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Split-pulse x-ray photon correlation spectroscopy has been proposed as one of the unique capabilities made
possible with x-ray free electron lasers. It enables characterization of atomic-scale structural dynamics that
dictates the macroscopic properties of various disordered material systems. Central to the experimental concept
are x-ray optics that are capable of splitting an individual coherent femtosecond x-ray pulse into two distinct
pulses, introduce an adjustable time delay between them, and then recombine the two pulses at the sample
position such that they generate two coherent scattering patterns in rapid succession. Recent developments in
such optics showed that, while true “amplitude-splitting” optics at hard x-ray wavelengths remains a technical
challenge, wavefront and wavelength splitting are both feasible, able to deliver two micron-sized focused beams
to the sample with sufficient relative stability. Here we show, however, that the conventional approach to speckle
visibility spectroscopy using these beam-splitting techniques can be problematic, even leading to a decoupling
of speckle visibility and material dynamics. In response, we discuss the details of the experimental approaches
and data analysis protocols for addressing issues caused by subtle beam dissimilarities for both wavefront- and
wavelength-splitting setups. We also show that in some scattering geometries, the Q-space mismatch can be
resolved by using two beams of slightly different incidence angles and slightly different wavelengths at the
same time. Instead of measuring the visibility of weak speckle patterns, the time correlation in sample structure
is encoded in the “side band” of the spatial autocorrelation of the summed speckle patterns and can be retrieved
straightforwardly from the experimental data. We demonstrate this with a numerical simulation.
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I. INTRODUCTION

Nearly fully transversely coherent femtosecond x-ray
pulses produced by x-ray free electron laser (FEL) sources
opened up the possibilities of direct measurement of atomic-
scale dynamics of complex systems at their native timescales
[1]. One area of particular interest is the investigation of
noncrystalline matter such as liquids, glasses, amorphous,
and disordered systems and holds the promises of unlock-
ing the mysteries behind the glass transition, liquid-liquid
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phase transitions, and fragile-to-strong transitions, to name
a few [2–4]. A primary methodology with the potential to
extend dynamic light scattering to angstrom lengthscales and
femto-/picosecond timescales is the so-called split-pulse x-
ray photon correlation spectroscopy (XPCS) technique, where
the dynamics of the scattering object are imprinted onto
the fluctuations of coherent scattering intensity distribution
[5]. The schematic of a generic split-pulse XPCS experi-
ment is illustrated in Fig. 1. Two delayed beams are gen-
erated by a split-delay optics and then focused down to
a small size at the sample location. Downstream from the
sample a pixelated x-ray detector measures coherent scat-
tering patterns. While area detectors capable of indepen-
dently measuring the scattering patterns from two subse-
quent x-ray pulses with a femto- to picosecond separation
will not be available in the foreseeable future, it was pro-
posed that the correlations between the coherent scattering
patterns from the two successive pulses can nevertheless be
obtained from the summed scattering pattern by analyzing the
speckle visibility [6]. The dependence of the visibility, as a
function of the temporal separation between the two pulses,
thus carries the potential to provide detailed information
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FIG. 1. Schematics of a generic split-pulse XPCS experiment
using a crystal-optics-based hard x-ray split-delay. A set of crystals
are arranged such that individual pulses are split, delayed in time as
compared to each other, and subsequently recombined and focused
at the sample location. Arrows along the green beam path indicate
how this path length can be adjusted by moving some of the crystals
within the split-delay optics. The summed coherent scattering pat-
terns measured for each pulse pair are recorded by an x-ray imaging
detector located downstream the sample at a given scattering angle.

on the dynamics information of the system being probed
[7,8].

The purpose of x-ray split-delay lines is to generate x-ray
pulse pairs with continuously adjustable time separations in
the femto- and picosecond time range. The generic split-
delay-recombine optical arrangement has been realized re-
cently with increased robustness, primarily in the form of
wavefront- or wavelength-splitting setups. Pulse pairs can
now routinely be generated and delivered to a sample with
sufficient reliability and stability for two-pulse coherent scat-
tering measurements [9–11]. In this work, we present detailed
examinations of the speckle correlation analysis in these
scenarios and illustrate the incompatibility of the wavefront-
and wavelength-splitting optical schemes with the speckle
visibility spectroscopy concept. We propose an alternative
correlation extraction methodology, as well as a Q-space
compensation solution by using two different wavelengths,
that allows the extraction of dynamics under the general
experimental scheme of two-pulse XPCS. We also discuss the
optimization of real experiment parameters.

II. SPLIT-PULSE SCATTERING GEOMETRY

The two-pulse XPCS measurement concept envisioned the
use of two identical x-ray pulses, i.e., having the same photon
energy, trajectory, beam profile, wavefront, and coherence
properties, with an adjustable time separation. This was ini-
tially proposed to be realized by using thin crystal optics with
thickness smaller than the extinction depth of the chosen x-ray
Bragg reflection [12]. However, the fabrication and handling
of sufficiently thin and robust beam splitting crystals still
remain to date a major technical challenge.

