ

2 and tψ

12 �= 0 for �, which fully
Higgses the SU (2) gauge field. Besides we need 
0 = 
1 =

2 = � f ψa = 0. Then we only have a U (1) gauge field a. In
this case, we have two sets of Fermi surfaces formed by f and
ψ1,2. The low-energy theory looks like

L = LFS[ f , 2a] + LFS

[
ψ,

1

2
A + a

]
. (E1)
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We call this phase as a “deconfined metal” because of a decon-
fined U (1) gauge field. The areas of the two Fermi surfaces are
1 − x and x, respectively. They are strongly coupled together
by gauge field a.

When there is also pairing for f : � f �= 0, which Higgses
a down to Z4, we get a “pseudogap metal.” But in this case
the Fermi surface formed by ψ only couples to a Z4 gauge
field. There may be one or two hole pockets depending on
details of hopping terms in ψ . But generically this is a stable
metallic phase. Its property is similar to “orthogonal metal”
[29], except that now the Z4 gauge theory part also contains a
gapless nodal fermion from f .

This “pseudogap phase” has the following properties: (1)
The thermodynamic properties and transport properties are
the same as Fermi liquid with small hole pockets. The size of
the hole pocket is equal to 2x. But the physical charge carried
by ψ is only 1/2. Therefore Hall number is x. (2) Green
function of c is a convolution of f , ψ1, ψ2. f only has gapless
excitation around ( π

2 , π
2 ). ψ1, ψ2 is likely to have pockets at

either (0,0) or (π, π ). The spectral function of the physical
electron operator must only have gapless weights at around
( π

2 , π
2 ) after convolution. Both of these features resemble the

pseudogap metal in hole-doped cuprate.

4. U (1)α: FL*

We add 
1 �= 0, which hybridizes f and ψ1, but still as-
sumes 
2 = 
0 = 0 and tψ

12 = 0. Therefore ψ2 is decoupled
from f , ψ1.

f couples to 2a. ψ1 couples to 1
2 A + a + 1

2α. ψ2 couples to
1
2 A + a − 1

2α. After 
 �= 0, we have a = 1
2 (A + α). Therefore

the final phase still has one deconfined U (1) gauge field.
There are two sets of Fermi surfaces in the low energy. The

first one is formed by f , ψ1 and it couples to A + α. The other
one is formed by ψ2 and it couples to A. We have c ∼ f †ψ1ψ2.
After adding f †ψ1, ψ2 is the same as a physical electron. We
can always redefine α̃ = A + α. The final theory is

L = LFS[ f , α̃] + LFS[ψ2, A]. (E2)

This describes a FL* phase. Basically the Fermi liquid
part from ψ2 coexists with a neutral Fermi surface formed by
f , ψ1. Because there is no coupling like ψ

†
1 ψ2, the two Fermi

surfaces do not merge. Our constraint is nψ1 = nψ2 = x and
n f = 1 − x. Thus the Fermi surface area of the Fermi liquid
part is fixed to be x. Naively, f forms a U (1) spin liquid with
spinon Fermi surface and the Fermi surface area is 1/2. In
practice the spin liquid part may likely be confined. Then the
phase is just a small hole pocket decoupled from the spin-1/2
moment. It is exactly the “small Fermi surface” phase above
the Kondo scale we described in the JH = 0 limit.

Next we add pairing � f to the mean-field ansatz. The
neutral part becomes a Z2 Dirac spin liquid, and we still call
the resulting phase FL*.

5. Fully Higgsed: Conventional Fermi liquid
with large Fermi surface

Consider ansatz with 
0 �= 0 and � f ψ2 �= 0. All of gauge
fields are fully Higgsed. We finally have a conventional Fermi
liquid. The Fermi surface area is decided by n f + n1 + n2 =

1 + x, consistent with the Luttinger theorem. If we further
introduce pairing, we get a conventional superconductor.

APPENDIX F: ROLE OF Nd ORBITALS

Here we comment on the possible role of 5d orbitals of
the Nd element. Reference [7] suggests that the Nd orbital
couples to the dx2−y2 orbital of Ni like in the Anderson model,
which gives Kondo resonance. At zero doping, there is indeed
fluctuation between the d9 state and d8R state, where R
denotes the Nd orbital. However, as we argued previously, the
lowest energy of the d8 state of Ni is a spin triplet occupying
both eg orbitals. Thus a more appropriate lattice model should
involve both eg orbitals of Ni, and the dominant process is to
create the spin-one d8 state:

H =
∑

k

ε1
k c†1 (k)c1(k) +

∑
k

(ε2
k + εdd )c†2 (k)c2(k)

+
∑

k

εd (k)d†(k)d (k) + V1

∑
i

c†i;1di+

+ V2

∑
i

c†i;2di + H.c

+ U1

2

∑
i

n1;i(n1;i − 1) + U2

2

∑
i

n2;i(n2;i − 1)

+ U ′ ∑
i

n1;in2;i − 2JH

∑
i

(S1;i · S2;i + 1

4
ni;1ni;2 ), (F1)

where d is the hole operator for the orbital of the Nd element.
c1, c2 represents the hole operators for the two eg orbitals
of Ni.

Unlike the model in Ref. [7], the above model is not a
simple Anderson model because of inclusion of the V2 pro-
cess. In the limit JH ,U ′,U � V1,V2, a Kondo spin coupling
between the Ni and Nd spin can be derived from second-order
perturbation:

Hkondo = J̃
∑

i

	SNi
i · 	SNd

i , (F2)

where

J̃ = 2V 2
1

U1
− 2V 2

2

(
1

U ′ − JH
− 1

U ′

)
. (F3)

The superexchange involving V2 actually induces a ferro-
magnetic Kondo coupling because of the Hund’s coupling.
From DFT calculation, V1 is very tiny [7,8]. Reference [7]
estimates V1 ≈ 0.1t1, which means J̃ ∼ 0.01J . Hence the
Kondo coupling between the Nd and Ni can be ignored.

We always have the constraint nNi + nNd = 1. Once there
are electrons in the Nd orbital, the Ni site is self-doped. In
this case, we should expect a small doping x even for undoped
NdNiO2, and the physics should be mainly governed by the
t-J model in Eq. (4) with small doping together with a small
density of Nd electrons. This self-doping effect is likely to be
the reason why the parent compound is metallic and does not
have magnetic order. Besides, nNd can in principle vary with
temperature. Decreasing of nNd below 60 K may be the reason
why there is a change of the Hall coefficient for x = 0.2 and
an upturn of resistivity for x = 0.
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In the limit U,U − U ′, εdd , JH � t , we have a low-energy model which extends our t-J model:

H = Ht-J +
∑

k

ξNd(k)d†
σ (k)dσ (k) + V

∑
i

c†i di + H.c. + JK 	Ss
i · 	SNd

i , (F4)

where d†
i creates a hole for the Nd orbital and c†i creates a spin-one doublon. We need to include JK from V1.
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