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We provide numerical evidence in favor of spontaneous chiral symmetry breaking and the concomitant
appearance of an Abelian chiral spin liquid for three-component fermions on the triangular lattice described by
an SU(3) symmetric Hubbard model with hopping amplitude −t (t > 0) and on-site interaction U . This chiral
phase is stabilized in the Mott phase with one particle per site in the presence of a uniform π flux per plaquette,
and in the Mott phase with two particles per site without any flux. Our approach relies on effective spin models
derived in the strong-coupling limit in powers of t/U for general SU(N ) and arbitrary uniform charge flux per
plaquette, which are subsequently studied using exact diagonalizations and variational Monte Carlo simulations
for N = 3, as well as exact diagonalizations of the SU(3) Hubbard model on small clusters. Up to third order
in t/U , and for the time-reversal symmetric cases (flux 0 or π ), the low-energy description is given by the J-K
model with Heisenberg coupling J and real ring exchange K . The phase diagram in the full J-K parameter range
contains, apart from three already known, magnetically long-range ordered phases, two previously unreported
phases: (i) a lattice nematic phase breaking the lattice rotation symmetry and (ii) a spontaneous time-reversal
and parity symmetry breaking Abelian chiral spin liquid. For the Hubbard model, an investigation that includes
higher-order itinerancy effects supports the presence of a phase transition inside the insulating region, occurring
at (t/U )c ≈ 0.07 [(U/t )c ≈ 13] between the three-sublattice magnetically ordered phase at small t/U and this
Abelian chiral spin liquid.

DOI: 10.1103/PhysRevResearch.2.023098

I. INTRODUCTION

Quantum spin liquid phases are unconventional states of
matter that have gained a lot of attention in the last decades
due to their fascinating properties and possible future applica-
tions in quantum devices like quantum computers [1–3]. From
a theoretical point of view, they are expected to emerge in
strongly correlated systems, for instance in Mott insulating
phases. The recent progress in experiments with ultracold
atoms in optical lattices opens the exciting new possibility
to simulate a broad variety of such quantum models [4]. The
optical lattice allows one to adjust the lattice type as well as
the interaction strength, which can be tuned sufficiently to
reach the Mott phase [5–7]. Furthermore, a synthetic static
gauge field (the analog of magnetic flux in electronic systems)
can be applied [8,9]. The fundamental degrees of freedom can
be adjusted by the choice of atom type. In particular, fermionic
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alkaline earth atoms provide an SU(N ) symmetric spin degree
of freedom with N � 10, because of an almost perfect de-
coupling between nuclear spin and electronic angular momen-
tum [10–14]. This new possibility to realize SU(N ) symmetric
Hubbard models within the Mott phase [6,7] creates a strong
motivation for further theoretical investigations to identify
potential realistic hosts of quantum spin liquid phases.

These systems can quite generally be described by an
SU(N ) Hubbard model with a uniform “charge” flux defined
by the Hamiltonian

H = −t
∑
〈i, j〉

N∑
α=1

(eiφi j c †
iαc jα + H.c.) + U

∑
i,α<β

niαniβ , (1)

where t denotes the hopping amplitude of the fermions with
color α = 1, . . . , N . The Peierls phases φi j are chosen such
that the flux per elementary plaquette of the lattice amounts to
� and U � 0 parametrizes the repulsive interaction strength.
We use the convention t � 0, which is the natural sign for
fermions hopping on a lattice with a quadratic spectrum at
zero momentum.

In the following, we will pay special attention to time-
reversal symmetric models (� = 0 or π ) since the main
objective of this article is to identify chiral phases that
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spontaneously break time-reversal symmetry. As we shall see,
in the Mott insulating phase with one particle per site, and
with t � 0, such a phase is realized when � = π , a situation
to which we will refer as π -flux case. Now, on the triangular
lattice, introducing a π flux is equivalent to changing the
sign of the hopping integral. Accordingly, for N = 3 and in
the Mott phase with two particles per site, such a phase is
realized when � = 0 since these two phases are related by
a particle-hole transformation that changes the sign of the
hopping term.

In the strong-coupling limit U � t , and with an average
filling of one particle per site, the system is in a Mott insu-
lating phase, and effective magnetic descriptions are given in
a basis of SU(N ) spins in the fundamental representation on
every site. Up to second-order in t/U , the effective description
is given by the SU(N ) Heisenberg model

H = J
∑
〈i, j〉

Pi j (2)

with the transposition operator Pi j , which exchanges the states
on sites i and j

Pi j =
∑
α,β

|αiβ j〉〈βiα j | , (3)

where α and β run over N different colors,1 i.e., SU(N )
spins in the fundamental representation. Up to second order,
the coupling constant is given by J = 2t2/U . In a particular
large N limit of this model, SU(N ) chiral spin liquids (CSL)
were first reported [15,16]. In these phases parity and time-
reversal symmetry are spontaneously broken, but their product
is not [15], and most importantly, they exhibit topological
order if the spectrum is gapped. This shows up as a 2N-fold
degeneracy of the ground state on a torus [16].

By contrast, for SU(2), the Heisenberg model Eq. (2)
realizes a 120◦ long-range ordered state [17–21]. However,
subleading four-spin interactions arising in order four in t/U
are known to trigger a first-order phase transition within the
Mott phase to an exotic quantum disordered phase. Several
investigations have led to numerical evidence in favor of a
gapless spinon Fermi surface phase [22–25]. However, recent
numerical studies [26–32] argue in favor of the presence of a
chiral spin liquid or the existence of a gapped Z2 spin liquid or
even a gapless Dirac spin liquid. So the definite identification
of this exotic quantum phase within the N = 2 Mott phase is
not yet settled.

For SU(3) symmetric fermions on the triangular lattice,
which is the system of interest in this work, it is useful to con-
sider the expansion to third order in t/U . The effective model
is then given by the J-K model defined by the Hamiltonian

H = J
∑
〈i, j〉

Pi j +
∑
〈i, j,k〉

(K Pi jk + H.c.) , (4)

where the first sum runs over all nearest-neighbor sites, and
the second sum over all elementary triangles of the lattice. The

1Instead of the term “colors” also “flavors” is common in the
literature

operator Pi jk = Pi jPjk is a ring exchange operator that cycli-
cally permutes the states between the sites i, j, and k. The cou-
pling constants are given by J = 2t2/U − 12 cos (�)t3/U 2

and K = −6ei�t3/U 2, where � is the flux per triangular
plaquette. A number of studies were performed for this J-K
model already [33–36]. For purely real ring exchange, besides
the conventional three-sublattice magnetically long-range or-
dered (3-SL LRO) phase [37–39], two phases have been
predicted by variational Monte Carlo (VMC): a dx + idy CSL
with spontaneous time-reversal symmetry breaking followed
by a spin nematic phase [33]. However, the uniform π/3-
flux and 2π/3-flux CSL states were not considered. A later
mean-field study found that those are favored energetically for
0.41 � K � 6.0 and K � 6.0, respectively [34]. This compe-
tition between many phases calls for investigations beyond
mean-field and VMC. So far, this was only done for the
J-K model with purely imaginary ring exchange K , hence
explicitly broken time-reversal symmetry, and the presence of
robust CSL phases was confirmed for all N from 3 to 9 by
exact diagonalizations (EDs) on top of VMC [36]. The first
goal of the present paper is to extend this investigation to the
case of purely real ring exchange, where we find in particular a
previously unnoticed phase that breaks lattice-rotational sym-
metry, and a spontaneous time-reversal symmetry breaking
CSL.

