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Simulating quantum field theory in curved spacetime with quantum many-body systems
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This paper proposes a new general framework to build a one-to-one correspondence between quantum field
theories in static (1 + 1)-dimensional curved spacetime and quantum many-body systems. We show that a
massless scalar field in an arbitrary two-dimensional static spacetime is always equivalent to a site-dependent
bosonic hopping model, while a massless Dirac field is equivalent to a site-dependent free Hubbard model or a
site-dependent isotropic XY model. A possible experimental realization for such a correspondence in trapped-ion
systems is suggested. As applications of the analog gravity model, we show that they can be used to simulate
Hawking radiation of a black hole and to study its entanglement. We also show in the analog model that black
holes are the most chaotic systems and the fastest scramblers in nature. We also offer a concrete example about
how to get some insights about quantum many-body systems from black-hole physics.
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I. INTRODUCTION

Quantum field theory in curved spacetime is a semiclas-
sical approximation of quantum gravity theory, where the
curved background spacetime is treated classically, while the
matter fields in the curved spacetime are quantized. Although
a fully successful quantum gravity theory is still not yet
available, such a semiclassical approximation framework has
offered us a large amount of interesting new phenomena, such
as the Hawking radiation of black holes, particle production in
an expanding universe, etc. (see Refs. [1,2] for some review
articles). Since in general these phenomena are extremal
weak, they are extremely difficult to observe in real gravity
situations. Analogs of black-hole or other phenomena in
curved spacetime in the laboratory offer us new perspectives
on quantum effects in curved spacetime, which might help us
deeply understand the nature of gravity. Following the original
work of Unruh [3,4], which studies Hawking radiation in
a sonic analog of a black hole, a large number of systems
have been proposed and explored, such as surface waves in
water flows [5], Bose-Einstein condensates (BECs) [6–8],
optic systems [9–13], and ultracold atoms in optical lattices
[14] (see Refs. [15–17] for reviews and references therein).
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In spite of the impressive progress that has been made
theoretically and experimentally on various analog gravity
systems, it is still interesting to seek some analog models
which are more “pure” in theory and more easily controlled
in experiment. In condensed-matter physics, there exist three
basic quantum many-body models, the hopping model, the
Hubbard model, and the isotropic XY model [18], which
are of wide application in many fields. In this paper we
find that these models also have interesting applications in
quantum field theory in curved spacetime. The hopping rate
in natural materials is constant; there is not enough motivation
for physicists in condensed-matter physics and materials to
study the “site-dependent” hopping cases. Here we do see
that the site-dependent hopping cases occur in the simulation
of quantum field theories in curved spacetime by quantum
many-body systems.

So far most analog gravity models have focused on the
simulation of Hawking radiation or other types of spon-
taneous particle creation, such as the Unruh effect, parti-
cle creation in the universe, and dynamical Casimir effect
(see, e.g., Refs. [19–21]). Let us notice that, over the past
decades, a remarkable progress in gravity and relevant fields
is the proposal of anti–de Sitter (AdS)–conformal field theory
(CFT) correspondence [22–24], which says that a quantum
gravity in the AdS spacetime is dual to a CFT living in
the AdS boundary. The connection between geometry in
the bulk and entanglement entropy in the boundary is also
suggested in Refs. [25,26]. Recently, based on the AdS-CFT
correspondence, quantum scrambling has been suggested as a
powerful tool for characterizing chaos in black holes [27,28],
and Refs. [28–30] conjectured that a black hole has the
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fastest scrambling and is the most quantum chaotic system in
nature.

One of the remarkable features of the AdS-CFT correspon-
dence is the strong/weak duality: a weak gravity theory in the
AdS bulk is equivalent to a strong coupled CFT in the AdS
boundary. Although there exist many pieces of evidence to
show the correspondence is true, it is extremely difficult, if
it is not impossible, to prove the AdS-CFT correspondence.
The analog gravity models provide the possibility to test
experimentally the AdS-CFT correspondence.

