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Model for growth and morphology of fungal mycelium

Bhagyashri Shinde, Shagufta Khan, and Sudipto Muhuri *

Department of Physics, Savitribai Phule Pune University, Pune, India

(Received 3 November 2019; accepted 23 March 2020; published 30 April 2020)

We present a minimal driven lattice gas model which generates the morphological characteristics associated
with single-colony mycelium arising from the growth and branching process of fungal hyphae, which is fed by
a single source of nutrients. We first analyze the growth and transport process in the primary hypha modeled
as a growing one-dimensional (1D) lattice, which is subject to particle (vesicle) loss due to the presence of
dynamically created branching sites. We show that the spatial profile of vesicles along the growing lattice is an
exponential distribution, while the length grows logarithmically with time. We also find that the probability
distribution of length of the hypha tends to a Gaussian distribution function at late times. In contrast, the
probability distribution function of the time required for growth to a specific length tends to a broad log-normal
distribution. We simulate the resultant 2D morphology generated by the growing primary hypha, quantifying
the motility behavior and morphological characteristics of the colony. Analysis of the temporal behavior and
morphological characteristics of the resultant 2D morphology reveals a wide variability of these characteristics,
which depend on the input parameters which characterize the branching and elongation dynamics of the hyphae.
By calibrating the input parameters for our model, we make some quantitative comparisons of the predictions
of our model with the observed experimental growth characteristics of fungal hyphae and the morphological
characteristics of single-colony fungal mycelium.
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I. INTRODUCTION

Fungi are an integral part of the nutrient cycle in ecosys-
tems and they serve as important model systems for genetic
research due to their relative simplicity as an eukaryotic
cellular system [1,2].

Fungi exhibit a filamentous growth process. The basic
filament structure of fungi—the hyphae—grows by means of
extension and branching at the tip, giving rise to a multicel-
lular complex network, i.e., the mycelium [1,3]. In order to
develop a comprehensive understanding of the morphology of
the entire mycelium, it is pertinent to develop an understanding
of the transport and branching process of the individual fungal
hypha and the morphological features of the colony formed
as a result of such a growth process. Depending on the
scale of description of the growth phenomenon, theoretical
models for growth and transport in individual hypha and
fungal colonies belong to the categories of tip-scale models
[4,5], intermediate-scale models [6–9], and macroscale mod-
els [2,10]. The tip-scale models such as the vesicle supply
center (VSC) model focus on aspects of the extension and
shape of the hyphal tip [4,5], and the typical length scales of
the description are ∼100 μm. For this model, the connection
of the growth or branching process with the process of vesicle
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supply from the subapical region of the fungi is not explicitly
taken into account [8,9]. On the other hand, the macroscale
models focus on a description in terms of effective interac-
tion of the fungal colony as a whole with the environment,
without explicitly taking into account the metabolic processes
at play for the individual hypha that constitute the colony
[10,11]. The model that we study belongs to the category of
intermediate-scale description, wherein we focus on a motor-
driven process of growth and branching in individual hyphae
which is fed by a single source of nutrients and generates
a single-colony mycelium. Much of the previous work in
the domain of such intermediate-scale description of fungal
growth has taken recourse to continuum models and focused
on the details of biomechanics, without explicitly considering
the role of molecular motors [9,10]. In contrast, we investi-
gate the role of molecular motors using a model of driven
lattice gas.

Driven lattice gas models have provided a useful descrip-
tion for the plethora of biological processes encompassing
transport across biomembranes [12], dynamics of ribosomes
in m-RNA [13], motor-driven intracellular transport [14–18],
transport in fungal hyphae [8,19,20], and other driven phe-
nomenon [20–29]. In particular, a driven lattice gas model,
i.e., the dynamically extending exclusion process (DEEP), has
been adopted for modeling the extension of fungal hyphae
[8,19]. For DEEP, particles hop unidirectionally on the lattice,
interacting with other particles via hard-core repulsion, and
the particles at the growing end of the lattice dynamically
create a new lattice site, leading to the overall extension of
the lattice [8,19]. While this model has been able to relate
the growth of the fungal hyphae with the supply of nutrients,
one inadequacy has been that the process of branching and
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related loss of the transported particles has not been taken into
account. For instance, for aerial hyphae of sporangiophore,
branching is indeed observed. Further, the elongation process
of the individual hypha is such that there is a slow down
of their growth rates as their length increases [9,30]. This is
in contrast to the results obtained for DEEP, which predicts
a growth rate of the hypha that is uniform, without any
slowdown [8,19].

Our minimal model is a generalization of the dynamically
extending exclusion process (DEEP), encompassing the pro-
cess of both linear growth and branching. Also, in contrast
to continuum biomechanical models [9], which involve many
parameters, our coarse-grained description involves very few
input parameters, e.g., nutrient supply rate, growth rate at the
tip, branching rate, and flow rate of nutrients to the different
branches of the growing lattice. One experimental system that
serves as a paradigmatic example is the fungus Neurospora
crassa [31,32]. For this system, the material necessary for
growth of the hyphae is packaged as vesicles and supplied
by a single source located in the subapical region of the
fungi [31,32]. The transport of these vesicles is done by
molecular motors, which walk along the parallel array of
microtubule filaments, carrying these vesicles to the tip of the
hypha [33,34]. In the apical region of the tip, the intracellular
organelle Spitzenkorper is involved in the synthesis of new
cell wall from the vesicles, leading to growth [31]. Apart from
the linear elongation process of the hyphae, the lateral branch-
ing process of the fungal hyphae is also observed [9,30,32].
The process of branching and elongation of a single primary
hypha, fed by a single source of nutrient, generates a single-
colony mycelium. We study the morphological characteristics
and growth pattern of such colonies on a surface using a two-
dimensional (2D) minimal model. Two-dimensional growth
processes have been studied for randomly branched polymers
[35–37] and growth of cell colonies [38]. In this context, vari-
ants of lattice animal models such as the Eden Aggregation
process have been used to characterize the growth processes
on discrete lattices [38–44], while continuum models such
as Flory Theory for branched polymers have been developed
to study the polymerization process under different condi-
tions [35–37]. The connections between these discrete lattice
animal models with the polymerization models have also
been studied [35–37,45,46]. There is, however, one crucial
distinction of these models with the model that we study in
this article. In particular, for our model, the elongation and
branching process at individual sites of the colony is coupled
to the supply of nutrients at those sites, and is in contrast to
the growth process of branched polymers and lattice animals
for which the growth process at the sites is not subject to such
a constraint.