With respect to experiments, the most relevant open ques-
tion is then whether the CSL phase is also present in the SU(3)
Hubbard model, for which the J-K model only provides a
reliable description at very strong coupling U . Since EDs of
the SU(3) Hubbard model are limited to very small system
sizes (12 sites, see Sec. V B), a direct investigation of the Hub-
bard model is difficult. One way to overcome this difficulty is
to push the expansion in t/U to higher order to extend the
range of validity of the effective spin model. Indeed, not only
is the effective model better because it contains more terms,
but one can also test the effect of each additional order in
the expansion and get a more precise idea of the range of
validity of the effective model. So, the second goal of this
paper is to push the expansion in t/U to higher order (we will
reach order five), and to identify the physics of the Hubbard
model in the range where U/t is not too large so that terms
beyond nearest-neighbor exchange play a role, but still large
enough to allow one to draw conclusions on the basis of the
fifth-order expansion. As we shall see, ED complemented by
VMC provides strong evidence in favor of a uniform π/3-flux
CSL for moderate K/J , as well as for the Hubbard model in
the Mott phase below (U/t )c ≈ 13.

The paper is organized as follows. At first we summarize
the key results in Sec. II. In Sec. III, we review the various
methods used in this manuscript - EDs (Sec. III A), varia-
tional Monte Carlo (Sec. III B), and the derivation of effec-
tive models using degenerate perturbation theory (Sec. III C).
Section IV is devoted to the J-K model. We derive its phase
diagram on the basis of ED and VMC, and provide evidence
for a CSL. We then turn to the Hubbard model in Sec. V. We
start with a detailed presentation of the fifth-order effective
model in Sec. V A. We then benchmark this model in Sec. V B
by comparing its properties with those of the π -flux Hubbard
model on 12 sites. Finally, we use this effective model to
discuss the phase diagram of the π -flux Hubbard model
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FIG. 1. Comparison of the predicted phase diagram for the trian-
gular lattice J-K model on the 12-, 21- and 27-site clusters from ED
(top three rows) and the 144-site cluster from VMC (bottom row).
Around the Heisenberg point (α = 0) the three-sublattice ordered
phase (3-SL LRO,green) is present. For increasing values of α up to
α = π a π/3-flux chiral spin liquid (CSL,orange), a lattice nematic
phase (LN,blue), a 120◦ LRO phase (white) and a ferromagnetically
ordered phase (FM,gray) occur. The stripe state from VMC is ex-
pected to be closely related to the LN phase from ED as discussed at
the end of Sec. IV.

and provide evidence for a CSL with spontaneous symmetry
breaking in Sec. V C. The work is wrapped up in Sec. VI
including a proposal for the experimental realization of the
CSL.

II. KEY RESULTS

Before we give a detailed description of the methods and
the full presentation of the results, we summarize our main
findings. Let us start with the ground-state phase diagram of
the J-K model with real ring exchange K shown in Fig. 1.
We use the J-K notation, as well as the angle α in the range
−0.3 � α/π � 1, which relates to the previous parametriza-
tion by J = cos α, K = sin α [33]. At the Heisenberg point,
i.e., α = 0 (K = 0, J = 1), the well known 3-SL LRO phase
is present. It is stable to the addition of a nonvanishing ring ex-
change of either sign. For α � −0.25π (K < 0, K/J � −1),
it eventually gets replaced by a ferromagnetic phase (FM).
For K/J > 0 an increase of the ring exchange K triggers a
phase transition to a spontaneously time-reversal symmetry
breaking π/3-CSL phase at αc ≈ 0.096π [(K/J )c ≈ 0.31] in
ED and αc ≈ 0.064π [(K/J )c ≈ 0.204] in VMC. This phase
extends up to couplings αc ≈ 0.19π [(K/J )c ≈ 0.67], where
the specific value depends strongly on the symmetry of the
cluster under investigation. Then, an unexpected phase with
broken lattice-rotational symmetry occurs. This phase has not
been reported in a previous VMC study [33] and we call it a
lattice nematic (LN) phase in the following.2 In ED this LN
phase extends up to αc ≈ 0.7π [K > 0, (K/J )c ≈ −1.4] for
the sizes considered, i.e., one requires negative J to leave the
LN phase. In VMC, however, the phase transition seems to

2A similar lattice nematic phase has been found in a bilinear-
biquadratic S = 1 spin model on the square lattice [67]. Whether
this phase extends up to the SU(3) point is, however, an unsettled
issue [39,68–71].

occur at a smaller value of αc ≈ 0.475π [K > 0, (K/J )c ≈
13]. We attribute this difference to both the strong finite size
effects in ED as well as the possible necessary improvements
in the VMC ansatz for the LN phase. For larger α, another
phase is present. This phase was previously introduced as a
120-nematic or J -nematic phase in Ref. [33]. However, in
the context of an SU(3) symmetric model, we think it is best
described by a 120◦ color ordered (120◦ LRO) phase, as it is
essentially an SU(2) Heisenberg antiferromagnet embedded
into an SU(3) symmetric system. Finally, the FM occurs for
α > 0.852π [K > 0, (K/J ) < −0.502].

The most interesting aspect of the phase diagram is the
presence of the spontaneous time-reversal symmetry broken
CSL phase at intermediate coupling ratios K/J . We show that
this phase has strong chirality correlations within a manifold
of six low-lying eigenstates from the singlet sector on a torus
in ED, reflecting the topological ground-state degeneracy.
The modular matrices of the apparent VMC states yield
Abelian anyonic exchange statistics for four quasiparticles
with topological spin ±2π/3 and chiral central charge c = 2,
in agreement with predictions for the π/3-flux CSL [15].

In view of the numerous phases discussed so far in the
context of the J-K model, and for the benefit of the reader, let
us summarize the status of the various phases suggested so far:
(1) 3-SL LRO: present in all investigations so far. (2)π/3-flux
CSL phase: predicted in Refs. [15,35], not found in Ref. [33],
confirmed here. (3) Lattice nematic: first mentioned here. (4)
2π/3-flux CSL phase: predicted in Ref. [35], not confirmed
here. (5) d + id: reported in Ref. [33], not confirmed here. (6)
120-nematic phase: first reported in Ref. [33], reinterpreted
here as a 120◦ color ordered phase. (6) Ferromagnetic phase:
present in all investigations that looked at this parameter
range.

Second, we find that the physics of the J-K model at
small and intermediate coupling ratios, including the CSL,
are present in the Mott phase with one particle per site of
the SU(3) π -flux Hubbard model. To this end, we derive
the fifth-order effective spin model for the SU(N ) Hubbard
model in the strong-coupling regime t/U → 0 for general
flux. For � = π corresponding to positive ratios K/J and
N = 3, this spin model is qualitatively converged up to ratios
t/U including the phase transition point (t/U )c ≈ 0.075 from
ED and (t/U )c ≈ 0.067 from VMC between the 3-SL LRO
and the spontaneous time-reversal symmetry broken CSL
phase. The 12 site ED results for the Hubbard model suggest
a metal-insulator transition at (t/U )mi

c ≈ 1/8.5 ≈ 0.12. This
implies the existence of the spontaneous time-reversal sym-
metry broken CSL in the Mott phase of the SU(3) Hubbard
model with � = π on the triangular lattice as illustrated in
Fig. 2.