Two alternative splitting techniques, wavelength and wave-
front splitting, have been adopted during the past few years in
Bragg-crystal-based x-ray split-delay optics [9,11–16]. While
these systems have shown great progress towards delivering
two similar x-ray foci to the sample with fine control of their
time delay and good relative beam position stability, these
splitting techniques lead to other ineluctable differences be-
tween the two beams/pulses. For example, Roseker et al. and

FIG. 2. Illustration of the Ewald spheres considering the differ-
ences between the two recombined beams. (a) Coordinate system
definition; (b) illustration of the mismatch of scattering vectors in the
reciprocal space. The two beams are denoted in orange and green.
They can either have slight different wavelengths corresponding to
the radius change of the Ewald sphere or different incident angles
corresponding to the rotation of the Ewald sphere around O.

Osaka et al. used thin silicon crystals as beam splitters [12,13].
However, the available thin crystals are still thicker than the
extinction depth of the reflection. As a result, the portion of
wavelengths that falls within the reflecting bandwidth gets
almost fully reflected, while the other wavelengths transmit
through the crystal. The two output beams as a result will
have different photon energies. More recent x-ray split-delay
optics adopted the wavefront splitting geometry [9,11,15]:
part of the incoming beam hits a polished edge of the beam
splitting crystal, meets the Bragg condition, and gets reflected,
while the other part of the beam passes over the edge. The
split beams are directed into different beam paths within the
split-delay optics before getting recombined using another
crystal with a polished edge. In this case, the two parts of
the recombined beam are parallel but not exactly collinear.
Experimentally, when trying to bring both parts of the beam
to the same location on the sample with focusing optics, there
will be an inevitable crossing angle between the two beams.

The slight differences in the two “probe” beam properties
will lead to a mismatch in their scattering in the far field,
which could in principle compromise our ability to recover the
desired material dynamics. Below we provide a generalization
of this mismatch originating from those differences.

As shown in Fig. 2(a), we define z as the incident beam
propagation direction and y as the direction along which their
trajectories deviate from one another. Using the exit beam
wave vector k f , we can define the spherical coordinate: 2θ

as the angle with respect to z axis, and φ as the angle of its
projection on xy plane (BM) and x axis (0 � φ < 2π ). The
scattering experiment can be presented as shown in Fig. 2(b)
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in the reciprocal space: with two Ewald spheres denoted in
orange and green for the two output beams. Their two slightly
different radius ki and k′

i represent the difference between their
photon energies. Its length is thus related to the difference in
the wavelength δλ:

δki = k′
i − ki = k′

f − k f = δλ

λ
ki. (1)

ki = AO and k′
i = A′O are the incidence wave vectors. η is

the angle between the two indicating their slightly different
incident angle on sample. We use k f = AB and k′

f = A′B′ for
the two output wave vectors. A chosen detector pixel can be
represented by the parallel exit wave vectors k f ‖ k′

f for the
two beams respectively. In the Cartesian coordinate system
defined by x, y, z, the incidence and exit wave vectors for both
beams can be written as

ki = AO = ki[0, 0, 1],

k′
i = A′O = k′

i[0, sin η, cos η],

k f = ki[sin 2θ cos φ, sin 2θ sin φ, cos 2θ ],

k′
f = k′

i[sin 2θ cos φ, sin 2θ sin φ, cos 2θ ]. (2)

The difference in the momentum transfer at the same detector
pixel location BB′ = OB′ − OB can be derived as

BB′ = (k′
f − k′

i ) − (k f − ki )

= (k′
i − ki )[sin 2θ cos φ, sin 2θ sin φ, cos 2θ ]

+ [0,−k′
i sin η, ki − k′

i cos η]. (3)

An area detector samples the speckles that lie on the two
Ewald spheres separately for the two beams. BB′ is a measure
of the deviation of the momentum transfer Q measured by the
same detector pixel.

We discuss in the next sections this Q mismatch for
wavefront- and wavelength-splitting schemes, respectively,
and the resulting constraints on the experimental geometry
and sample parameters when this mismatch is compared to
the speckle size. A few assumptions are made for speckle size
calculation, and we follow the methods explained in detail
in Refs. [17–19]. The diffraction volume is assumed to be
a parallelepiped defined by the transverse dimensions of the
beam and the front and back flat surfaces of the sample. The
3D speckle size, or speckle volume in the reciprocal space, is
thus given by the Fourier transform of the diffraction volume.
The calculations in the rest of the paper compare this volume
to the Q mismatch.

For the rest of the paper, when considering real experi-
mental parameters, we will choose a typical photon energy of
10 keV and the silicon (220) bandwidth δλ/λ = 5.6 × 10−5

(FWHM) and momentum transfer of interest at Q = 2 Å−1

corresponding to θ ≈ 11.38◦.