In Sec. II, we first describe the 1D minimal model for
the growth and transport in the primary hypha, specifying
the dynamical rules for growth, and set up the correspond-
ing equations of motion for the system. Further, we also
specify the dynamical rules governing the development of
the 2D mycelium arising from the branching process of the
hyphae.

In Sec. III, we obtain the mean-field (MF) analytical so-
lutions of the length of the individual primary hypha as a
function of time as well as the spatial profile of the transported

cargo along the hypha. We then compare these results with
the Monte Carlo (MC) simulation results. By performing MC
simulations, we also obtain the probability distribution of
lengths of the primary hypha, and the probability distribution
of the time required for growth up to a specified length of the
hypha.

In Sec. IV, we discuss the results for the spatial and tem-
poral features associated with single-colony mycelium that is
generated from the elongation and branching process of the
primary hyphae. In Sec. V, we calibrate the input parameters
of the model to reproduce the quantitative measures associ-
ated with the growth characteristics of the individual fungal
hypha and single-colony mycelium, which are observed in
experiments. In Sec. VI, we summarize our results and dis-
cuss the insights gained from the findings of this model in
understanding the growth and morphological characteristics
of single-colony mycelium.

II. MODEL

In general, the process of linear growth and lateral branch-
ing (in the same plane) of the primary fungal hypha would
generate a 2D morphology. We first describe the 1D model
for the growth and transport behavior of the primary hypha.
Subsequently, we would discuss the generalized model for
describing the 2D morphology of the hyphal colony emerging
due to the lateral branching process and linear extension of the
fungal hyphae.

A. Effective 1D model for growth for primary hypha

We consider the initial state of the fungal hypha to be
an object of 1D spatial extension with an initial specified
length ε and which we refer to as the primary hypha. From
the perspective of the linear extension of this primary hypha,
the effect of branching manifests as a process of material
loss along the hyphae during the process of its growth. We
represent this growing primary fungal hypha as a 1D discrete
lattice. At any instant of time t , the total number of lattice
sites is N , corresponding to a length L = εN (Fig. 1). Vesicles
required for growth are represented by particles, which are
transported by molecular motors along the lattice from left
to right. First, we describe the dynamics of the particles at
the lattice boundaries. At the left end of the lattice, at site
i = 1, particles enter the lattice with a rate α provided the
boundary site is vacant. At the boundary site on the right, at
site i = N , which corresponds to the tip of the hypha, two
processes can occur as follows: (a) If the tip site at i = N
is occupied by a particle, then with a rate γ an additional
empty lattice site to the right is created, and the site i = N
also become empty. This process leads to overall increment
of the length of the lattice from L to L + ε, while the total
number of lattice sites is incremented from N to N + 1. This
dynamics of lattice growth is exactly the same as that of DEEP
[8,19]. (b) With a rate 1 − γ , an occupied tip site i = N not
only creates a new empty lattice site to the right, but the
lattice at i = N becomes an empty defect site. The overall
extension rate of the lattice is 1. These defect sites correspond
to the branching sites that would get created dynamically.
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FIG. 1. (a) Schematic of the dynamical processes for growing
primary hypha represented as a 1D growing lattice. With a rate γ ,
an occupied tip site (T) becomes two normal empty sites, while with
rate 1 − γ two empty lattice sites are created, with the preceding
site transforming into a defect site (D). The particle entry rate at
the first site (E) is α, the particle hopping rate is 1 for a normal
(nondefect) site, and the loss rate of particles at the defect site is
δ. (b) Single-colony mycelium represented as a 2D lattice with entry
rate α, branch site creation rate 1 − γ , hopping rate of 1 for a normal
(nonbranching) site, and particle flow rate to secondary branch δ. For
the branching sites, the hopping rate on the same branch is 1 − δ and
the overall growth rate at the tip is 1. Here, E denotes the site of entry,
T denotes the tip site, and B denotes a branching site.

If one considers the full 2D morphology resulting from this
growth process, then the defect sites would correspond to the
branching sites for which the vesicle supply from the static
end of the hyphae would be split between the two branches,
leading to eventual growth of these two separate branches.
However, from the perspective of the primary hypha, the effect
of branching would manifest as a loss of vesicle at the defect
sites. Thus, effectively, at any instant of the time, the 1D
lattice, representing the primary hypha, would be comprised
of bulk normal bulk sites (N), defect sites (D), apart from
the boundary sites at the growing tip (T), and boundary site
at the nongrowing end (E), which corresponds to the site
where particles enter the lattice. Particles in the bulk of the
lattice interact with each other via excluded volume effect,
thus restricting the maximum occupancy per lattice site to 1.
For any normal bulk site i, the particles hop unidirectionally
to the adjacent site to the right, with rate 1 provided the site
at i + 1 is vacant. At the defect site, with a rate δ, there
is a loss of particle from the site, while with a rate 1 − δ,
the particles hop to the site i + 1, provided it is empty. This
completes the specification of the dynamics of the 1D model.
All the dynamic processes for this dynamic lattice model are
schematically depicted in Fig. 1(a).