In this paper we show that there exists a one-to-one cor-
respondence between quantum field theories in an arbitrary
two-dimensional spacetime and a site-dependent bosonic hop-
ping model, free Hubbard model, or isotropic XY model in
quantum many-body systems. As some applications of our
analog gravity model, we study Hawking radiation of a black
hole and its entanglement, and show that black holes are the
most chaotic systems and the fastest scramblers in nature,
predictions of the AdS-CFT correspondence. We also use a
concrete example to show how to use the picture of black-
hole physics to learn something about quantum many-body
systems.

II. QUANTUM FIELDS IN CURVED SPACETIME

We consider a two-dimensional background spacetime
with signature (+,−). In the static case, the metric can always
be given in the Schwarzschild coordinates {t, x} as

ds2 = f (x)dt2 − f (x)−1dx2 . (1)

In most cases, we are interested in the static black-hole space-
time with a single nondegenerated horizon; i.e., f (x) > 0 for
x > xh and there is only a point at x = xh such that f (xh) = 0
but

gh = 1
2 f ′(xh) > 0, (2)

where gh is the surface gravity of the horizon, which gives
the Hawking temperature TH = gh/(2π ) of the black hole.
The metric (1) in the coordinates {t, x} is singular at the
horizon. To overcome this shortage, we can define an infalling
Eddington-Finkelstein coordinate by the coordinate transfor-
mation,

t → v, such that v = t +
∫

f (x)−1dx.

The metric (1) in the infalling Eddington-Finkelstein coordi-
nates {v, x} becomes

ds2 = f dv2 − 2dvdx. (3)

In this case the metric no longer has the coordinate singularity
at the horizon.

Let us first consider a scalar field in the two-dimensional
curved spacetime. The Klein-Gordon equation of a complex
scalar field in metric (3) reads

m2φ − 2∂v∂xφ − f ′∂xφ − f ∂2
x φ = 0. (4)

By introducing the variable ϕ,

mϕ = 2∂vφ + f ∂xφ, (5)

Eq. (4) can be rewritten into two coupled first-order equations

∂vφ = − f

2
∂xφ + mϕ

2
, ∂xϕ = mφ. (6)

Now we make the variable transformation φ = w
√

f and we
can rewrite the above equations into the following forms:

∂vw = − f

2
∂xw − f ′

4
w + mϕ

2
√

f
, ∂xϕ = mw

√
f . (7)

In the massless limit m → 0, the above two equations decou-
ple and there is only one independent evolutional equation:

∂vw = −1

4
[∂x( f w) + f ∂xw]. (8)

Eq. (7) is singular at the horizon due to f (xh) = 0. Mathemat-
ical discussions about this singularity and Eq. (8) can be found
in Appendix A.

A similar result can also be obtained for Dirac field. The
Dirac equation with the general vielbein eμ

a and metric gμν

can be written as [14,31]

iγ aeμ
a∂μψ + i

2
γ a 1√−g

∂μ(
√−geμ

a)ψ − mψ = 0. (9)

Here g is the determinate of metric gμν . The γ -matrices in the
two-dimensional case are chosen such that γ a = (σz, iσy). We
choose the vielbein to be

eμ
a =

[ −1, 1
− f

2 + 1
2 ,

f
2 + 1

2

]

and take the decomposition

ψ = 1√
2

[
u + w

u − w

]

into account, and we find that there are two independent
equations

∂vw = − f

2
∂xw − f ′

4
w + i

2
mu, ∂xu = −imw. (10)

In the massless limit m → 0, there is only one evolutional
equation that remains, which is the same as Eq. (8).

III. MAP INTO QUANTUM MANY-BODY SYSTEMS

A. Theory model

Now let us discretize the system. The spatial position is
discretized as x = xn = nd with n ∈ N and d � λ0, where
λ0 is the effective average wavelength in the system. The
functions in the fixed spacetime are then transformed into
discrete forms as follows:

fn = f (nd ), wn(v) = w(v, xn).