III. WAVEFRONT-SPLITTING CASE

In this section we discuss the case of wavefront splitting.
Figure 3(a) is a schematic of the realization of the split-delay
based on polished edge crystals. After beam recombination
at the crystal beam combiner, the two output beams travel
in parallel to achieve spatial overlap at the sample using
focusing optics, as illustrated in Fig. 3(c). The magnitude of

FIG. 3. (a) Optical arrangement of a split-delay system based on
wavefront splitting using crystals with polished edges. (b) Illustration
of the wavefront-splitting/-combining process as indicated by the
dashed oval in (a). (c) Illustration of the crossing angle between the
two beams after focusing optics due to the noncollinear geometry.

the minimum crossing angle η is therefore determined by the
beam width w [defined as in Fig. 3(c)] of the unfocused beam
and the focal length f :

η ≈ w

f
. (4)

We also assume the two output beams have the same
photon energy, and thus ki = k′

i . The Q space mismatch then
reduces to BB′ = [0,−ki sin η, ki(1 − cos η)]. Its magnitude
BB′ = 2ki sin(η/2) is invariant of θ and φ. BB′ can be decom-
posed into its in- and out-of-detector-plane components. In
order for the same pixel to be mapped to the same speckle, the
magnitude of the out-of-detector-plane mismatch BC should
be much smaller than the speckle ellipsoid size along the exit
wave vector direction (k f or k′

f ). Otherwise the detector will
be sampling a completely different slice of the 3D Q space.
The two speckle patterns will have no correlation as a result.
The out-of-detector-plane mismatch can be written as

BC = BB′ · k f

k f

= ki[− sin 2θ sin φ sin η + cos 2θ (1 − cos η)]

= −kiη sin 2θ sin φ + kiO(η2). (5)

Here we denote the sum of all higher order terms of η as O(η2)
because typically η is on the order of 10−4 considering the
small numerical aperture of the x-ray focusing optics. It has
a dependence on both 2θ and φ. To first order, the magnitude
of BC is maximum for φ = π/2 and will be minimized for
φ = 0 where it is kiO(η2).
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Similarly, the in-detector-plane mismatch is

CB′ = BB′ − BC

= ki
[

1
2η sin2 2θ sin 2φ + O(η2),

(−1 + sin2 2θ sin2 φ)η + O(η2),
1
2η sin 4θ sin φ + O(η2)

]
.

Its length

CB′ = kiη

√
1 − sin2 2θ sin2 φ + O(η2) (6)

reaches a maximum of kiη for φ = 0 and a mini-
mum of kiη cos 2θ for φ = π/2. The direction of the in-
detector-plane mismatch is s = [0, 1, 0] for φ = 0 and s =
[0,− cos 2θ, sin 2θ ] for φ = π/2.

The speckle size, on the other hand, is determined to the
first order by the focal spot size and the sample thickness t .
The largest possible speckle size is reached at the diffraction-
limited focal spot size of w0:

w0 ≈ 4

π

λ

w
f . (7)

Following Ref. [20], the rms speckle size in the y direction
Sy ≈ 0.38kiλ/w0 ≈ 0.30kiη. Define c as the ratio between the
rms speckle size Sy and the scattering mismatch BB′ ≈ kiη,

c = αSy

kiη
, (8)

where α = √
6 is to convert the mismatch to rms and is

explained in detail in Ref. [19]. For φ = 0, along s, the rms
speckle size Ss = Sy, while the in-detector-plane mismatch
is kiη. c ≈ 0.73 suggests that the Q space mismatch in the
detector plane is generally larger than one speckle size. This
leads to the unavoidable reduction in contrast in the sum-
speckle pattern. As a result, visibility analysis will become
significantly less sensitive to sample dynamics.

For φ = π/2 as illustrated in Fig. 4, along s, the rms
speckle size is

Ss = SySz√
S2

z cos2 2θ + S2
y sin2 2θ

, (9)

where Sz is the rms speckle size along z, which to first order
is determined by the thickness of the sample [21]

Sz ∼ kiλ

t
.

(Note that longitudinal coherence also plays a role. For
computing Sz, we follow the numerical methods provided in
Ref. [17].) Its ratio with respect to CB’ is

αSs

CB′ ≈ c

cos 2θ

√
cos2 2θ + S2

y

S2
z

sin2 2θ

<
c

cos2 2θ
≈ 0.86. (10)

Just as the φ = 0 case, here the in-detector-plane mismatch
is inevitably larger than the speckle size. We will provide an
analytical solution to address the in-detector-plane mismatch
in later sections. However, the out-of-plane mismatch will

FIG. 4. Illustration of wavefront splitting for φ = π/2. (a) Re-
ciprocal space illustration of the scattering of two pulses from split-
delay optics using wavefront splitting and recombining. The two
pulses are plotted in orange and green and have a crossing angle
η between the incident wave vector ki =AO and k′

i =A′O. The
incident beam bandwidth is indicated by the thickness of the Ewald
circle in shades of orange/green. At the same detector location (2θ

with respect to ki), the measured wave vectors are, respectively,
OB and OB′. (b) A zoomed-in view of the rectangular area in (a).
The blue arrow represents the momentum transfer mismatch BB′. A
speckle ellipsoid is plotted in light gray, and the detector locations
are plotted in black for the two Ewald circles.