B. 2D model for single-colony mycelium

We consider the growth process of a single colony on a
square lattice, arising due to the branching and elongation
process of the fungal hyphae constituting the colony. We
consider an initial starting configuration of the colony which
is a fungal hypha and is represented by a 1D lattice of length
ε placed along the x axis at the origin. The processes of
particle entry at the left boundary are the same as that of
the 1D model, with the particles entering at the left end of
the lattice located at (0,0), with a rate α provided the site is
vacant. If there is particle at the tip site, the following two
processes occur: (i) Pure linear extension. With a rate γ , a new
lattice site is created in the original direction of movement
of the particle, provided that the site is not occupied by the
colony itself. The underlying assumption made here is that the
presence of the colony obstructs and arrests the linear growth
process of a hyphal tip. (ii) Branching and extension. With a
rate 1 − γ , two new empty lattice sites are created—an empty
lattice in the original direction of movement of the particle and
an empty site perpendicular to it. One of two perpendicular
directions is chosen randomly with equal probability. Again
this process is subjected to the constraint that it occurs only
if the adjacent site in the direction of growth and the adjacent
sites in the perpendicular direction are not occupied by the
colony itself. Such branching process would transform the tip
site (T) at time t into a branching site (B) at time t + 1. It
would also create two new tip sites in the direction of original
movement of the particle and in a direction perpendicular to
it. Both of these processes would lead to growth of the single
colony comprised of these hyphae. Thus, at any instance of
time, any site in the bulk of the colony would either be a
branching site (B) or a normal site N (a site without any
branching). At any instance, a particle on a normal site will
hop unidirectionally with rate 1 to the adjacent site in the
original direction of motion of the particle provided it is
empty. For a particle on a branching site, with a rate δ, the
particle would hop onto the other branch site provided the
adjacent site on the branch is empty, while with rate 1 − δ,
it would continue to hop to the adjacent site in the original
direction of movement provided that site is empty. A typical
configuration is schematically depicted in Fig. 1(b).

C. MC simulation of the process

To determine the density and current profiles on hypha,
Monte Carlo (MC) simulations have been performed to sim-
ulate the various processes for the 1D model described in
Sec. II A using the procedure of random-sequential update of
the sites [47,48]. In this procedure, at any given time step, a
site is chosen at random with equal probability and the lattice
site is updated according to the rules of dynamics specified in
Sec. II A. Each Monte Carlo unit of time, �tmc, corresponds
to an interval of real time �t , such that �t = �tmc/N (t ).
We note that since the lattice length is growing, therefore N
changes with time. For simulating the configurations for the
1D model, the initial starting configuration is a 1D lattice with
number of sites (N = 1), which is occupied by a particle at
x = 0. For the 2D model, the initial starting configuration is
also a 1D lattice with a particle occupying the site specified
by coordinates x = 0, y = 0, and the initial growth direction
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being along the +x direction. We adopt the synchronous
update procedure (also referred to as the fully parallel update
procedure) for updating the lattice sites for the 2D model
[47–49]. For this update procedure, at any instance of time
t , for a given configuration, all the lattice sites are updated
simultaneously according to the rules of dynamics specified
in Sec. II B [47]. One distinct advantage of performing MC
simulations using the synchronous update procedure is that it
is relatively faster than the random-sequential update proce-
dure [47] and has been used in the context of modeling traffic
flow [48]. Ensemble averaging is done typically for 10 000
samples for the 1D model and for 100 samples for the 2D
model, starting with the same initial configuration. For the
1D model, we have additionally also simulated the growing
lattice using a fully parallel update procedure to characterize
the temporal behavior of the growing lattice and compared
the simulation results with the one obtained using a random-
sequential update procedure.

III. CHARACTERISTICS OF SINGLE HYPHA

Having described the 1D model for growth of the primary
hypha in Sec. II A, we now discuss the growth characteristics
that we obtain for this minimal model.

A. Survival probability and density profile

For the 1D model for hyphal growth, we consider an
ensemble of a similarly prepared system. We define survival
probability P(i| j) (with i > j) as the probability of a particle
in site j to reach site i without leaving the 1D lattice,

P(i| j) =
i−1∏
s= j

P(s + 1|s)P( j), (1)

where P(s + 1|s) is the conditional probability for a particle
at site s to reach site s + 1, and P( j) is the probability of
occupancy of site j.

On averaging over the ensemble, the average survival prob-
ability for a particle at site s to reach a site s + 1, 〈P(s + 1|s)〉
can be expressed in terms of the probability of occurrence of
defect/normal sites and their respective survival probabilities
as follows:

〈P(s + 1|s)〉 = PN (s + 1|s)P(N ) + PD(s + 1|s)P(D), (2)

where P(D) is the probability that the site s is a defect site,
P(N ) is the probability that it is a normal site, PD(s + 1|s)
is the survival probability of the particle at site s to reach site
s + 1 if the site s is a defect site, and PN (s + 1|s) is the survival
probability of the particle at site s to reach site s + 1 if the
site s is a normal site. It therefore follows that 〈P(s + 1|s)〉 =
γ + (1 − δ)(1 − γ ), and the expression for average survival
probability 〈P(i| j)〉 assumes the form

〈P(i| j)〉 = P( j)[1 − δ + δγ ](i− j). (3)

The distance of separation between site i and site j in terms of
lattice spacing ε can be expressed as x = (i − j)ε. Then the
expression for the average probability of a particle surviving

a distance x is

P(x) = exp

(
Kx

ε

)
, (4)

where K = ln[1 − δ + δγ ]. The steady-state average occu-
pancy ρ(0) at the left end of the lattice at x = 0 is α.

When the excluded volume effect is ignored for the particle
hopping process in the growing lattice, the steady-state aver-
age occupancy ρ(x) may be expressed as ρ(x) = ρ(0)P(x),
and it follows from Eq. (4) that the approximate expression
for the average occupancy ρ(x) is

ρ(x) = α exp

(
Kx

ε

)
. (5)

Alternatively, the approximate steady-state expression of ρ(x)
in Eq. (5) can also be obtained by writing the evolution
equation for mean occupancy [15,16], when the excluded
volume effects are ignored. Denoting 〈ni〉 = ρi as the mean
occupancy at the ith site, the evolution equation then reads

∂tρi = γ ρi−1 + (1 − γ )(1 − δ)ρi−1

− γ ρi − (1 − γ )(1 − δ)ρi − δ(1 − γ )ρi. (6)

The corresponding steady-state condition ∂tρi = 0 leads to
the relation ρi = (1 − δ + δγ )ρi−1. Along with the boundary
condition ρ1 = α, this leads to the expression of ρ(x) which
is identical to Eq. (5).