Finally, we note that the CSL is also present in the Mott
phase with two particles per site of the SU(3) Hubbard model
without a flux.

III. METHODS

A. Exact diagonalization

1. Spin models

For the ED of spin models we employed a basis within
irreducible representations (irreps) of the SU(3) group, which
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FIG. 2. Phase diagram of the SU(3) Hubbard model with � = π

on the triangular lattice. In the Mott-insulating phase for small t/U
the 3-SL LRO and π/3-CSL are found by ED and VMC. The metal-
insulator transition is estimated in Sec. V B as (t/U )mi

c ≈ 1/8.5 ≈
0.12 (ED on 12 sites for the Hubbard model). The large uncertainty
on this value and the nature of the Mott phase in that area is indicated
by the grey area.

was introduced by two of the present authors [40]. Details
are given in Appendix A. The method takes advantage of
the full SU(N ) symmetry, and thus reduces the size of the
Hilbert space under study much more effectively for N > 2
than the usual approach of U (1) color conservation together
with lattice symmetries. A drawback is that the approach is
more contrived to obtain common quantum numbers like the
lattice linear momentum or the angular momentum, which are
useful for identifing the appearing states [41]. To this end,
we mainly used the following observables. For magnetically
ordered phases, the most prominent observable is the spin-
spin correlator S(i, j) between sites i and j. It is given by the
expectation value of the transposition operator

S(i, j) = 〈Pi j〉
2

− 1

2N
. (5)

To find the ordering momentum, we studied the spin structure
factor

S(�k) =
Ns−1∑
j=1

e−i�k(�r j−�r0 )S( j, 0) + N2 − 1

2N
, (6)

where Ns is the number of sites and the last term gives the
auto-correlator. In addition, we also used the dimer correlator,
which is the connected correlator of two bonds. In terms of
transposition operators, it reads

D([i, j], [k, l]) = 〈Pi jPkl〉 − 〈Pi j〉〈Pkl〉 . (7)

The identification of the CSL phase is supported by
the real space connected scalar chirality correlator
C(〈i, j, k〉, 〈l, m, n〉) for two individual triangles with sites
〈i, j, k〉 and 〈l, m, n〉 oriented in the same way. The scalar
chirality for a single triangle is defined as

〈χ (i, j, k)〉 = i

4
〈Pi jk − Pk ji〉 . (8)

Then, the connected scalar chirality correlator is given by

C(〈i, j, k〉, 〈l, m, n〉) = 〈χ (i, j, k) χ (l, m, n)〉
− 〈χ (i, j, k)〉〈χ (l, m, n)〉 . (9)

With the overall chirality or chirality signal we refer to the
sum of all connected chirality correlators where 〈i, j, k〉 is a
fixed reference triangle and 〈l, m, n〉 are all triangles which
share no site with the reference triangle and are labeled in the
same orientation. For a CSL, which features long-range chiral

correlations, the chirality signal should be strong and the real
space connected chirality correlator should be positive and
uniform across the lattice. The calculations were performed
on the 12-site, 21-site, and 27-site clusters shown in Fig. 19.

2. Hubbard model

The full Hilbert space of the SU(3) Hubbard model con-
tains states with multiple occupied sites and we cannot employ
the same basis as before. Instead, we use an ordinary U(1)
quantum number basis, where we label sectors by the numbers
of fermions of each of the three colors a, b, c as (Na, Nb, Nc).

We also attempt to pin down the metal-insulator transition
point by computing the partice-hole charge gap. For a gen-
eral SU(N ) Hubbard model, this can be done by calculating
the lowest energies of three different Hilbert space sectors,
namely the sector with the same number of particles per color
at 1/N filling, the sector with one additional fermion, and the
sector with one fermion less for one color compared to the
nominal filling. Then, the particle-hole charge gap is

�charge = E0(+1) − 2 E0(0) + E0(−1) , (10)

where the numbers in parenthesis label the deviation from
the Mott filling. In order to obtain an estimate for the metal-
insulator transition, one has to extrapolate the large-U linear
part of the particle-hole charge gap. The point where the
extrapolated line crosses zero, so where the charge gap closes,
is an estimate for the location of the metal-insulator transition.

B. Variational Monte Carlo

The VMC approach is based on projected 1/3 filled non-
interacting parton wave functions. We start from a nearest-
neighbor tight-binding model

Hα =
∑

α

⎡
⎣−

∑
〈i, j〉

(
tα
i, j f †i,α f j,α + H.c.

) −
∑

i

hi,α f †i,α fi,α

⎤
⎦,

(11)

where α denotes the color, and f †i,α ( fi,α ) are creation (an-
nihilation) operators of an α-fermion (parton) at site i. For
each color, the one-fermion states are filled up to one-third
filling. Then, a Gutzwiller projection [42–44] excludes the
charge fluctuations. The energies, symmetries, and overlaps
of these variational states can be evaluated using a Monte
Carlo sampling. The hopping amplitudes and the on-site fields
of the tight-binding model serve as variational parameters.
Similar studies of the J-K model for real K were carried
out by Bieri et al. [33]. They only considered time-reversal
symmetry breaking through complex pairing terms (p + ip
and d + id states in their paper) and did not consider any state
with complex hoppings and non-time-reversal invariant flux
configurations. The latter is a natural way to create CSL vari-
ational states [15,35,36]. In the following, we provide a list
of the states we considered. We carried out these simulations
on two clusters of 6 × 6 = 36 and 12 × 12 = 144 sites, both
compatible with all the listed scenarios. A detailed description
of our results is given in Sec. IV B, where we also compare the
energies of the most competitive states to the ones proposed
in Ref. [33].
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FIG. 3. Illustration of the considered hopping configurations
in the VMC calculations. (a) For the all-up plaquette order the
magnitude of the hopping amplitudes on the thick purple bonds
was changed between 0.5 and 2. The phases φ1, φ2, and φ3 were
either chosen to be uniform with values mπ/6 (m ∈ Z), or set to a
combination of 0 or π . For the 3-SL LRO (shown by the color of the
vertices) the on-site chemical potential was changed from 0 to 2. For
the (b) stripe and (c) zigzag stripe orders, the strengths of the hopping
on the purple bonds are set to 1, and the strengths on the thin black
bonds between the stripes are tuned between 0 and 2. In both stripe
cases we considered either uniform flux configurations or opposite
fluxes on up and down triangles with φ = {0, π/3, π/2, 2π/3, π}.

CSL states. To create spin liquid variational states, we
set all the hi,α on-site terms to zero, and the tα

i, j hopping
amplitudes to unity. The phases of the hopping amplitudes are
such that the flux on every triangular plaquette is the same. We
considered the cases with mπ/6-flux (m ∈ Z) per plaquette.
We also made calculations on states with opposite fluxes on
up and down triangles with fluxes ±mπ/3.