The spatial derivatives in Eq. (8) are approximated by
central differences. Upon a variable transformation wn =
(−i)ne−iμvw̃n, Eq. (8) can be rewritten into the following
form:

i
d

dv
w̃n = −κnw̃n−1 − κn+1w̃n+1 − μw̃n (11)
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with

κn = fn + fn−1

8d
≈ f [(n − 1/2)d]

4d
. (12)

Here μ is an arbitrary constant. We see later that it can be
interpreted as the chemical potential in quantum many-body
systems. Due to the discretization, the discrete form is a
good approximation for continuous fields if fields are slowly
varying; i.e., Eq. (11) is valid in the low-energy limit.

Now let us quantize these fields themselves. This can be
done by promoting field w̃n into an operator. For the bosonic
field, we use the replacement w̃n → ân/

√
d and introduce

bosonic commutators such that

[ân, â†
m] = δnm, [ân, âm] = [â†

n, â†
m] = 0.

The evolutional equation for the field operator then reads

i
d

dv
ân = −κnân−1 − κn+1ân+1 − μân. (13)

Considering the evolutional equation in the Heisenberg pic-
ture, i∂v ân = [ân,H], Eq. (13) implies the following Hamilto-
nian:

H =
∑

n

[−κn(â†
nân−1 + â†

n−1ân) − μâ†
nân]. (14)

This Hamiltonian describes a bosonic hopping model and can
be treated as a limit case of a certain different well-studied
quantum systems. For example, in condensed-matter systems,
it is the Bose-Hubbard model [32–35] with site-dependent
hopping amplitude and zero on-site self-interaction.

For the Dirac field, we can do a similar thing. Taking the
replacement w̃n → ĉn/

√
d and introducing anticommutators

such that

{ĉ†n, ĉm} = δnm, {ĉn, ĉm} = {ĉ†n, ĉ†m} = 0,

we can obtain the following Hamiltonian form:

H =
∑

n

[−κn(ĉ†nĉn−1 + ĉ†n−1ĉn) − μĉ†nĉn]. (15)

This is just the free Hubbard model with site-dependent hop-
ping. This model has been widely studied and can be realized
in various different platforms (see Refs [36–38], for instance).

Hamiltonian (15) can also be rewritten into another well-
studied model in condensed-matter physics: the isotropic XY
model [39,40]. To do that, let us introduce the following
operators according to the Jordan-Wigner transformation:

σ+
n = exp

⎡
⎣iπ

n−1∑
j=1

ĉ†j ĉ j

⎤
⎦ĉ†n, σ−

n = exp

⎡
⎣−iπ

n−1∑
j=1

ĉ†j ĉ j

⎤
⎦ĉn

and σ z
n = 1 − 2ĉ†nĉn with the periodic-antiperiodic boundary

condition. After neglecting a constant term, Hamiltonian (15)
can be rewritten as

H =
∑

n

[
−κn

(
σ+

n σ−
n−1 + σ+

n−1σn
) + 1

2
μσ z

n

]
. (16)

Now introducing the Pauli matrices

σ x
n = σ+

n + σ−
n , σ y

n = −i(σ+
n − σ−

n ), (17)

the above Hamiltonian reads

H = 1

2

∑
n

[−κn
(
σ x

n σ x
n−1 + σ y

n σ
y
n−1

) + μσ z
n

]
. (18)

This is nothing but the isotropic XY model with site-
dependent hopping.

B. Experimental simulation

The Bose-Hubbard model in Eq. (14) can be realized in
laboratory with various systems for implementing quantum
simulation, such as optical lattices, superconducting qubits,
and trapped ions. Here we just concentrate on a simple case,
which consists of a linear chain of ions in a linear Paul trap. In
a linear trap, ions are arranged in a Coulomb chain. Assuming
x as one of the transverse directions and z the trap axis, the
Hamiltonian of the chain with N ions is H = V0 + VC + VL,
where

V0 = 1

2
m

N∑
i=1

(
ω2

x x2
i + ω2

y y2
i + ω2

z z2
i

)
, (19)

VC =
N∑

i> j

e2√
(zi − z j )2 + (xi − x j )2 + (yi − y j )2

, (20)