Including the excluded volume effect within a MF approx-
imation [15,16], where we factorize the two-point correlators
arising out of the product of occupation numbers of neighbor-
ing sites, would lead to an evolution equation of the form

∂tρi = γ ρi−1(1 − ρi ) + (1 − γ )(1 − δ)ρi−1(1 − ρi )

− γ ρi(1 − ρi+1) − (1 − γ )(1 − δ)ρi(1 − ρi+1)

− δ(1 − γ )ρi. (7)

The interpretation of the terms on the right are as follows:
The first term corresponds to a gain term due to a particle
from a normal site at position i − 1 hopping to site i, the
second term is due to a particle at defect site at i − 1 hopping
to site i, the third and fourth terms are the terms associated
with particle hopping out of site i to site i + 1 from a normal
and defect site, respectively, while the last term is associated
with a particle leaving the lattice from a defect site. The
corresponding steady-state solution in the continuum limit
(with x = iε) may be obtained [14,16]. Ignoring terms of the
order of ε2 leads to an implicit solution of ρ(x),

2(ρ − α) − ln
(ρ

α

)
=

(x

ε

)[
δ(1 − γ )

1 − δ + δγ

]
. (8)

In Fig. 2(a), we show a comparison of the spatial profile of
the average occupancy along the growing 1D lattice obtained
by approximate analytical means, e.g., Eq. (5) and Eq. (8) with
the profile obtained by MC simulations.

B. Temporal behavior of hyphal length

For our model, we have set the rate of the overall growth
rate of the lattice to 1 unit per unit time. This corresponds to a
growth rate of ε per unit time, when the tip site is occupied by
a particle. Thus the mean linear growth rate of the length of
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FIG. 2. (a) Average occupancy of particles (ρ ) as a function of
distance from the site of particle entry into the lattice (x) for the 1D
model. Solid curves correspond to the expression in Eq. (5), while
dashed curves correspond to the expression of density in Eq. (8). The
circles correspond to points obtained by MC simulation done with a
random-sequential update procedure. (b) Average length of the grow-
ing lattice 〈L〉 as a function of time t : The solid curves correspond to
the MF expression of Eq. (9). The circles and the squares correspond
to MC simulation results obtained by the random-sequential update
procedure and synchronous update procedure, respectively. For all
the plots, α = 0.2 s−1, δ = 0.2 s−1, lattice spacing ε = 0.4 μm, the
overall growth rate at tip is 0.4 μm s−1, and averaging is done for
10 000 samples.

the lattice, V ≡ d〈L〉/dt , can be expressed as d〈L〉
dt = ερ〈L〉 =

εα exp[K〈L〉/ε]. With the initial condition of L being 0 at t =
0, the expression for the average length of the lattice 〈L〉 as a
function of time is

〈L〉 = ε

|K| ln(1 + α|K|t ). (9)

The corresponding expression for the mean linear growth
rate of the lattice length is

V = εα

1 + α|K|t . (10)

In Fig. 2(b), we show a comparison of the temporal profile
of the average length of the growing 1D lattice obtained
by approximate analytical means with the temporal profile
obtained by MC simulations.

C. Probability distribution of length of primary hypha

For the 1D model for growth of the primary fungal hypha,
after a fixed interval of time t , starting from a single lattice
site, the lattice grows to N lattice sites (corresponding to a
length L = εN). Since the process of creation of the defect
site is a random process, the length up to which the hypha
grows is itself a random variable. Using MC simulations with
synchronous update, we simulate the probability distribution
of the length of the growing lattice (in terms of the total
number of lattice sites N) after a fixed interval of time.
Figure 3(a) displays the probability distribution of N for
different value of t . For this distribution, the actual value of the
peak of the distribution is close to the approximate expression
of average length obtained from Eq. (9). Figure 3(b) displays
the probability distribution function of the scaled variable,
z = (N − 〈N〉)/

√〈N〉, at different times. This distribution
tends to a Gaussian distribution. The width of the distribution
in terms of scaled variable z decreases very slowly (∼5%,
when t increase by one order of magnitude). This implies

FIG. 3. (a) Probability distribution function of N (corresponding
to a length L = εN of the growing 1D lattice) after time t , starting
from one lattice site (N = 1) at t = 0 s. (b) Probability distribution
function in terms of scaled variable z = (N − 〈N〉)/

√〈N〉 at different
times. The solid curve corresponds to a Gaussian distribution with
σ = 0.21. (c) Probability distribution function of time t required for
growth of the lattice from 1 lattice site to N lattice sites. (d) Proba-
bility distribution of the ln(τ ), where τ is a dimensionless parameter
defined as τ = t/1 s. For all the plots, α = 0.2, γ = 0.9, δ = 0.3,
and the probability distribution functions are obtained by averaging
over 5000 samples.

that the relative width of the distribution function of N , and
equivalently the relative width of the probability distribution
function of L, decreases more rapidly than L−1/2. Thus, at late
times, the variation of the length of the hypha from the average
value is small.

D. Probability distribution of growth time of hypha

We look at the probability distribution of time t required
for growth of the primary hypha to grow up to a fixed length.
Figure 3(c) displays the probability distribution function of
time t for different values of total number of lattice sites
N . The probability distribution function of time is generi-
cally a broad distribution, with the most probable value of t
significantly different from the mean value of time required
for growth of the primary hypha. In Fig. 3(d), we plot the
distribution of the ln(τ ), where τ is dimensionless and defined
as τ = t/1 s. This distribution tends to a Gaussian distribution
function, indicating that P(t ) tends to a log-normal distribu-
tion function.