Plaquette ordered states. By increasing the magnitude of
the hopping amplitudes around distinct plaquettes in Eq. (11),
we can create variational states with lower bond energies
around these plaquettes. In particular, we focused on the
possibility of strong bonds around triangular plaquettes corre-
sponding to the formation of SU(3) singlets. We considered
all the possible plaquette coverings on the 36-site cluster,
with a uniform zero or π flux per plaquette, changing the
magnitude of hoppings around the plaquettes from 0.5 to
2 (the magnitude of the other hopping amplitudes were set
to 1). We examined the all-up plaquette covering [shown in
Fig. 3(a)] in more detail for both the 36- and the 144-site
systems. On top of changing the magnitude of the bonds
around the triangular plaquettes, we considered various flux
configurations with either zero- or π flux per plaquette for
each of the three different types of triangles [marked with φ1,
φ2, and φ3 in Fig. 3(a)]. We also considered the combination
of the all-up plaquette order with a uniform mπ/6-flux (m ∈
Z) per plaquette.

Stripe order. Similarly to the plaquette ordering, by
strengthening the hoppings along chains in Eq. (11), we
generate variational states of weakly coupled SU(3) chains.
We considered the cases of straight and zigzag chains [cf.
Figs. 3(b) and 3(c)] with 0 � tinter-chain/tintra-chain � 2 on the
36- and 144-site clusters. Note that the zigzag chains are
compatible with the 36- and 144-site clusters, but not with
the 21- and 27-site clusters used for ED. On top of varying
tinter-chain/tintra-chain, we considered uniform flux-configurations
of 0, π/3, π/2, 2π/3, and π flux, as well as opposite fluxes on
up and down triangles with the same values. The straight stripe
π -flux state is related to the LN phase from ED in Sec. IV A.

Color order. If the chemical potentials are different for dif-
ferent colors, the resulting variational states will have SU(N )

symmetry breaking color order. We considered states with a
three-sublattice color order as shown in Fig. 3(a). On each
sublattice the on-site term for only one color is nonzero, i.e.,
hi,α = h if i is in sublattice α. The magnitude of the on-site
field is varied between 0 < h < 2. We also combined this
color order with the all-up plaquette order and the straight
stripe order of the previous points.

Gutzwiller projected states can also be used to access
different topological sectors by introducing twisted boundary
conditions in Eq. (11) before Gutzwiller projection [36].
Then, if the number of nonzero eigenvalues of the overlap
matrix is independent of how many different twisted boundary
conditions are considered, it gives the number of linearly
independent states.

C. Derivation of effective models

The effective model for the Mott phase of a general SU(N )
Hubbard model with an arbitrary flux for an average filling of
one particle per site in the strong-coupling limit is stated and
analyzed in Sec. V A. Here, we briefly motivate the underlying
calculations, which are based on a linked-cluster expansion
(LCE) and degenerate perturbation theory. A similar approach
was successfully applied to the SU(2) Hubbard model on the
triangular lattice in Ref. [24].

A LCE is a technique to extend results on small finite
clusters to larger clusters or to the thermodynamic limit. We
use a very appealing LCE approach along the lines of a
white-graph expansion [45], which we employ to simplify
the subtraction process, as well as to include complex phases.
This is explained in detail in Appendix B.

On every linked cluster, we use degenerate perturbation
theory [24,46–49] about the strong-coupling limit t → 0 in
Eq. (1), and determine effective descriptions in the subspace
of states with exactly one fermion per site. A link is created by
the perturbative hopping of a fermion between two sites. We
find that in order k a linked cluster only yields a nonvanishing
contribution if the number of links that are part of a loop plus
twice the number of links that are not part of a loop is smaller
or equal to the order. In order 5 on the triangular lattice, six
linked clusters give a nonzero contribution, namely the dimer,
the trimer, the triangle, a triangle with one additional site,
a four-site loop, and a five-site loop. For each cluster, one
derives the associated reduced effective Hamiltonian, which
can be written in a compact form

Heff(t/U,�) =
∑
(i, j)

Ai jPi j +
∑

(i, j,k)

Bi jkPi jk + . . . , (12)

where the coupling constants depend on t/U and �. Here
and in the following, all effective Hamiltonians and effective
couplings are given in units of U . Every linked cluster yields
a different set of exchanges that are embedded on the full
system in the second step. Some of these exchanges are unique
to the specific cluster, whereas other interactions emerge from
contributions of a variety of linked-clusters. We perform these
calculations for all interactions in the effective model in order
5 for the thermodynamic limit (Sec. V A) and in order 4 for
the 12-site cluster with PBCs.

To improve and assess the quality of convergence of the
coupling constants, we employ Padé extrapolants [50]. These
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are rational functions and can be denoted with [m, n] where
the degree of the numerator is m and that of the denominator
is n. At certain parameters, unphysical divergences emerge,
which have to be excluded.

IV. J-K MODEL

In this section, we determine the phase diagram of the J-K
spin model for arbitrary real values of the J and K parameters
by ED and VMC. The results of both methods are compared
at the end of the section.

A. Exact diagonalization

Using ED, we studied the J-K model on the 12-, 21-, and
27-site triangular clusters with periodic boundary conditions
(PBCs). We start with a discussion of the ground-state energy
per site plotted as a function of the parameter α in Fig. 4.
We show the energies for three different SU(3) irreps: the sin-
glet, the ferromagnet, and the irrep which corresponds to the
lowest effective SU(2) sector (for reasons which become clear
below). We discuss the evidence leading to the labeling of the
different phases in the following. Note that the CSL seems
to be squeezed at the interface between two quite extended
phases, similar to scenarios in SU(2) quantum magnets, where
spontaneous time-reversal symmetry breaking CSL have been
observed [51–53].

The appearance of the CSL when increasing
K > 0 (J > 0), or α > 0, can be understood with the
low-energy spectrum of the 21-site cluster from ED in Fig. 5,
where the marker size illustrates the overall chirality signal for

FIG. 4. Ground-state energies from ED on clusters with Ns =
{12, 21, 27} sites for the J-K model with the coupling constants
J = cos α and K = sin α. Different point shapes indicate differ-
ent symmetry sectors. The singlet sector [Ns/3, Ns/3, Ns/3] yields
the ground states of the 3-SL LRO, CSL, and LN phase below
α/π ≈ 0.7. For 0.7 � α/π � 0.85, the 120◦ color order state, which
contains only two colors from the sector [Ns/2, Ns/2, 0] or [(Ns +
1)/2, (Ns − 1)/2, 0], is present. In the FM phase for α/π � 0.85,
where the energy per site is identical for all clusters, only a single
color is present and therefore the ground states lie in the symmetry
sectors [Ns, 0, 0]. Wherever the phase boundaries are not the same
for different lattice sites Ns, the color of the boundary indicates the
corresponding cluster size.