have to be minimized. Ideally, BD, the out-of-detector-plane
speckle size defined in Fig 4(b), shall be much larger than the
out-of-plane Q mismatch:

2BD

BC
� 1. (11)

For our case study, at φ = π/2, following

BD = αSySz

2
√

S2
z sin2 2θ + S2

y cos2 2θ

,

we have

2BD

BC
= c

sin 2θ

√
sin2 2θ + S2

y

S2
z

cos2 2θ

<
c

sin2 2θ
≈ 4.9, (12)

when Sy 	 Sz, or when the sample thickness is much smaller
than w0. Typical values of w = 100 μm, f = 1 m give η =
10−4, BC ≈ 2.0 × 10−4 Å−1, w0 ≈ 1.6 μm, and Sy ≈ 1.5 ×
10−4 Å−1. Experiments require the use of very thin samples,
t ∼ 100 nm, which limits the total scattering signal.

For φ = 0, considering a sample thickness of t = 15 μm,
Sz ≈ 2.2 × 10−5 Å−1, BC = kiO(η2) ∼ 10−8 Å−1, we have

2BD

BC
≈ 2.5 × 103 � 1.

Clearly, in order to minimize the out-of-plane Q mismatch,
the φ = 0 configuration would be more advantageous than
φ = π/2. However, the in-detector-plane Q mismatch would
still make speckle visibility spectroscopy infeasible. An
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FIG. 5. Optical arrangement of a split-delay system using thin
crystal wavelength-splitting scheme.

alternative correlation extraction method will be discussed in
a later section.

IV. WAVELENGTH-SPLITTING CASE

We now evaluate the wavelength-splitting scenario. The
schematics of this type of split-delay optics is illustrated in
Fig. 5. Similar to the wavefront-splitting case, wavelength
splitting also leads to a mismatch in Q space sampling be-
tween the two beams, even though the two beams can be
recombined with high degree of collinearity. This is because
the magnitude of ki and k′

i will be slightly different as a result
of the wavelength difference. This is illustrated in Fig. 6. The
Q space mismatch BB′ can be written as

BB′ = δki (sin 2θ cos φ, sin 2θ sin φ,−1 + cos 2θ ). (13)

Using Eq. (1), its length BB′ = δλ/λQ. Here Q = 2ki sin θ

is the momentum transfer for the ki (orange), and then Q′ =

FIG. 6. Illustration of wavelength splitting. (a) Reciprocal space
illustration of the scattering of two pulses from split-delay optics us-
ing wavelength splitting and recombining. OA and OA′ are incident
beam wave vectors which have magnitude difference 	ki = AA′. At
the same detector location of scattering angle 2θ , the measured wave
vectors are, respectively, OB and OB′. Using this method, the two
pulses have different center energies offset by the bandwidth of the
crystal reflection. (b) A zoomed-in view of the rectangular area in (a).
A speckle ellipsoid is plotted in light gray, and the detector locations
are plotted in black for the two Ewald circles.

2k′
i sin θ would be for the k′

i (green). Similarly, we can derive
the in- and out-of-detector-plane mismatch:

CB′ ∼ δλ

λ
Q cos θ, (14)

BC ∼ δλ

λ
Q sin θ. (15)

Both in- and out-of-detector-plane mismatches have no de-
pendence on φ. Assuming Sx = Sy in this case, the out-
of-detector-plane speckle size BD and the in-detector-plane
speckle size Ss are also related only to scattering angle 2θ .
The ratios between the speckle sizes and the magnitude of the
Q mismatch are therefore

αSs

CB′ = αSySz

Q cos θ

√
S2

z cos2 2θ + S2
y sin2 2θ

λ

δλ
,

2BD

BC
= αSySz

Q sin θ

√
S2

z sin2 2θ + S2
y cos2 2θ

λ

δλ
.

With the same chosen experiment parameters provided ear-
lier, BC ≈ 2.2 × 10−5 Å−1 and CB′ ≈ 1.1 × 10−4 Å−1 for
δλ/λ = 5.6 × 10−5. For a 15 μm thick sample, BD ≈ 2.9 ×
10−5 Å−1 and Ss ≈ 5.3 × 10−5 Å−1. The ratios of speckle size
and the mismatch in and out of the detector plane are thus still
of comparable magnitude, calculated to be αSs/CB′ ≈ 1.2
and 2BD/BC ≈ 2.6, respectively.

In order to make the mismatch sufficiently small compared
to the corresponding speckle size for optimization of speckle
visibility analysis, one can reduce the illumination volume by
either the use of thinner samples, or by using narrower x-ray
bandwidths, e.g., 50–100 meV at 10 keV for our case study
parameters. This will lead to additional x-ray pulse intensity
fluctuations when operated under self-amplified spontaneous
emission (SASE) conditions and calls for the development
of improved stability and longitudinal coherence via seeding
schemes [22–24].