IV. FEATURES OF SINGLE-COLONY MYCELIUM

We now focus our attention on the motility and morphol-
ogy characteristics of a single-colony mycelium. We use the
2D model described in Sec. II B for mimicking the growth
processes in single-colony mycelium, which results from
elongation and lateral branching of a single primary hypha
with a single source of nutrient. The morphology character-
istics, e.g., shape and size of the single-colony mycelium,
are determined by the parameters γ , which characterizes
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FIG. 4. The morphology of single-colony mycelium (a single sample) at different times t , starting from an initial configuration of two
lattice sites at t = 0. The area enclosing each lattice site is a square box with sides of length 0.4 μm. (a), (e) The morphology at different times
(t = 5 mins and t = 21 hours), when γ = 0.9, δ = 0.1, i.e., for low branching rate and low rate of flow of nutrients to secondary branches.
(b), (f) The morphologies at different times for γ = 0.2, δ = 0.1, i.e., for high branching rate and low rate of flow of nutrients to secondary
branches. (c), (g) The morphologies at different times for γ = 0.9, δ = 0.8, i.e., for low branching rate and high rate of flow of nutrients to
secondary branches. (d), (h) The morphologies at different times for γ = 0.2, δ = 0.8, i.e., for high branching rate and high rate of flow of
nutrients to secondary branches. For all cases, α = 0.2. The mobile tip sites (MT), immobile tip sites (IMT), and bulk sites (B) of the growing
colony are indicated in each panel.

the propensity for branching in the hypha, and δ, which is
a parameter that characterizes the nutrient flow rate to the
secondary branch and input rate of nutrients α. Depending on
the choice of these parameters, the morphology characteris-
tics can vary significantly. For experiments with Neurospora
crassa, the experimentally observed growth rates of hypha
are in the range of 20–30 μm/min [31,32]. Consistent with
this observation, we set the overall growth rate in our model
system to 0.4 μm/s and choose a lattice spacing ε = 0.4 μm,
which corresponds to an overall growth rate of 1 s−1. This
would also imply that the particles in the bulk of the lattice
are hopping, with rate 0.4 μm s−1 corresponding to hop rate
of 1 s−1 that we have set for our model. This choice of
hopping rate is comparable to the typical motor velocity
of kinesin-1 motors, whose velocity is ∼0.6 μm s−1 [31].
Figure 4 displays some of the resultant morphologies and
their evolution over time, for different sets of parameters.
As would be expected, when both the branching rate 1 − γ

and nutrient flow rate to the secondary branch δ are low, the
lateral growth of hyphae is small compared to the longitu-
dinal growth along the direction of growth of the primary
hypha, in the initial phase of evolution of the single colony
[Fig. 4(a)] and it continues to persist after 21 hours [Fig. 4(e)].
Figures 4(b) and 4(f) show the temporal evolution of the
morphology when the branching rate is high and rate of
nutrient supply to secondary branches is low, while Figs. 4(c)
and 4(g) show the typical morphology when the branching
rate is low while the rate of supply to the secondary branches
is high. When both the branching rate and nutrient flow rate
to the branches are high, asymmetry of growth along the
longitudinal and lateral directions is virtually absent and the

single-colony mycelium tends to a radially symmetric config-
uration about its center of mass at late times [Fig. 4(h)].

The process of branching in the hyphae has the effect of
creating new tip sites (T), which in turn serve as seeds for
further elongation and branching process of the mycelium.
However, as described in Sec. II B, the tips can elongate
or branch only if the adjacent space is not occupied by the
single-colony mycelium. For the case where the branching
rate and δ is high, not only would there be numerous branches
which would be created in the mycelium, but there would
be a tendency of the growth direction of the tips to change
and consequently be obstructed by the preexisting mycelium.
Thus, over the course of evolution of the morphology, many of
the growing tips (T) would become immobile or jammed, i.e.,
these tips would not serve as either elongation or branching
site. Along with the different morphologies obtained for the
different values of control parameters γ and δ, Fig. 4 also
shows the immobile and mobile tip sites of the mycelium after
time t has elapsed starting from a single hypha of unit length.

A. Motility behavior of center of mass

In Fig. 5(a), we display the temporal behavior of the
center of mass of the growing lattice network (averaged over
different samples). Increasing the branching rate 1 − γ and/or
δ has the effect of impeding the motility of the center of mass
of the single-colony mycelium. As expected for early times,
for low δ and low branching rates,

√〈R2
cm〉 shows a linear

dependence on the τ . The log-log plot in Fig. 5(b) suggests
that

√〈R2
cm〉 ∼ t q at later times. For all the cases, we find that

the exponent q < 1/2 indicates subdiffusive behavior of the

023111-6



MODEL FOR GROWTH AND MORPHOLOGY OF FUNGAL … PHYSICAL REVIEW RESEARCH 2, 023111 (2020)

FIG. 5. Behavior of center of mass W ≡ √〈R2
cm〉 for four differ-

ent parameter values: (i) γ = 0.9, δ = 0.1, (ii) γ = 0.2, δ = 0.1, (iii)
γ = 0.9, δ = 0.8, and (iv) γ = 0.2, δ = 0.8. For all cases, α = 0.2
and ε = 0.4 μm. These sets of parameter values are the same as in
Figs. 4(a)–4(d), respectively. (a) The plot of W vs t . (b) The plot
of ln(W1) vs ln(τ ), where W1 = W/ε is the dimensionless center of
mass, and τ = t/1 sec is the dimensionless time. The least-squares-
fitted straight line to the data points at later times corresponds to a
slope of (i) q = 0.10, (ii) q = 0.13, (iii) q = 0.15, and (iv) q = 0.20,
where W1 ∼ τ q. (c) Plot of W vs N . (d) Plot of ln(W1) vs ln(N ):
The least-squares-fitted straight line to the data points at large N
corresponds to a slope of (i) β = 0.12, (ii) β = 0.12, (iii) β = 0.19,
and (iv) β = 0.22, where W1 ∼ Nβ . Averaging is done over 100
samples.