FIG. 5. Spectrum of the J-K model on the 21-site cluster from
ED. The marker size corresponds to the overall chirality signal and
is plotted for the lowest three states (the degeneracy of these states
is 1, 4, and 1). The three (six when we count the degeneracies) low-
lying singlets with strong chiral signal indicate the presence of a CSL
phase in an extended parameter space at intermediate values of K/J .

the lowest three singlet energy levels (whose degeneracies are
not resolved here). For small values of K/J , the first excited
state above the singlet ground state is in the adjoint irrep
[8,7,6], which corresponds to the tower of states expected
for the 3-SL LRO phase [54]. With an increasing ratio K/J
two singlets cross the adjoint irrep around (K/J )c ≈ 0.31
(αc ≈ 0.096π ) and become the lowest excitations. In the
same parameter range the total chirality of the ground state,
as well as that of the two levels from the singlet sector above,
increases, which is an indication for a chiral phase. More
importantly, the degeneracies of the three lowest singlet
levels have been determined to be 1-4-1 corresponding to
a total of six states, which may form a six-fold degenerate
ground state in the thermodynamic limit. Such a degeneracy
is associated with spontaneous chiral symmetry breaking in
the SU(3)-symmetric π/3-CSL on a torus [16]. However,
these states are not very well separated from higher excited
states on the 21-site cluster. The signature is more pronounced
than on the 12-site cluster though. On the 27-site cluster, the
splitting between the six low-energy states and the states
above is comparable to that on the 21-site cluster.

In the upper panel of Fig. 6, the magnetic structure factor at
the ordering momentum of the 3-SL LRO phase, the K point,
is shown. It is extensive in the ordered phase but decreases as
the chirality signal increases, which is displayed in the lower
panel of Fig. 6. This indicates a decay of magnetic ordering.
The phase boundary in both panels of Fig. 6 is determined
by the crossing of the two lowest singlet excitations with
the adjoint irrep. The connected scalar chirality correlator for
K/J = 0.455 (α ≈ 0.14π ), where the first and second excita-
tions are both singlets, is illustrated in Fig. 7. We find an al-
most uniform distribution in the connected chirality correlator
for the first three singlets, as expected for a CSL phase. The
third excited state shows no pronounced chiral order anymore.
The signature of the CSL phase varies in its extension in
parameter space for different cluster sizes. It is larger for the
21-site cluster than for the 12- and 27-site clusters. This is
due to the nature of the adjacent phase at larger values of K/J
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FIG. 6. Structure factor at the K point (top) and chirality signal
per lattice site (bottom) for the J-K model from ED on the 12-, 21-,
and 27-site clusters. Coming from the 3-SL LRO phase at small ratios
K/J , the structure factors at the ordering momentum K decrease
as the chirality signals increase, indicating the CSL. In the regime,
where the chirality signal decreases, a LN phase occurs.

(α), which seems to have its peak in the magnetic structure
factor close to the X point. While the 12-site cluster has this
particular point, the 21- and 27-site clusters do not, which may
lead to an increased parameter space for the CSL phase on
those clusters.

The phase next to the CSL is a previously unreported
spatial symmetry breaking phase which is characterized by
strong bonds along one lattice direction and weak bonds along
the other lattice directions. It therefore breaks the rotational

FIG. 7. Real space connected chirality correlator for the J-K
model from ED on the 21-site cluster at K/J = 0.455. The degen-
eracy of the first three singlet states is 1-4-1. While the lowest three
singlet levels show long-range chiral ordering, the fourth one does
not.

FIG. 8. Spin structure factor (top) and dimer-dimer correlations
(bottom) of the J-K model in the LN phase from ED on the 27-site
cluster. The structure factor peak is close to the X point. The dimer-
dimer correlations clearly show that the rotational symmetry of the
lattice is broken in this phase.

symmetry of the lattice, leaving a strong signature in the
dimer-dimer correlations, as can be seen in Fig. 8. Given the
limitations in reachable cluster sizes using ED, it remains an
open question whether there is any sort of magnetic ordering
in this LN phase or not.

Increasing K/J (α) further leads to an SU(2)-like behavior
with one color less. We confirm this by finding an SU(2)
tower of states at large K/J where the ground state is in
the irrep [Ns/2, Ns/2] (or [(Ns − 1)/2 + 1, (Ns − 1)/2] if the
number of lattice sites Ns is odd) of SU(3) as shown in Fig. 9.
According to Eq. (13), the ground-state energies in this region
can be compared to ED results on the nearest-neighbor spin-
1/2 triangular lattice [55], and we find a perfect match.

B. Variational Monte Carlo

As mentioned above, we found three relevant phases in our
VMC calculations: a three-sublattice color-ordered state with
0 flux per plaquette, the π/3 flux per plaquette CSL state, and
a π -flux striped phase. We plot the energies of these phases
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FIG. 9. Spectrum of the SU(3) J-K model at α = 3π/4 from ED
on the 21-site cluster as a function of the quadratic Casimir C2 of
each irrep. The ground state lies in the [11,10] irrep of SU(3), where
only two of the three possible colors are present. The black line is
a guide to the eye illustrating that the ground state is indeed not a
singlet. The red line is a linear fit through the lowest eigenvalue in
each two-color irrep corresponding to the effective SU(2) tower of
states in the spectrum. Further information on the quadratic Casimir
operator is given in Appendix C.

together with the states proposed in Ref. [33] in Fig. 10.
Due to the different focus of their paper, Bieri et al. use a
nomenclature more suitable for spin-one systems. However,
we will reinterpret their findings in the SU(3) language.

In the coupling regime −0.248π < α < 0.064π (J > 0,
−0.99 < K/J < 0.20), we find that the energy of the 120◦
AFM order proposed by Bieri et al. [33] and the energy
of the 3-SL LRO we propose are almost exactly matched.
In fact, for special values of the parameters used by Bieri
et al. their variational states are equivalent to our 3-SL LRO
variational states. Namely, for sin η = √

2/3 in Eq. (15) of

FIG. 10. Variational energies for the J-K model with real K of
the most competitive states for the 144-site system compared to the
results by Bieri et al. [33] (based on Fig. 3 of their paper).

their paper, the three d vectors become mutually orthogonal
to each other, and their mean-field ansatz can be transformed
to ours with an SU(3) rotation. We find that the 3-SL LRO
is the more appropriate identification of this phase, as the
120◦ order is just a special case, and in fact not all members
of the ground-state manifold have dipole ordering due to the
SU(3) symmetry of the model, which can mix the dipolar and
quadrupolar moments of the spins 1.

For 0.064π < α < 0.195π (K > 0, 0.20 < K/J < 0.70),
we find that a π/3-flux CSL phase is selected. This phase
was not considered by Bieri et al. [33], but was predicted
by the mean-field study of Lai [34]. We find six linearly
independent states with similar energies by considering states
with ±π/3 flux per triangle (three states each) and using
twisted boundary conditions (compare Sec. III B). This fits the
ground-state degeneracy of the CSL breaking time-reversal
symmetry spontaneously on a torus with genus g = 1. We
studied further topological properties by calculating the mod-
ular matrices and find a qualitative agreement for the predicted
chiral central charge and a quantitative agreement for the
anyonic exchange statistics. Details are given in Appendix D.

Beyond the π/3-flux CSL phase, between 0.195π < α <

0.475π , a striped state with stronger bonds along straight
chains with tinter-chain/tintra-chain ≈ 0.2 and a uniform π flux
has the lowest energy, superseeding both the d + id phase
proposed by Bieri et al. and the 2π/3-flux CSL proposed by
Lai [34].