VL =
N∑

j>i

ti, j (a
†
i a j + aia

†
j ), (21)

where ωα, α = x, y, z are the trapping frequencies in each
direction, VC is the Coulomb energy, while VL is the coupling
between different axial modes, and ti, j are the hopping ener-
gies that are induced by a pair of Raman lasers. For a linear
trap ωx,y � ωz, the ions form a chain along the z axis and
occupy equilibrium positions. Phonons in the z direction can
be described approximately by [41]

H =
N∑

i=1

ωxa†
i ai +

N∑
j>i

ti, j (a
†
i a j + aia

†
j ). (22)

Note that ti, j can be precisely adjusted to being site (mode)
dependent by varying the phase and the detuning of the Raman
beams. By this scheme, we use the phonon modes of trapped
ions to realize the Bose-Hubbard model with zero on-site
energy. To simulate n-site Hubbard modes, we need to trap
N ions in a linear trap and use N − 1 pairs of lasers to drive
photon transitions between the N axial modes.

IV. APPLICATIONS IN BLACK-HOLE PHYSICS

A. Hawking radiation and its entanglements

In this section, we use the above quantum many-body
model to study quantum aspects of black holes in gravity.
Let us consider the bosonic hopping model as an example.
For convenience in numerical computations, let us specify
the function f (x) = α tanh x and d = 0.1. In this case, there
is a horizon at x = xh = 0 with the Hawking temperature
TH = α/(4π ). It is worth noting that κn 	= 0 at the horizon,
though f (x) is zero at the horizon. Without loss of generality,
we set μ = 0 as the total particle number is conserved.

To study the black-hole evaporation, we set a particle in the
inner region of the black hole by initial state |�(0)〉 = |en0〉
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FIG. 1. (a) Numerical simulation on the probability of finding a
particle with energy En in the outer region at early time v = 4 �
O(2dL/α). (b) The evolution of entanglement entropy between the
inner region and outer region. The blackbody spectrum is given by
Eq. (23). The low-energy limit requires that En � O(α/d ).

and choose n0 = −2/d as an example. It describes an initial
particle which is localized at the n0th site. Based on the picture
of “pair creation” in Hawking radiation, “particle-antiparticle
pairs” can be created around the horizon. The antiparticle
(negative energy) falls into the black hole and annihilates with
this particle inside the black hole, and the particle outside the
horizon is materialized and escapes into infinity. Note that
the pair creation and annihilation is a virtual process, and the
real materialized result is that the original particle inside the
black hole disappears but an identical particle appears outside
the horizon. This leads to an equivalent picture to understand
Hawking radiation via quantum tunneling: the particle inside
the horizon escapes to the outside by quantum tunneling.
According to Refs. [42–44], neglecting the back-reaction of
the radiation, the probability of finding this particle outside the
horizon and its energy should obey the following blackbody
spectrum:

P(E ) ∝ e−E/TH . (23)

In Fig. 1 we show the numerical results about the proba-
bility of finding a particle of energy En in the outer region.
Here En is the positive eigenvalue of the Hamiltonian for
the outer subregion. The evolutional time is chosen so that
the radiation does not touch the cutoff boundary. For the
details of numerical calculation, one may refer to Appendix B.
We see that numerical results show that P(E ) satisfies the
blackbody spectrum, Eq. (23), approximately with the tem-
perature T = TH . Note that the numerical results for smaller
energy deviate from the blackbody spectrum (23), because
our finite-size cutoff cannot cover the low-energy region
with E � O(2πα/(Ld )) and so leads to the deviation. In
addition, we also compute the entanglement entropy between
the inner region and the outer region, which is given by
S(v) = −Tr[ρ(v) ln ρ(v)] and the reduced density matrix for
the outer region is given by ρ(v) = Trinner(|�(v)〉〈|�(v)|). It
shows that entanglement between the inner and outer regions
increases during the Hawking radiation. Because there is only
one particle in the black hole, the evaporation will stop in a
short time and so the entanglement entropy saturates.