V. Q-SPACE COMPENSATION AND CORRELATION
EXTRACTION

A. Compensation of the out-of-detector-plane mismatch

Following the formalism presented in the previous sec-
tion, the out-of-detector-plane mismatch caused by the cross-
ing angle between the two beams can be fully compen-
sated by an intentional wavelength mismatch, as illustrated
in Fig. 7(a). One could expand the green Ewald sphere around
O such that the two Ewald spheres cross each other again
near B and B′. The goal is to have δQ = Q − Q′, or the
vector BB′, in the tangential direction of the Ewald sphere.
In this configuration, within a small Q region near point B,
the detector samples close-to-identical slices in the reciprocal
space. In other words, BB′ is perpendicular to AB, so in the
triangle BOB′, we have

OB′

sin(180◦ − θ )
= OB

sin(θ − η/2)
,

023099-5
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FIG. 7. (a) Illustration of combining wavefront and wave-
length splitting to minimize the out-of-detector-plane component
of the Q mismatch BB′. (b) A zoomed in view of the de-
viation between the Ewald spheres at Q denoted by OG; af-
ter crossing at Q denoted by OB, we have ∠GAB = δ(2θ ) as
the angle covered before the out-of-detector-plane mismatch is
too large.

and this gives us

	λ

λ
∼ η

tan θ
. (16)

The same relationship can be obtained by equating the right
side of Eqs. (5) and (15). At 10 keV, using Q = 2 Å−1 as the
momentum transfer of interest, with η = 10−4, we derive the
required difference of the wavelength of the two split-delay
branches to be 	λ/λ ≈ 5.0 × 10−4, which is well within the
SASE pulse bandwidth [25].

Another quantity we need to estimate is the scattering angle
coverage δθ , which is how large of a scattering angle this
method can correct before the out-of-detector-plane mismatch
of momentum transfer becomes non-negligible at point G and
G′ in Fig. 7(b). The deviation in the out-of-detector-plane
direction is

δBC ≈ δ

(
	λ

λ
Q sin θ

)
− δ(ηki sin 2θ ) = 2kiηδθ. (17)

Using the parameters mentioned above, BD ≈ 2.9 ×
10−5 Å−1. As η = 10−4, δBC = BD/2 ≈ 1.5 × 10−5 Å−1

means δ(2θ ) ≈ 0.029 (or ∼144 mm at 5 m detector distance).
This can be translated to covering N = 2kiδ(2θ )/Ss ≈
5.5 × 103 speckles before the out-of-detector-plane mismatch
increases to of significant influence (1/2 of BD, the
out-of-detector-plane speckle size).

B. Treatment for in-detector-plane mismatch

As shown in Fig. 7, even though the out-of-detector-plane
Q mismatch is well compensated by using both different
wavelengths and incident angles, the in-plane mismatch can-
not be canceled, we have the in-plane mismatch

BB′ = OB sin(η/2)

sin(θ − η/2)
≈ kiη + kiO(η2). (18)

The speckle patterns from the two branches will have an offset
in the direction of crossing. As η ∼ 10−4, the offset is to
the first order invariant of scattering angle 2θ . For the beam
parameters discussed above, BB′ ≈ 5.1 × 10−4 Å−1 is larger
than in-detector-plane speckle size, and the sum of the speckle
patterns will be shifted by tens of speckle sizes. As a result, the
visibility analysis which calculates intensity correlation from
the scattering of the two branches at the same detector location
will not work.

In this case, the dynamics information regarding the sam-
ple can be extracted via the spatial intensity autocorrelation
of the summed speckle patterns. Using i, j to indicate the
pixel pi, j falling into the chosen ROI on a 2D detector, and
assuming there is a vertical mismatch s in the speckle pattern
between the two pulses, s corresponds to the BB′ in the
reciprocal space as mentioned above and f denotes the frame
number recorded. Using 	t to denote the time separation
between the two pulses in a pulse pair, defining

I f = I1, f (t ) + I2, f (t + 	t ),

the intensity correlation between pixel pi, j and pi, j+s can be
estimated with the following equation:

A(pi, j, s,	t ) = 1

Nf

∑Nf

f =1[I1, f (pi, j, t ) + I2, f (pi, j, t + 	t )][I1, f (pi, j+s, t ) + I2, f (pi, j+s, t + 	t )]

[I1(pi, j ) + I2(pi, j )][I1(pi, j+s) + I2(pi, j+s)]
(19)

The intensity average for each pixel pi, j is

In(pi, j ) = 1

Nf

Nf∑
f =1

In, f (pi, j ). (20)

Here n = 1, 2 denotes the first or second pulse in a pulse pair.
Define r as the fraction of the first pulse intensity:

r = I1

I1 + I2
, (21)

A(pi, j, s,	t ) = I (pi, j )I (pi, j+s)

I (pi, j )I (pi, j+s)

= 1 + r2 − r + I1(pi, j )I2(pi, j+s)

I (pi, j )I (pi, j+s)
. (22)