For 0.475π < α < 0.85π (K > 0, K/J > 12.7, and
K/J < −0.51), the 120-nematic or J -nematic phase pro-
posed by Bieri et al. is clearly dominant; its energy is not
matched by any of the states we considered. In their con-
struction the on-site terms before the projection select states
with directors in an “umbrella” configuration (see Eq. (16)
in Ref. [33]), interpolating between a ferroquadrupolar and
a 120◦ quadrupolar order. However, due to the SU(3) sym-
metry of the model there are many other degenerate states,
containing not only nematic states, but other states obtained
by global SU(3) rotations. Therefore we find that a 120◦ LRO
state is more suitable in this context. In the SU(3) language, a
120◦ fully color ordered state is only built out of two colors on
every site, while the third color is missing in the system. Inter-
estingly, in this subspace the J-K Hamiltonian simplifies since
the nearest-neighbor exchange and the ring exchange terms
are not independent. Namely, for three sites around a triangle

Pi j + Pjk + Pki = Pi jk + P−1
i jk + 1 (13)

in the two-color subspace, just as in the spin-1/2 case. As
a result, at the special point K = −J/2, the Hamiltonian for
the two-color states is a constant, giving the same energy
for any state in this subspace. This macroscopic degeneracy
can also be seen in ED results, and the transition between
the 120◦ LRO and ferromagnetic SU(3) phases is found
quite accurately at αc = arctan(−1/2) = 0.852π [K > 0,
(K/J )c > −0.50] in both ED and VMC. Note that this value
of α corresponds to ferromagnetic nearest-neighbor coupling
J < 0, therefore only considering antiferromagnetic J , the
120◦ LRO persists for K → ∞.

Finally, following the argument of Bieri et al., the other end
of the ferromagnetic phase can be estimated by comparing the
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variational energy of the 3-SL LRO state with the energy of a
fully polarized ferromagnetic color state, EFM/Ns = 3 cos α +
4 sin α. This gives a transition at αc = −0.248π [K < 0,
(K/J )c = −0.988].

The phase diagrams for the J-K model by ED and VMC,
depicted in Fig. 1, are in good qualitative agreement. For small
ring exchanges K around α = 0, we find the 3-SL LRO phase,
which is expected in a slightly smaller area for K > 0 in VMC
than in ED. This is most likely linked to the π/3-flux CSL at
larger ring exchanges K , which is particularly well described
as a variational state. The CSL states from VMC and ED
show a direct correspondence in terms of symmetries. Details
are given in Appendix E. In the VMC, the next competitive
state is the striped state, which is linked to the LN phase
in ED, since both break rotational symmetry. We therefore
assume that these phases correspond to the same ground
state in the thermodynamic limit, and stick with the term LN
in the following. The extension of the 120◦ LRO phase is
strongly dependent on the method, whereas the one of the FM
is quite similar from ED and VMC.

V. HUBBARD MODEL

We found that the J-K model hosts a spontaneous time-
reversal symmetry breaking CSL for intermediate values of

K/J ≈ 0.35 for K > 0 (α ≈ 0.11π ). Here we turn to the
question whether this CSL is also present in the Mott phase
of the corresponding Hubbard model (1). In the limit of small
values of t/U , the Mott phase is well described by the leading
nearest-neighbor Heisenberg model stabilizing the 3-SL LRO.
With increasing t/U , the next subleading interaction, the
third-order K term, triggers a phase transition to the CSL.
The ED critical value is (K/J )c ≈ 0.31 (αc ≈ 0.096π ), corre-
sponding to (t/U )c ≈ 0.064 [(U/t )c ≈ 15.6] taking the bare
third-order series. In the following, we show that higher-order
contributions do not prevent the occurrence of the CSL phase,
and that the critical value remains similar.

A. Effective description

In this section, we state and discuss the effective model
for the Mott phase of a general SU(N ) Hubbard model at
a commensurate 1/N filling for arbitrary uniform fluxes �

for the thermodynamic limit. The model of the 12-site cluster
with PBCs, which we use for the direct comparison between
the effective description and the Hubbard model in Sec. V B,
is given in Appendix F.

In fifth-order perturbation theory, the effective model in the
thermodynamic limit contains 13 different types of interac-
tions involving permutations on up to five sites. The effective
Hamiltonian reads

(14)

where the pictogram underneath every sum illustrates which
sites on the full lattice are addressed. This has to be under-
stood as follows. The relative angles between the bonds of a
graph are fixed and characterize the graph (e.g., the graph of
L3sp

d can not be transformed into the one of L3sp
s ), however

every possibility of rotation has to be included (e.g., the graph
of L3sp

d can be rotated around the axis defined by i and j
by π ). Then, every distinct set of sites contributes to the
Hamiltonian. The prefactors starting in second and third order
are

ε0 = −6
t2

U 2
− 12 cos �

t3

U 3
+ (−26 − 24 cos 2�)

t4

U 4
− (92 cos � + 60 cos 3�)

t5

U 5
,

J = 2
t2

U 2
+ 12 cos �

t3

U 3
+ (12 + 40 cos 2�)

t4

U 4
+

(
820

9
cos � + 140 cos 3�

)
t5

U 5
,

K = −6ei� t3

U 3
+ (−4 − 30ei2�

) t4

U 4
−

(
58

3
ei� − 16e−i� + 135ei3�

)
t5

U 5
,
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L2sp
s = 10

3

t4

U 4
+

(
104

3
cos � + 20 cos 3�

)
t5

U 5
,

L2sp
d =

(
20

3
+ 8 cos 2�

)
t4

U 4
−

(
208

3
cos � + 40 cos 3�

)
t5

U 5
,

L3sp
s = −4

3

t4

U 4
−

(
32

3
cos � + 30 cos 3�

)
t5

U 5
,

L3sp
d =

(
−4

3
− 10ei2�

)
t4

U 4
−

(
32

3
cos � + 224

9
ei� + 60ei3�

)
t5

U 5
,

L4sp
r = 20ei2� t4

U 4
+

(
232

9
ei� + 140ei3�

)
t5

U 5
,

L3sp
cr = −

(
112

9
ei� + 15ei3�

)
t5

U 5
, L4sp

cr = 58

9
ei� t5

U 5
, L4sp

pl = 116

9
cos �

t5

U 5
,

L4sp
Ka = −232

9
cos �

t5

U 5
, L4sp

Kb = −116

9
cos �

t5

U 5
, and L5sp

r = −70ei3� t5

U 5
. (15)

We note that the complex phases of ring exchanges in sub-
leading orders of the effective interaction are not identical to
the flux through the apparent plaquettes in the Hubbard model.
For example, the complex phase of a cyclic permutation on
a triangle only equals the flux through a triangle in order 3.
The representation of the effective model given above is not
unique for real exchange constants if N < 5. This is due to
the fact that consecutive permutations acting on more sites
than spin colors in the model can be rewritten in terms of
sums of various other permutation operators. The best known
example occurs for the three-site permutation acting on SU(2)
spins, which can be expressed by two-site permutations plus
a constant [compare Eq. (13)]. The situation becomes much
richer if one considers permutations between more spins. For
instance, in the case of SU(3) spins, the four-site permutation
can be rewritten in terms of two-spin, three-spin and various
four-spin interactions

P1234 + P4321 = 1 −
∑
(i, j)

Pi j +
∑

(i, j,k)

Pi jk + P12P34 + P14P23

+ P13P24 − (P1243 + P1324 + H.c.), (16)

where the sums include all possible permutations of different
sites. If we use this relation to reexpress the four-site ring
exchange on a plaquette in the effective Hamiltonian all ex-
change constants of the exchanges appearing on the right hand
side of Eq. (16) get rescaled. Additionally, new interactions
occur which in perturbation theory arise only in higher orders.
In this sense the replacement of operators is not helpful and
the formulation in Eq. (14) is the more natural one in terms
of perturbation theory. If and how a systematic reduction of
higher-order interactions to only already included exchanges
is possible for orders larger than 5 remains an open question.