B. Quantum chaos and fastest scrambling

In this section, let us exhibit how to use our analog model
to study some new features of quantum field theory in curved

spacetime: quantum chaos and fastest scrambling of black
holes, appearing from the AdS-CFT correspondence. To sup-
ply an asymptotic AdS2 black hole background, we consider
f (x) = x2(1 − xh/x) as an example.

To describe the quantum chaos, it was proposed recently
that the “out-time order correlation” (OTOC) may serve as
a useful characteristic of quantum-chaotic behavior. For two
local operators Ŵ (t ) and V̂ (t ) in the Heisenberg picture, their
OTOC is typically defined as

C(t ) := −〈[Ŵ (t ), V̂ (0)]〉. (24)

Here Ŵ (0) and V̂ (0) can be the same or different; 〈·〉 stands
for average in an initial state. Reference [30] shows that, with
a few general assumptions on the underlying field model and
in thermal equilibrium state, the growth of a general OTOC
C(t ) satisfies

C(t ) ∝ eλLt , (25)

where λL is the Lyapunov exponent and satisfies the following
“chaos bound”:

λL � 2πT . (26)

Here T is the temperature of the system. The exponential
growth (25) will be broken after the “scrambling time”

t∗ � 1

2πT
ln N2

f , N2
f � 1. (27)

Here Nf stands for the degrees of freedom of the system. It
is conjectured in Refs. [28–30] that a black hole is the most
chaotic system and has the fastest scrambling; i.e., it saturates
the bounds (26) and (27).

Now let us employ our model to check if it can exhibit the
exponential growth of OTOC and give us a positive Lyapunov
exponent. As an example, we numerically study the following
OTOC:

C(v) := −Tr
(
ρ
[
N̂n0 (v), N̂n0

]2)
. (28)

Here N̂n0 is a local operator associated to the particle number
operator at the n0th site,

N̂n0 = d

l0

L∑
n=−L

â†
nâne−d2(n−n0 )2/l2

0 . (29)

Here l0 is the length scale and stands for the width of
distribution of N̂n0 . The time-evolution operator N̂n is given
by the Heisenberg picture N̂n(v) = exp(−iHv)N̂n exp(iHv).
The reason we use Eq. (29) to define the local operator N̂n0

rather than N̂n0 = â†
n0

ân0 is that Eq. (29) is a well-defined
smooth local operator in the continuous limit d → 0. Instead,
N̂n0 = â†

n0
ân0 will become a δ-like function in the continuous

limit, which is singular. The initial state is a thermal state with
the temperature the same as the temperature of the black hole:

ρ = 1

Z

∑
Eout

e−βEout |Eout〉〈Eout|. (30)

Here Z is the normalized factor which ensures Tr(ρ) = 1 and
the summation contains all the positive energy modes of the
outside Hamiltonian Hout (as the negative modes are assumed
to fall into the black hole). Hout is obtained by only extracting
the sites outside the horizon in Eqs. (15), (16), and (18).
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FIG. 2. The numerical simulations on evolution of OTOC when
l0 = xh/15, n0 = (xh + 2l0 )/d . The solid green line is fitted based on
Eq. (25), where the Lyapunov exponent λL = 2πTH . Here we choose
xh = 10. We numerically simulate the results for time v = 0.02 ∼ 2
and d = 0.01, 0.02, 0.04, and 0.08. xm is the position of the AdS
boundary. The numerical results are not sensitive to the value of the
cutoff boundary in the region of exponential growth.

The time evolution of C(v) is obtained numerically. The
results are shown in Fig. 2. For convenience, we define
C̃(v) = C(v)/C(0.02), which does not change the slope of
ln C(v). Some details of numerical simulations are shown in
Appendix C. We can observe that C(v) exponentially grows
approximately in the early time. The slope of the fitting curve
is found to be 2πTH approximately. The chaos bound (26) is
saturated approximately. In the pure gravity theory, the effec-
tive degree of freedom will be proportional to G−2 [30], where
G is Newton’s constant. Here we neglect the back-reaction of
matters on geometry, which means the limit of G → 0. Thus,
in principle, the OTOC will increase forever, i.e., t∗ → ∞.
However, as we here use the lattice model, the operators and
their commutators are bounded and so exponential growth
will stop at a finite time. We study how the C(v) depends on
the discrete distance d . The results show that the time scale
of exponential growth will increase if we decrease d but fix
the horizon radius xh and distribution width l0 of N̂n0 . This
suggests that the time scale of exponential growth will become
infinity in the continuous limit d → 0, as expected.