center of mass for the regime of the time window that we have
probed. This power-law behavior of the motility of the center
of mass of the 2D colony is in contrast to the motility behavior
of the center of mass for just the primary hypha (1D model),
where indeed the center of mass of the primary hypha exhibits
a logarithmic dependence on time. In order to check whether
the motility behavior of the center of mass is better described
by a power-law dependence on time than a logarithmic de-
pendence on time, we make a numerical comparison of the
two scenarios using the data corresponding to the temporal
growth of the center of mass. In particular, we compare the
quality of the fitted straight line corresponding to a power-law
dependence of

√〈R2
cm〉 on time with a straight line obtained by

fitting
√〈R2

cm〉 with logarithmic dependence on time. Based
on the quality of fit to the data of the motility of the center of
mass, we can infer that the motility behavior of the center of
mass is better described by a power-law dependence on time
(Fig. 11; see the Appendix). It is worthwhile to point out that
there is one crucial difference between the growth process of
the 2D colony and the growth process of the individual hypha.
While, for the growth process of individual hypha, the particle
number in bulk of the 1D lattice is not conserved due to loss
from defect sites, which in turn leads to logarithmic temporal
growth of the length for the primary hypha, for the 2D colony
growth process, there is always particle-number conservation
in the bulk, with the growth happening at multiple tips.

Figure 5(c) shows the dependence of 〈R2
cm〉 on N . From

the log-log plot displayed in Fig. 5(d) for different sets of

FIG. 6. Behavior of radius of gyration G = √〈R2
G〉 for four dif-

ferent parameter values (same as Fig. 5). (a) The plot of G vs t .
(b) Plot of ln(G1) vs ln(τ ), where G1 = G/ε is the dimensionless
radius of gyration, and τ = t/1 sec is the dimensionless time. The
least-squares-fitted straight line to the data points at later times
corresponds to a slope of (i) φ = 0.29, (ii) φ = 0.40, (iii) φ = 0.37,
and (iv) φ = 0.44, where G1 ∼ τφ . (c) Plot of G vs N . (d) Plot of
ln(G1) vs ln(N ): The least-squares-fitted straight line to the data
points at large N corresponds to a slope of (i) ν = 0.32, (ii) ν = 0.47,
(iii) ν = 0.40, and (iv) ν = 0.48, where G1 ∼ Nν . Averaging is done
over 100 samples.

input parameters, we see that for sufficiently large size N ,√〈R2
cm〉 ∼ Nβ .

B. Size of the colony

The radius of gyration Rg is one measure which can be used
to characterize the typical size of the single-colony mycelium.
In order to understand the growth characteristics of the size of
the single colony, we look at the temporal behavior of

√
〈R2

g〉.
Figure 6(a) displays the temporal evolution of 〈R2

g〉. From
the log-log plot in Fig. 6(b), we can infer that at later times,
〈R2

g〉 ∼ tφ with φ < 1/2. Figure 6(c) displays the variation of
〈R2

g〉 with N for different sets of input parameters. Assuming

a power-law dependence of
√

〈R2
G〉 on N of the form 〈R2

g〉 ∼
N2ν , from the log-log plot in Fig. 6(d) we extract the exponent
ν from the slope of the least-squares-fitted straight line. For
the range of N considered for our simulations, the exponent ν

varies with the chosen input parameters δ and γ . Typically,
the effect of lowering the branching rate has the effect of
increasing 〈R2

G〉 for a given N . When the nutrient supply rate δ

is made high while the branching rate is lowered, the resultant
colony becomes more porous, with less dense filling of space.
This attribute of the colony is demonstrated by the morphol-
ogy of the colony shown in Fig. 4(g). This may be understood
as follows: When the branching rate is low, very few branches
are created. However, the secondary branches are the ones
which grows faster. Subsequent branching of these secondary
branches also eventually results in the formation of a closed
loop, which arrests further growth of the branches locally due
to obstruction. The size of this loop determines the porousness
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FIG. 7. Temporal evolution of the aspect ratio ξ =
√

〈Y 2
g 〉/〈X 2

g 〉:
Plot of ξ vs t for four different parameter values (same as Fig. 5).
Averaging is done over 100 samples.

of the colony. Since the size of these closed loops increases
when the branching rate is decreased and δ is increased, the
resultant overall morphology becomes more porous. When
both the branching rate is high and δ is high, it would be
expected that the porousness would be low and the growth of
the colony would be a space-filling process. Such a scenario
is observed for case (iv), for which γ = 0.2, δ = 0.8. The
typical configuration of the colony for this particular choice
of parameters is illustrated in Fig. 4(h). For this case, the
corresponding value of the exponent ν � 0.5 in the large-N
limit. This value of the exponent ν is the same as that of the 2D
Eden model for growth in the large-N limit [39,43]. Further,
for the large-N limit, 〈R2

G〉 → N/2π , which is again similar to
the results obtained for the 2D Eden model [43]. In fact, any
2D growth process which incorporates the excluded volume
effect and allows for maximum occupancy of 1 per lattice site
would necessarily have to satisfy the condition 〈R2

g〉 � N/2π .
This condition arises purely due to geometric constraint. The
equality holds for the case of complete space filling on a
circle. Except for case (iv), for which 〈R2

g〉 approaches the lim-
iting value of N/2π , for the other three cases, 〈R2

g〉 > N/2π

[Fig. 6(c)] up to N = 4000. Further, the value of the exponent
ν < 0.5 for the other three cases, which implies that the value
of the exponent ν characterizing the power-law behavior of
the radius of gyration (up to N = 4000) is different from the
exponent ν which characterizes the truly “large-N” limiting
behavior of 〈R2

g〉.