In the following, we discuss the most interesting case � =
π , where the convergence of the series works particularly
well. Additional results for other fluxes are presented in
Appendix G. The dependence of the largest coupling con-
stants of every order as bare series in t/U is illustrated in
Fig. 11. The most important subleading corrections to the
nearest-neighbor Heisenberg term come from ring exchanges

around triangles, squares, and 5-site trapezoids. The shaded
background keeps track of where the CSL is observed in only
VMC (light yellow) and in ED and VMC (darker yellow)
(compare Sec. V C). The Padé extrapolants for the dominant
nearest-neighbor coupling J and the subleading three-site ring
exchange K are shown in the insets of Figs. 11 and 12, respec-
tively. The relevant ratio K/J is plotted in Fig. 12, where we
take the ratio of the extrapolations of J and K . In respect to
unphysical divergences, we found a composition of [3,2]-Padé
extrapolations for ε0, J , and K , [2,1]-Padé extrapolations for
L2sp

s , L2sp
d , L3sp

s , L3sp
d , and L4sp

r , and all other couplings as bare
series to work best for flux � = π .

B. Comparison

In order to confirm the validity of the effective description,
we compare the spectrum of the SU(3) Hubbard model (1)

FIG. 11. Effective couplings in units of U of the Hubbard model
as a function of t/U for � = π using bare fifth-order series. Plot-
ted are the largest contributions in every order with a pictogram
sketching the associated permutations. The dark yellow background
indicates the area where the CSL is observed within ED and VMC,
whereas the light yellow corresponds to its stability according to
VMC only (compare Sec. V C). The inset shows the nearest-neighbor
exchange in different orders and Padé extrapolations.
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FIG. 12. Ratio of effective coupling constants K/J depending on
t/U for � = π using bare series up to order 5 (green) as well as
Padé extrapolations (cyan, blue). The inset shows a similar plot for
the three-site ring exchange K in units of U by itself. The background
colors are defined as in Fig. 11.

with the spectra of the J-K model (4) and the O(4) (order
4) effective spin model (F2) on the 12-site cluster (compare
Appendix F) from ED. The results are shown in Fig. 13.
While for the spin models the numbers in the square brackets
label a certain irrep of the SU(3) group, the three numbers in
the round brackets for the Hubbard model label the number
of particles of a certain color, and are thus U(1) quantum
numbers. For U ≈ 30t , the spectra of both effective models
are in reasonable agreement with the spectrum of the Hubbard
model. The first excitation in the spin models is in the adjoint
representation [Ns/3 + 1, Ns/3, Ns/3 − 1] followed by three
singlet levels. For decreasing couplings U , the higher lying
singlets start to cross each other in the spin models, as the
corresponding excited states do in the Hubbard model. In
the effective models at U ≈ 15 − 20t , the first excited singlet
crosses the low-energy state of the adjoint representation,
which for even smaller values of U is also crossed by two
more singlets. One can observe a similar behavior in the
spectrum of the Hubbard model, even though the order in
which the crossings occur is not exactly the same. In general,

FIG. 14. Scaling of the differences in the ground-state energies
between various spin models and the Hubbard model on the 12-site
cluster from ED. The effective second order Heisenberg model is
abbreviated by HB model. A line is fitted for each spin model to
estimate the scaling behavior. The slopes are in good agreement with
the expectations.

the level crossings of the O(4) model seem to match those
of the Hubbard model slightly better than those of the J-K
model, as expected.

To further check the effective description, we compare
the differences between the ground-state energies of the spin
models with those of the Hubbard model as can be seen in
Fig. 14. The errors of the ground-state energies decay with
one order higher than the corresponding order of the effective
description, as expected for a valid perturbative approach.
Overall, there is a qualitative agreement between the effective
description and the Hubbard model in the strong-coupling
Mott regime.

An important aspect of the problem is that the effective
description breaks down at the metal-insulator transition.
Therefore the physics found in the effective spin model is
only valid in the Mott phase and it is important to estimate
the metal-insulator transition point. To this end, we compute
the particle-hole charge gap for the π -flux SU(3) Hubbard

FIG. 13. Comparison of the excitation spectra between the J-K model (left), the Hubbard model (middle) and the O(4) (order 4) effective
model (right) on the 12-site cluster from ED. Since the couplings in the effective descriptions are polynomials in t/U , the energies from
the spin models are multiplied by U to be comparable to the energies of the Hubbard model. For U ≈ 30t , the spectra agree very well, but
differences become noticeable as U decreases. The grey regions of the spectra are not in the Mott-insulating phase of the Hubbard model and
the effective models are not valid.
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FIG. 15. Particle-hole gap for the SU(3) Hubbard model with
� = π from ED on the 12-site cluster indicating the estimation of
the metal-insulator transition.

model on the 12-site cluster. The results are shown in Fig. 15.
They indicate that the metal-insulator transition is located at
(U/t )mi

c ≈ 8.5. This value is further discussed at the end of
the next Subsection, which mainly focuses on the presence of
the spontaneous time-reversal symmetry broken CSL in the
fifth-order effective model within the Mott phase.

C. Chiral spin liquid

Next, we analyze the effective spin model in Eq. (14)
for the specific case N = 3 with π flux on the triangular
lattice. For small values of t/U the couplings up to third
order are dominant, hence the J-K model is well converged.
The phase transition between the 3-SL LRO and the CSL
occurs at (K/J )c ≈ 0.31, which translates to (t/U )c ≈ 0.09
[(U/t )c ≈ 11] in bare fifth-order. Interestingly, this critical
value changes only slightly to (t/U )c ≈ 0.1 [(U/t )c ≈ 10]
when applying Padé extrapolations to the couplings J and K .
For both couplings, several Padé extrapolants give essentially
the same result in this t/U -regime so that the extrapolations
work well for the most important interactions of the effective
model (see also the inset in Fig. 11). The small difference
between the critical ratios from bare series and extrapolation
within the J-K model indicates that even the bare series is
almost converged up to these t/U values for the couplings J
and K .