Averaging over an ROI covering an iso-Q range, we have

A(Q, s,	t ) = 1

NROI

∑
i, j∈ROI(Q)

A(pi, j, s,	t ). (23)

023099-6
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Here NROI is the number of pixels enclosed in the ROI. The
Siegert relation [26] states that

g2(Q,	t ) = 〈I1I2s〉
〈I1〉〈I2s〉

= 1

NROI

∑
i, j∈ROI(Q)

I1(pi, j )I2(pi, j+s)

I1(pi, j )I2(pi, j+s)

= 1 + β| f (Q,	t )|2. (24)

Here I2s indicates the speckle pattern of the second pulse
shifted by s in order to get aligned with that of the first pulse.
The spatial intensity correlation encodes sample information:

A(Q, s,	t ) = 1 + r2 − r + r(1 − r)g2(Q,	t )

= 1 + (r − r2)β| f (Q,	t )|2. (25)

The only additional assumption is that correlations should
show negligible variation over δQ = BB′. When r = 0.5, this
equation describes the equal intensity case:

A(Q, s,	t ) = 1 + 1
4β| f (Q,	t )|2. (26)

In conclusion, in the detector plane, as scattered photons from
Q and Q + δQ fall into the same location on the detector, we
need to measure coincidence of photons δQ apart. This can
be calculated directly via the spatial autocorrelation of the
recorded 2D scattering sum, with the decorrelation between
the two speckle patterns revealed in the decrease of the side
band peak magnitude.

VI. SIMULATION OF THE SOLUTION

Using the same beam parameters, we performed a simula-
tion by calculating the coherent scattering from an illumina-
tion volume of 1.6 μm × 1.6 μm × 15 μm random scatterers,
with 15 μm being the sample thickness along the beam
direction ki. A detector with 50 μm pixel size was placed
12.4 m downstream of the sample in the vertical scattering
geometry (φ = 90◦) to oversample the speckles in the scatter-
ing. Shown in Fig. 8(a) is the scattering of the nominal beam
denoted in orange as shown in Figs. 4, 6, and 7 with 10 keV
center photon energy and beam incidence along the sample
thickness direction. The lower left corner of the speckle
pattern corresponds to a momentum transfer of Q = 2 Å−1

(2θ = 22.76◦) and φ = 90◦. Due to the vertical scattering
at high angles and the illumination volume nearly an order
of magnitude larger along the incident beam direction, the
speckle size is smaller in the vertical direction on the detector.
Its intensity autocorrelation in the vertical direction is plotted
in orange in Figs. 9(a) and 9(b) as reference. The small side
lobes are due to the non-Gaussian illumination. We plotted in
Figs. 8(b) and 8(c) the speckle patterns of the green beams
illustrated in Figs. 6 and 4 that slightly deviate in the center
wavelength or incident angle from the orange beam due to the
wavelength/wavefront splitting. Using wavelength splitting,
the out-of-detector-plane mismatch is a factor of 2.6 smaller as
compared to the speckle size. The in-plane mismatch compo-
nent leads to the speckles shifting in the vertical direction by
almost one speckle size. As displayed in Fig. 8(b), we can still
visualize shifted but similar speckles with a change in the in-
tensity distribution. The center peak shift and value reduction

FIG. 8. Simulation of speckle patterns using wavelength and
wavefront splitting assuming the two x-ray beams illuminating a
1.6 μm × 1.6 μm × 15 μm volume of random scatterers. The de-
tector is placed at vertical scattering geometry 12.4 m from the
sample with 50 μm pixel size. (a) The speckle pattern of the beam
in orange with center photon energy 10 keV. Its lower left corner
corresponds to 2θ ≈ 22.76◦ and φ = 90◦ with respect to the beam
denoted in orange as shown in Figs. 4 and 6. (b) The speckle pattern
of the beam in green as illustrated in Fig. 6 with a difference in
center wavelength δλ compared to the orange beam (δλ/λ = 5.6 ×
10−5). (c) The speckle pattern of the green beam as illustrated in
Fig. 4 with η = 10−4 in the vertical direction. Both beams have the
same center photon energy. (d) The speckle pattern after using a
different photon energy for the green beam as illustrated in Fig. 7
to compensate for the out-of-detector-plane mismatch of scattering
caused by the crossing angle η = 10−4. Here the difference in center
photon energy or wavelength 	λ satisfies 	λ/λ ≈ 5 × 10−4. The
white dashed boxes in (a), (b), (d) enclose the same 2θ and φ

range.

in the cross-correlation between this speckle pattern and the
nominal one plotted in purple in Fig. 9(a) confirm both in- and
out-of-plane mismatch from our previous calculation. This is
optimized for neither visibility nor spatial intensity correlation
analysis when only their speckle sum can be measured. The
autocorrelation of the sum is also drawn in purple in Fig. 9(b).
From this we can see that the shift leads to a broader center
peak and contrast reduction to close to 0.6. It is important
to note here that it is impractical to make the difference of
the wavelengths of the two pulses 	λ larger in order to fully
separate the same speckle measured by the two beams, as
this will require extremely small sample thickness due to the
increase of the out-of-detector-plane mismatch, which is also
proportional to 	λ/λ. Narrow bandwidth reflection ∼10−5

will be preferred for optimizing the geometry for visibility
analysis.