C. Shape characteristics of the colony

In order to characterize the asymmetry of the morphology
of the single colony, we define aspect ratio ξ =

√
〈Y 2

g 〉/〈X 2
g 〉.

ξ is a measure of the relative growth in the lateral direction
vis-a-vis the extension along the original direction of growth
of the primary hypha. Figure 7 shows the temporal behavior

of the aspect ratio. For very late times, the aspect ratio is
expected to converge to 1. Indeed, when the branching rate is
low and nutrient supply rate to the secondary branches is high,
as in case (iv), the aspect ratio of the colony tends to 1 very
rapidly, which corresponds to a typical morphology of the
colony shown in Fig. 4(h). However, when the branching rate
is low and δ is also low, for early times, the lateral extension of
the colony (perpendicular to the initial growth direction of the
original hypha) is much less compared to the growth along the
original direction along x. Thus, even after more than 8 hours
of growth, the aspect ratio is much lower than 1, approaching
the “late” time limit of ξ = 1 slowly. Interestingly, for a
range of intermediate times (up to 30 000 secs) considered in
the simulation, when the branching rate is very high while
the nutrient supply rate to the branches is low, as in case
(ii), the aspect ratio ξ even exceeds 1 (Fig. 7). This may be
qualitatively understood as follows: When the branching rate
is high while δ is low, from the primary hypha, many lateral
branches (along the y axis) would be generated and the typical
distances between these lateral branches would be relatively
small. Over the course of evolution of the colony, these lateral
branches would be the sites for secondary branches along the
x axis—the direction of growth of the original primary hypha.
However, the growth of these secondary branches would be
arrested by the frequent lateral branches arising due to the
high rate of branching. This is turn would lead to a situation
where the overall growth along the x direction (except the
primary branch) would be slowed down compared to the
unhindered growth of the secondary branches along the lateral
direction along the y axis. Such growth process results in
a typical morphology of the colony shown in Fig. 4(f) at
intermediate times. However, even for this case, at later time
(∼130 hours), ξ converges to 1.

D. Growth sites of the colony

For the 2D model for the growing colony that we have
considered, growth occurs only at the tip sites. While the elon-
gation process shifts the position of the tip site, the branching
process results in the creation of new tips. Over the course of
evolution of the morphology of the colony, many of the tip
sites cease to be sites of growth and become immobile as they
are obstructed by the part of the preexisting colony. Figure 8
displays the temporal behavior of Q, which is the ratio of the
number of mobile tips Nm, with total number of tips NT in
a single colony. Q decreases with the passage of time as the
colony size increases. Expectedly, the rate of decrease of Q
is faster for the case when the branching rate is high and the
nutrient supply rate to secondary branches is also high [case
(iv)] in comparison to the case when both the branching rate
and δ are low [case (i)]. In fact, at “late” times and “large”-N
limit, the mobile tips would reside typically on the outer
perimeter of the colony, while the immobile tips would be part
of the bulk [Fig. 4(h)]. As the size of the colony grows, the
ratio of the number of sites on the outer perimeter with the
total number of sites decreases and, consequently, we would
expect the decrease in Q as we observe in the simulations.
In order to quantify the typical scaling behavior exhibited by
these mobile tips in the large-N limit, we specifically focus on
the case where the branching rate is high and for which δ is
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FIG. 8. Temporal behavior of the mobile tip ratio Q ≡ Nm/NT ,
where Nm is the number of mobile tips and NT is the total number
of tips. Variation of Q for four different parameter values (same as
Fig. 5) is shown. Averaging is done over 100 samples.

low, since for this case convergence to large-N limit behavior
is relatively faster. We define S as the ratio of the number
of mobile tips, Nm, with the total number of lattice sites of
the colony N . In Fig. 9(a), we show the variation of S with
the radius of gyration Rg(N ). From the corresponding log-log
plot in Fig. 9(b), we can infer S ∼ R−1

g . This particular scaling
behavior may be understood as follows: For the large-N limit,
the mobile tips reside on the outer perimeter of the colony.
Further, if the perimeter is an euclidean surface, then the ratio
of the perimeter length with total area should scale inversely

FIG. 9. Scaling behavior of S ≡ 〈Nm〉/〈N〉: (a) Variation of S
with scaled radius of gyration G1. (b) Plot of ln(S) vs ln(G1).
The least-squares-fitted straight line to the data points at large N
corresponds to a slope of θ = −1.03, where S ∼ Gθ

1. (c) Variation
of S with 〈N〉. (d) Plot of ln(S) vs ln(〈N〉). The least-squares-fitted
straight line to the data points at large N corresponds to a slope
of η = −0.49, where S ∼ Nη. Here, γ = 0.2, δ = 0.8, and α = 0.2.
Averaging is done over 100 samples.

FIG. 10. (a) Average length of lattice 〈L〉 as a function of time
t : The solid curves correspond to MC simulation results for a 1D
model. Here, α = 0.4 s−1, δ = 0.2 s−1, γ = 0.998 s1, lattice spacing
ε = 0.4 μm, and velocity at the growing tip is 0.4 μm s−1. For this
choice of parameters, the hyphal growth characteristics observed
experimentally for fungal hypha of Rhizopus oligoporous [9,50]
match reasonably well with the MC simulation results. (b) The 2D
morphology after 5 hours obtained for α = 0.4 s−1, δ = 0.2 s−1,
γ = 0.995, ε = 0.4 μm, and velocity at the tip is 0.4 μm s−1. This
morphology is similar to the morphology of the single-colony hypha
obtained in experiments with Neurospora crassa [32].

with Rg and, consequently, S itself scales inversely with the
radius of gyration. Since for this case, from our simulations,
we know that Rg ∼ N1/2 [Fig. 6, case (iv)], it would be
expected that S ∼ N−1/2. Figure 9(c) displays the variation
of S with N . The corresponding log-log plot displayed in
Fig. 9(d) indeed confirms this scaling behavior.