Strictly speaking, to claim a system to be chaotic, either
classically or quantum mechanically, the positive Lyapunov
exponent is necessary but not sufficient. The positive Lya-
punov exponent only indicates the sensitivity to the initial per-
turbations, which is the necessary condition of chaos. For ex-
ample, in the classical case, we also require that the trajectory
is dense in a neighborhood of phase space (i.e., ergodic). How-
ever, the linear analysis is enough to help us to find the Lya-
punov exponents in both the classical case and the quantum-
mechanical case. This can be understood by recalling the stan-
dard method in computing the Lyapunov exponent of classical
chaotic systems. Thus, a linearized theory in a black-hole
background is enough to check the “chaos bound” (it may be
more suitable to call it the “bound on Lyapunov exponent”).

In order to check if models (15), (16), and (18) really
contain chaotic behaviors when the coupling constants are
given by a black-hole metric, we study the statistics of

0 0.5 1 1.5 2 2.5
s

0

0.5

1

1.5

P
(s

)

xh = 0
Poisson
xh = 1
xh = 10

FIG. 3. Distribution of nearest-neighbor level spacings when the
hopping κn is given by a pure AdS spacetime (blue) and black
holes (red and yellow), respectively. The black line is given by the
Poisson distribution P(s) = e−s. We choose d = 0.02 for all cases,
{xh = 0, xm = 10} for the pure AdS case, and {xh = 1, 10, xm = 5xh}
for the black-hole cases. Here xm is the cutoff AdS boundary. An
integrable-nonintegrable phase transition occurs when xn 	= 0.

“nearest-neighbor level spacing,” which is an other charac-
teristic quantity of chaotic systems. We denote the energy
levels of the outside Hamiltonian to be Ei with Ei < Ei+1,
which are obtained by directly diagonalizing the Hamiltonian
numerically (the cutoff in high energy levels is needed as high
energy levels have low accuracy and are not trustworthy in
physics). We assume that � is the mean value of Ei+1 − Ei

and N is the total number of energy levels. Then we define
NP(s)δs to be the number of energy levels Ei which satisfy
s � (Ei+1 − Ei )/� � s + δs. The function P(s) is called the
“nearest-neighbor level spacing” function. It has been shown
that if the system is integrable, P(s) satisfies Poisson statistics
P(s) = e−s [45]. If the system is chaotic, P(s) will deviate
from the Poisson statistics. For a Gaussian orthogonal ensem-
ble or Gaussian unitary ensemble, P(s) is given by a Wigner
distribution. For other general cases, P(s) may be given by a
general Brody distribution approximately [46]. In Fig. 3 we
show the numerical results about P(s). For the case that xh =
0, the effective spacetime has no black hole and we find that
P(s) is given by a Poisson statistics approximately. However,
once xh 	= 0, we find that a dramatic change happens and P(s)
is no longer a Poisson distribution, which suggests that the
system is not integrable.

From the viewpoint of quantum many-body theory, Hamil-
tonians shown in Eqs. (14), (15), and (18) contain only
nearest-neighbor hopping and quadratic interactions do not
matter in the design of coupling constants. When we design
the coupling constant by setting xh 	= 0, it is not easy to un-
derstand why these models can exhibit exponential growth of
OTOC and why the systems have an “integrable-nonintegrable
phase transition.” However, if we use our framework to
convert them into an effective black hole, we immediately
understand these properties. When xh 	= 0, a black-hole metric
is encoded into the site-dependent coupling κn and so the
system has exponential growth of OTOC and a signal of
chaos. This offers an example about how to use our models
to get some insights about the quantum many-body systems
from black-hole physics.
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V. SUMMARY