For Fig. 8(c), even though k′
i (green) has a crossing angle

η with respect to that of ki, we still choose the 2θ to be
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FIG. 9. Spatial correlations of the simulated speckle patterns in
Fig. 8 in the vertical direction. (a) Orange: intensity autocorrelation
of the nominal speckle pattern as shown in Fig. 8(a). Purple: intensity
cross-correlation between the nominal and the other beam from
wavelength splitting [Fig. 8(b)]. Magenta: intensity cross-correlation
between the nominal and the other beam from wavefront splitting
[Fig. 8(c)]. Green: intensity cross-correlation between the nominal
and the compensated speckles [Fig. 8(d)]. (b) Orange: intensity
autocorrelation of the nominal speckle pattern as shown in Fig. 8(a).
Purple: intensity autocorrelation of the speckle sum of the nominal
and the other beam from wavelength splitting [Fig. 8(b)]. Magenta:
intensity autocorrelation of the speckle sum of the nominal and the
other beam from wavefront splitting [Fig. 8(c)]. Green: intensity
autocorrelation of the sum of the nominal and the compensated
speckle patterns [Fig. 8(d)].

the scattering angle of the exit wave vector with respect to
ki as this relates to the same location on the detector. We
can see that as the out-of-detector-plane speckle size is very
small compared to the speckle mismatch with 2BD/BC ≈
0.30 in this case. The detector is actually sampling different
speckle ellipsoids. As a result, we are not able to identify
similar speckle patterns anymore. Its cross-correlation with
the nominal speckle pattern together with the autocorrelation
of their sum plotted in magenta in Figs. 9(a) and 9(b) suggest
that the detector cannot detect correlation anymore as it is

FIG. 10. A general source-to-sample schematics including the
split-delay optics and the focusing optics.

imaging different speckles in the reciprocal space. Shown
in Fig. 8(d) is the speckle patterns after we use a different
center photon energy of the green beam to compensate for
the effect of the crossing angle. As mentioned, with 	λ/λ ≈
5.0 × 10−4, the out-of-detector-plane mismatch can be fully
compensated, and this is why we can again visualize the exact
same speckles, as indicated by the pink dashed box. However,
the in-detector-plane mismatch is even larger as the effects
from the crossing angle and different wavelengths add up. The
information regarding sample dynamics can be extracted from
the shifted speckle sum using spatial intensity correlation
analysis as mentioned in the previous section. The cross-
correlation of the nominal and compensated speckle patterns
plotted in Fig. 9(a) shows that the two speckle patterns are
shifted but highly correlated, and the autocorrelation of their
sum is plotted in green in Fig. 9(b), where we can see two side
lobes with correlation value equal to 1.25, which is what we
calculated using r = 0.5 from Eq. (26).

VII. DISCUSSION

A. Mitigation with long beamline

So far we have only discussed the scenario assuming the
split-delay optics is much closer to the focusing optics com-
pared to the distance to the source. This is the case for most
current systems being deployed at the x-ray FEL facilities. In
this case, the angular speckle size and the crossing angle will
be always on the same order. There is a possibility to reduce
the crossing angle if space allows for a very long beamline
and installing the split-delay optics far upstream closer to the
source. We now consider a more general split-delay optics
instrument layout as shown in Fig. 10, with a goal of reducing
the crossing angle while still maintaining a high level of beam
overlap at the sample location. We assume the orange beam
is on the optical axis of the lens. One can rotate the last
crystal to steer the green beam path by a small angle δ to
make the two beams achieve partial spatial overlap at the lens.
This effectively introduces an offset vertically to the source
of the green beam with respect to the original (orange) source
position by the amount

d = LSDδ. (27)

In the lens imaging system with a focal length f , assume f
is on the order of a few meters, and L is on the order of a
few hundred meters, then the distance between the lens and
the demagnified source image f ′ ≈ f . The shift of the green
beam focus can be estimated by

d ′ = d
f ′

L
≈ LSD

L
δ f . (28)
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In order to have the focus shift much smaller than the focus
size, w0 � d ′. Using Eq. (7), enforcing that d ′ is 10 times
smaller than w0, we obtain the relation of

δ ≈ 0.13
λ

w

L

LSD
. (29)

Here we notice that the factor LSD/L, with the split-delay
closer to the source, demagnifies the virtual source shift.