V. COMPARISON WITH EXPERIMENTS

The only control parameters of the 2D minimal model that
we have presented are the entry rate α, the branching rate 1 −
γ , and nutrient supply rate to secondary branches δ. In order
to make connection with the morphological features observed
in experiments, we check whether, by calibrating these three
input parameters, the model is able to reproduce quantitative
measures associated with the growth characteristics of fungal
hyphae. Consistent with experiments with fungal hyphae of
Neurospora crassa, we choose overall hyphal extension rate
0.4 μm/s [31,32] and set the lattice spacing ε = 0.4 μm.
This would correspond to an overall growth rate of 1 lattice
unit per second. For experiments with Neurospora crassa,
the experimentally observed growth rates of hypha are in the
range 20–30 μm/min [31,32]. We choose a particle hopping
rate of 1 s−1. This would also imply that the particles in the
bulk of the lattice are hopping with rate 0.4 μm s−1. This
choice of hopping rate compares reasonably with the typical
motor velocity of kinesin-1 motors [31].

In Fig. 10(a), we plot the temporal behavior of the average
length of the primary hypha, using MC simulations of the 1D
model discussed in Sec. II A for a particular choice of input
parameters. This profile quantitatively reproduces reasonably
well the temporal profile obtained experimentally for the
hyphal growth of Rhizopus oligoporous [9,50].

In Fig. 10(b), we show the morphology of a single sample
obtained by MC simulations of the 2D model discussed in
Sec. II B for a particular choice of parameters α, γ , and δ

after 5 hours of growth. This simulated morphology compares
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well with the morphology observed in experiments with Neu-
rospora crassa after 5 hours of growth [32].

VI. CONCLUSIONS AND DISCUSSION

In this article, we have discussed a minimal driven lattice
gas model which generates the morphological characteris-
tics associated with single-colony mycelium arising from the
growth and branching process of fungal hyphae, which is fed
by a single source of nutrients. While the 1D model describes
the growth characteristics of the primary hypha, the 2D model
provides a description of the entire single-colony mycelium
that is generated by the elongation and branching process of
the fungal hyphae.

The 1D model predicts a spatial profile of particles which
is exponential along the direction of growing primary hypha,
and a length of the primary hypha which grows logarithmi-
cally with time. Our MC simulation results show that the
sample-to-sample relative fluctuation of the average length of
the primary hypha at late times is small. However, we find
that the probability distribution of the time required to grow
to a specified length is broad and it tends to a log-normal
distribution at late times. Although we have not been able
to explicitly derive an explicit analytical from the distribution
function of the growth time, we have been able to show that
the analytical form of the survival probability of the particle to
reach distance L along the primary lattice without getting lost
from the primary lattice is a log-normal distribution. As an
aside, it may be noted that this kind of log-normal distribution
with its implication of huge sample-to-sample variation of
the measured growth time is also seen in the context of a
probability distribution function of a tangent-tangent correla-
tion function of a random heteropolymer [51] and spin-spin
correlation function for a random Ising spin chain [52].

Using MC simulations, we generate the different types
of 2D morphologies of single-colony mycelium. We find a
wide variability of motility, size, and shape characteristics
of the 2D morphology depending on the input parameters,
e.g., branching rate 1 − γ , nutrient flow rate to secondary
branches δ, and input rate of nutrients α. The center of mass
Rcm and the radius of gyration Rg of the simulated colony
exhibit a subdiffusive behavior, at later times. Our analysis
also reveals a power-law dependence of Rg on N of the form
Rg ∼ Nν . When both the branching rate is high and δ is high,
for sufficiently high N , the behavior of Rg as a function of N
is characterized by an exponent which seems to converge to
ν ∼ 0.5, which is similar to the value of the exponent that
characterizes the growth process of an Eden cluster in the
large-N limit [39,43]. A more detailed investigation is needed
to confirm whether the growth process of our 2D model, in the
limit of high branching rate and high δ, belongs to the same
universality class as that of the Eden model [38,39,43]. More
generally, it would be interesting to study the similarities
and the differences of the asymptotic characteristics of the
growing colony at large-N and late-time limit for this model

FIG. 11. Temporal behavior of center of mass (W). (a) Power-
law fit: Plot of ln(W1) vs ln(τ ), where W1 = W/ε is the dimensionless
center of mass and τ = t/1 sec is the dimensionless time. The least-
squares-fitted straight line to the data points corresponds to a slope of
m = 0.18 where W1 ∼ τm. (b) Straight-line fit for

√〈R2
cm〉 vs ln(τ ):

The least-squares-fitted straight line to the data points corresponds to
a slope of m = 0.72. For both plots, α = 0.2, γ = 0.2, and δ = 0.8.
These parameters are the same as in case (iv) in Fig. 5. Averaging is
done over 10 samples.

with other lattice animal models of growth [39,41,43] and
polymerization process of branched polymers [35–37,45,46].

We find that by suitable calibration of the parameters of the
model, we are able to quantitatively reproduce the observed
experimental growth characteristics of the primary hypha of
Rhizopus oligoporous [9,50], and we are also able to replicate
the morphology characteristics of the single-colony mycelium
of Neurospora crassa observed in experiments [32].

While, in this article, we have restricted ourselves to ana-
lyzing the morphology characteristics of the colony for which
the tip site stops growing and branching when it encounters
obstruction due to the presence of the already grown lattice,
it would interesting to study the morphology characteristics
of the colony for the situation in which parts of the growing
network are allowed to overlap over each other to form a
layered mesh.
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APPENDIX: TEMPORAL BEHAVIOR
OF CENTER OF MASS

In Fig. 11, we show a comparison of the least-squares-
fitted straight line corresponding to a power-law dependence
of

√〈R2
cm〉 on time t with a straight line obtained by fitting√〈R2

cm〉 with ln(t ). As can be seen from the quality of fit,
the power-law fit appears to be more appropriate compared
to fitting data with ln(t).
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