In summary, we have shown that a massless scalar or Dirac
field in the static (1 + 1)-dimensional curved spacetime can be
simulated by some basic models in condensed-matter physics:
the bosonic hopping model, the free Hubbard model, and
the XY model. We suggested a possible experimental real-
ization in trapped-ion systems for this analog gravity model.
As some applications of the analog gravity model, we have
numerically shown that this model can be used to simulate
Hawking radiation. We have also checked the quantum chaos
behavior of black holes and verified that a black hole is one
of the most chaotic systems and has the fastest scrambling
in nature. These are predictions of AdS-CFT correspondence.
In this sense our model provides the possibility to test exper-
imentally the correspondence. In addition, our results show
that the site-dependent hopping has a one-to-one relation to
the spacetime point of a curved background. By a concrete
example, we showed how this framework can help us get some
insights about the quantum many-body systems from black-
hole physics. This not only provides new motivation to study
the site-dependent hopping model, but also indicates a large
number of applications in the analog gravity model. These
will bring us new viewpoints and phenomena of quantum
many-body systems, and also will enlighten us to deeply
understand the nature of gravity.
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APPENDIX A: TUNNELING RATE AND HAWKING
TEMPERATURE

In this Appendix, we show how to use the picture of
“quantum tunneling” to obtain the tunneling rate and the
Hawking temperature of a black hole.

To obtain the tunneling rate, we need to find the solution of
Eq. (8) with the energy E . By a variable transformation

w = φ/
√

f (A1)

we can find that

∂vφ = − f

2
∂xφ. (A2)

The positive energy (measured by v) solution is

φ = φ0 exp

[
−iE

(
v − 2

∫
dx

f (x)

)]
. (A3)

As f (x) = 0 at the horizon, this solution is not continuous
at the horizon. Let us separate the integration in the above
equation as follows:∫

dx

f (x)
=

∫ (
1

f (x)
− 1

2gh(x − xh)

)
dx + 1

2gh
ln |x − xh|

= F (x) + 1

2gh
ln |x − xh|.

(A4)

The function F (x) is continuous at the horizon. The diver-
gence has been absorbed into the logarithmic function. The
solution (A3) can be separated into two pieces,

φ = φ1 exp

{
−iE

[
v − 2F (x) − 1

gh
ln(xh − x)

]}
(A5)

for x < xh and

φ = φ2 exp

{
−iE

[
v − 2F (x) − 1

gh
ln(x − xh)

]}
(A6)

for x > xh. The tunneling rate then reads

� := |φ2|2
|φ1|2 . (A7)

Following the argument in Ref. [42], the two pieces of the
solution in Eqs. (A5) and (A6) should be connected contin-
uously under the bottom half of the complex plane. Treating
the piece of x < xh as the starting point and analytically con-
tinuing it into the region of x > xh, the logarithmic function in
Eq. (A5) will obtain an additional phase factor and so we can
obtain the following relationship:

φ1 exp

(
−πE

gh

)
= φ2.

Taking it into Eq. (A7), we then obtain

� = exp

(
−2πE

gh

)
= exp

(
− E

TH

)
. (A8)

As expected, the tunneling rate and energy satisfy the black-
body spectrum, and the temperature is just given by TH =
gh/(2π ).

In physics, Eq. (A3) implies an infinite momentum at the
horizon and so we break down our condition for discretization.
This belongs to the question of the “trans-Planckian problem,”
which widely exists in all discussions of Hawking radiation.
A particle emitted from a black hole with a finite frequency
(measured at infinity), if traced back to the horizon, must
have an infinite momentum, and therefore a trans-Planckian
wavelength. The trans-Planckian problem is a mathematical
artifact of horizon calculations. In all analog models, when
the emitted particle is near the “horizon,” the smooth approx-
imation is invalid and so a truncation is needed. However, it
has been shown that the details of truncation will not change
the behavior of Hawking radiation in the low-energy region
(where “low energy” means the energy is low at infinity; see
Ref. [4], for example).
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APPENDIX B: DETAILS OF NUMERICAL SIMULATIONS
ON HAWKING RADIATION

Let us first explain how to make the numerical simulation
on Hawking radiation. We take f (x) = α tanh x. Then we can
see that the hopping amplitude reads

κn = α tanh[(n − 1/2)d]

4d
.