On the other hand, following the earlier discussion as well
as the schematics shown in Fig. 3, the crossing angle after the
focusing lens now can be written as

η ≈ w + d ′ − (L − LSD)δ

f

=
[

LSD

L
− L − LSD

f

]
δ + w

f
. (30)

This presents an opportunity to minimize η by choosing L and
LSD to fulfill the relationship of

w

f
≈

[
L − LSD

f
− LSD

L

]
δ. (31)

If we use the typical values of λ ≈ 1 Å−1 and w ≈ L × 10−6,
we will arrive at

LSD = L

L/13 + f /L + 1
< 13 m,

or the split-delay system must be unrealistically close to the
source to fulfill such requirement. One could work around this
potentially by working with a beam size w that has been slit
down. For example, if we slit down the beam by a factor of
4, such that w ≈ L × 10−6/4, we will arrive at LSD ≈ 137 m,
which is more realistic, at a cost of reduced photon flux.

B. Impact of source fluctuations

The discussion so far has been focusing on geometric
compensations given fixed incoming beam parameters. How-
ever, SASE fluctuation of the FEL source results in shot-
to-shot variations of beam properties in its spatial intensity
distribution and spectral distribution.

Spatial fluctuations directly translate to an uneven split
between the two branches in the wavefront splitting sce-
nario. As a result, the pulse intensities in the two branches
will not be the same. More importantly, the beam size and
profile will be different, which leads to differences in beam
position, profile, and crossing angle, at the sample position.
Spectral fluctuations, similarly, translate to independent pulse-
to-pulse fluctuations of x-ray intensities and profiles of the
two branches [27]. The detailed discussion of the impact of
each type of fluctuation is beyond the scope of the current
paper. However, assume that the source is somewhat “station-
ary,” i.e., that the average beam position, spatial profile, and
spectral distribution are stable over time. All relative property
fluctuations can be treated as an effective “partial coherence.”
This leads to a reduction in the effective correlation signal
amplitude, which leads to more extended data collection time
to reach the same statistics for a given experimental setup.

C. High-speed signal processing with photon
coincidence measurements

In Sec. V B we proposed a spatial correlation analysis
scheme for handling the momentum transfer mismatch in the
detector plane. This bears similarity to a related concept in
dynamic light scattering introduced for suppressing multiple
scattering known as the 3D cross-correlation light scattering.
The concept utilizes a symmetric detection setup, where the
information regarding dynamics at a momentum transfer Q
can be studied via the cross-correlation of the signal measured
separately at Q and −Q [28,29]. We also note that using two
pulses of slight different wavelengths to compensate for the
out-of-detector-plane momentum-transfer mismatch is very
similar to the two-color dynamic light scattering experiments
demonstrated in the 1990s [30]: By using two lasers with
different colors at a crossing angle corresponding to their
wavelength difference, it is also possible to suppress multiple
scattering while retrieving the temporal fluctuations in the
scattering. As the same momentum transfer is located at
two different spatial locations for the two colors and the
detection can be color filtered, sample information is thus also
encoded in the cross-correlation of the signal measured. For
the above DLS experiments, because of the extremely high
coherent flux of optical lasers, fast point detectors measuring
the correlations of a speckle pair are sufficient to achieve
enough signal-to-noise ratio.

For XPCS studies of atomic-scale dynamics using x-ray
FELs, the scattering signal is typically significantly less than
0.1 photons per speckle per detector data acquisition window
[21]. The low count rate can be mitigated by the use of large
area 2D pixel array detectors for simultaneous measurement
of as many speckles in the scattering as possible. In our spatial
correlation analysis, the “correlation” signal comes from the
pairs of speckles at a distance δQ defined by the crossing angle
and energy difference of the two beams. In the case where
detectors cannot temporally distinguish the two scattering
patterns and thus record only the sum of the two patterns,
the observable becomes the rate of coincidence of photons
in the scattering sum separated by δQ. Instead of retrieving
speckle visibility by looking at photon-counting statistics, the
coincidence rate can be relatively easily extracted from a 2D
sensor array by employing a field-programmable gate-array-
based spatial corrector on board the x-ray detector [31]. This
alleviates significantly the burden of reading out and storing
the full image data. In the face of the upcoming increase of
the source repetition rate and multi-mega-pixel detectors, this
provides an effective avenue towards taking full advantage of
the various new technologies and can render ultrafast XPCS
using x-ray FEL sources an effective probe of the dynamics in
complex matters.

VIII. CONCLUSION

In summary, we presented detailed analysis of the Q-space
sampling in the context of split-pulse XPCS experimental
concept and the current split-delay optics implementations.
We provide also discussions of the practical impact based on
real experimental parameters at existing x-ray FEL beamlines.
We show that the out-of-detector-plane momentum-transfer
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mismatch of the scatterings needs first to be reduced to
well below the speckle size along that direction in order to
preserve the correlation between the two successive scattering
patterns from the pulse pair. For the in-detector-plane speckle
mismatch, which renders visibility spectroscopy infeasible,
we show that dynamics can still be extracted from the summed
speckle patterns by spatial intensity autocorrelation analysis.
We propose a method using two pulses of different photon
energies to compensate for their different incident angles
in the case when beam crossing angle is in the scattering
plane. These modifications to the data collection and analysis

protocol are critical for realizing two-pulse XPCS for the
measurement of ultrafast equilibrium dynamics in complex
matter.
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