There is a horizon at x = xh = 0 with the Hawking tempera-
ture TH = α/(4π ). It is worth noting that κn 	= 0 at the horizon
though f (x) is zero at the horizon. The numerical computation
needs a finite cutoff n = −L,−L + 1, . . . , L − 1, L. To match
this cutoff, we have to set the hopping amplitude κn such that

κn = 0, if n � L or n � −L.

Without loss of generality, we set μ = 0 as the total particle
number is conserved.

The Hamiltonians for the inner region and outer region are

Hin = −
−1∑

n=−L

κn(â†
nân−1 + â†

n−1ân) (B1)

and

Hout = −
L∑

n=2

κn(â†
nân−1 + â†

n−1ân). (B2)

Note that the total Hamiltonian is not the sum of the inner part
and the outer part. In fact, we have

H = Hin + Hout + H0. (B3)

Here H0 is the contribution at the horizon,

H0 = −κ0(â†
0â−1 + â†

−1â0) − κ1(â†
1â0 + â†

0â1), (B4)

which mixes the inner region and outer region.
Assume N to be the total particle number. It is difficult

to simulate the dynamics for large N and L. For example, in
the case 2L + 1 = N = 13, the dimension of the total Hilbert
space is D ≈ 5 × 106. To simplify the issue in a numerical
algorithm, let us choose N = 1 and so the dimension of the
Hilbert space is D = 2L + 1. In this case, we can choose the
eigenvectors of â†

nân as the basic vectors of the Hilbert space,

|e−L〉 = (1, 0, . . . , 0)T ,

|e−L+1〉 = (0, 1, 0, . . . , 0)T ,

. . . ,

|eL〉 = (0, 0, 0, . . . , 1)T ,

(B5)

which satisfy

〈el |â†
nân|ek〉 = δnlδnk (B6)

and

〈el |â†
nân−1|ek〉 = δn−1,kδl,n. (B7)

Then we can write the matrix elements of the Hamiltonian:

(Hin)l,k =
{ − κl (δk,l−1 + δl,k−1), k, l � −1

0, k, l > −1,
(B8)

(Hout)l,k =
{ − κl (δk,l−1 + δl,k−1), k, l � 2

0, k, l < 2,
(B9)

and

(H)l,k = −κl (δk,l−1 + δl,k−1). (B10)

For a given initial state |�(0)〉, the time-evolution state is
given by |�(v)〉 = e−iHv|�(0)〉. In Fig. 1, we take parameters
d = 0.1, L = 300, and α = 10. The results are similar if we
choose N = 2. Due to the technical difficulties addressed
above, we cannot explore larger N . Roughly speaking, as we
consider the free theory in fixed background, many particles
can be understood as a collection of single particles. Thus, the
simplification here does not lose the essential physics.

APPENDIX C: DETAILS OF NUMERICAL SIMULATIONS
ON OTOC

The simulation on OTOC is similar. We take f (x) =
x2(1 − xh/x). Then we can see that the hopping reads

κn = f [(n − 1/2)d]

4d
.

There is a horizon at x = xh with the Hawking temperature
TH = xh/(4π ). In this case we make the cutoff in the follow-
ing way:

n = 1, 2, . . . , 2L + 1, with Ld = xh.

Similar to the case in Hawking radiation, if we choose N =
1, we still have Eqs. (B6) and (B7). Then we can write the
matrix elements of the Hamiltonian

(H)l,k = −κl (δk,l−1 + δl,k−1) (C1)

and

(â†
nân)kl = δnlδnk . (C2)

For a given initial state |�(0)〉, the time-evolution
state is given by |�(v)〉 = e−iHv|�(0)〉 and N̂n(v) =
exp(−iHv)N̂n exp(iHv). Then we can obtain the OTOC
in Eq. (27).
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