Since the impact of all the other smaller terms is not
obvious a priori, we explicitly study them with the set of
Padé extrapolants for the coupling constants discussed in
Sec. V A using ED and VMC. The low-energy spectra of
the fourth- and fifth-order effective model for flux � = π on
the 21-site cluster from ED are illustrated in Fig. 16, where
again the point size for the lowest three singlets illustrates the
chirality signal. For large values of U/t the tower of states
characteristic of the 3-SL LRO phase appears in the spectrum.
This is in agreement with the large structure factor and its
extensive scaling at the K point, given in the upper panel
of Fig. 17. In the fifth-order model the tower disappears at
(U/t )ED,O(5)

c � 13 [(t/U )ED,O(5)
c � 0.075], where three low-

lying singlet levels occur with the same degeneracies 1-4-1 as
in the CSL of the J-K model (compare Fig. 5). The direct

FIG. 16. Spectrum of the fourth- and fifth-order effective model
for � = π from ED on the 21-site cluster. The marker size corre-
sponds to the overall chirality signal and is plotted for the lowest
three states. Three low-lying singlets with strong chirality signal
indicate the presence of a CSL phase around U/t ≈ 12. The grey
regions of the spectra are not in the Mott-insulating phase of the
Hubbard model and the effective models are not valid. The grey
(black) solid line indicates the lowest energy eigenstate in the adjoint
irrep [8,7,6] of the fourth-(fifth-)order effective model. The inset is a
zoom into the CSL region.

correspondence between the states in the effective models
is also clear from the symmetries discussed in Appendix E.
Therefore the CSL is most plausibly present here as well. In
the same parameter range U/t ≈ 13 the chirality signal of the
ground state increases, as can be seen in the bottom panel of
Fig. 17, whereas the structure factor at the K point decreases.
This behavior agrees perfectly with the phase transition from
the 3-SL LRO phase to the CSL. For values (U/t )ED,O(5)

c � 11
[or (t/U )ED,O(5)

c � 0.09] another state drops down, and the

FIG. 17. Structure factor at the K point (top) and chirality signal
per lattice site (bottom) for the fourth- and fifth-order effective model
for � = π from ED on the 21-site cluster. Coming from the 3-SL
LRO phase at large ratios U/t , the structure factors at the ordering
momentum K decrease as the chirality signals increase around U/t ≈
12. The grey regions of the structure factors and the chirality signals
are not in the Mott-insulating phase of the Hubbard model and the
effective models are not valid.
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signature of six low-lying states is lost. However, the chirality
signal in the lowest states remains large.

Within the area of the potential CSL the manifold of six
low-lying states is not very well separated from the excited
states, but the indications are stronger on the 21-site cluster
than on the 12-site one (not shown). Since ED including all
exchanges is a lot more costly than for the J-K model, we
did not study the 27-site cluster. However, with VMC on
the 21-site cluster, we find the same phase transition from
the 3-SL LRO to the π/3-flux CSL at (U/t )VMC,O(5)

c ≈ 14.9
[(t/U )VMC,O(5)

c ≈ 0.067]. The CSL states behave very similar
to the lowest eigenstates from ED regarding energy spectra
and symmetries. All these findings strongly point to the real-
ization of a π/3-flux CSL phase with spontaneous breaking
of time-reversal symmetry.

The energy spectra of the fourth- and fifth-order model
from ED in Fig. 16 behave fairly similar for U/t � 10. For
large ratios U/t, the eigenenergies approach each other, as
expected. With increasing perturbation (decreasing U/t) the
differences increase. Nevertheless, the same manifolds of six
low-lying states emerge. Also on the level of observables the
signature of the CSL is present in both models as shown in
Fig. 17. So, even though the effective model is not quanti-
tatively converged in the relevant area 11 � U/t � 13, the
signature of the CSL occurs in the third-, fourth-, and fifth-
order model, which implies, that it is a definite feature of the
effective description of the Hubbard model in this U/t regime.
For coupling ratios U/t � 10 the behavior of the eigenstates
is rather different in the fourth- and fifth-order model, so no
statements about this parameter range can be made, apart from
the fact that the Mott phase breaks down eventually.

The question is whether the potential CSL phase is within
the Mott phase of the SU(3) Hubbard model with flux � = π .
In the ED calculations on 12 sites, the charge gap (given
in Fig. 15) shows a linear behavior above U ≈ 10|t |, which
together with the effective model (compare Appendix F)
provides the estimate (U/t )mi

c ≈ 8.5. Can we interpret this
result in first-order perturbation theory around the limit of
strong coupling at filling 1/3? Assuming linear behavior for
the charge gap the transition point yields �charge ≈ U − 8.5t ,
and the first order term must arise from the kinetics of charge
excitations. These are given by doublon-hole pairs. In the case
of the SU(2) model, both the hole and the doubly occupied
site are featureless objects, in fact SU(2) singlets, and they
behave similarly. In the case of the SU(3) Hubbard model,
the doubly occupied site forms the three-dimensional anti-
symmetrical irreducible representation, and the motion of the
doubly occupied site is more complicated than the motion
of the hole. The energy −8.5t originates from the hoppings
of the hole and the doubly occupied sites, the contribution
from the hole is E0(−1) − E0(0) ≈ −0.02U − 3.30t , and the
contribution of the doubly occupied site is E0(+1) − E0(0) ≈
1.01U − 5.10t [cf. Eq. (10)]. We can see, that the kinetic
energy of the doubly occupied site is larger than that of the
hole.

The metal-insulator transition from ED on the 12-site
cluster at (U/t )mi

c ≈ 8.5 [(t/U )mi
c ≈ 0.12] occurs for weaker

coupling strengths U than the phase transition towards the
CSL. For the J-K model the estimated transition point be-
tween 3-SL LRO and CSL is located at slightly larger values

(U/t )c ≈ 10, and therefore lies within the crudely estimated
extension of the Mott phase. However, the fifth-order effective
model includes a larger variety of quantum fluctuations and is
therefore more reliable with the CSL below (U/t ) � 13. We
thus expect that the Mott phase of the SU(3) π -flux Hubbard
model on the triangular lattice realizes, besides the 3-SL LRO
phase, a spontaneous time-reversal symmetry broken CSL
phase before the Mott insulating phase breaks down. The full
phase diagram for the Hubbard model is illustrated in Fig. 2.

VI. CONCLUSION AND OUTLOOK

To summarize, we have provided very strong numerical ev-
idence that the stabilisation of a chiral phase can be achieved
with cold atoms in a simple and realistic setting: three flavours
(e.g., 87Sr or 173Yb) and a triangular optical lattice.

To achieve this, we have first studied the SU(3) J-K model
on the triangular lattice and shown that it has a CSL phase that
spontaneously breaks time-reversal symmetry for a positive
but moderate value of three-site exchange term K . In the
search for realistic models with a CSL phase that could be
implemented experimentally, this is an important step for-
ward because the two interactions that appear in this model,
the nearest-neighbor exchange and the three-site permutation
around triangles, are the most relevant ones in the Mott
phases of the model when coming from strong coupling. So
in principle it is accessible to cold atom experiments on SU(3)
fermions by just monitoring the ratio of the repulsion between
fermions U to their hopping amplitude.

To make this proposal more concrete, we have discussed
in great details the connection between the Hubbard model
and the J-K model with positive K . For the physically most
relevant sign of the hopping, −t with t > 0 to get a band with
a quadratic spectrum around its bottom at zero momentum, a
positive three-site term K can be reached in two situations:
either in the Mott phase with one particle per site if one
introduces a π flux per plaquette to effectively change the sign
of the hopping, or in the Mott phase with two particles per site
without any flux since it is equivalent to the Mott phase with
one hole per site starting from the full system, and the sign of
the hopping changes under a particle-hole transformation.

It is also important to check if, upon reducing the repul-
sion U , the three-site term gets large enough to induce the
transition from the three-sublattice color order into the CSL
before the Mott transition into a metallic phase takes place.
To get an estimate of this Mott transition, we have investigated
the Hubbard model directly on small clusters, and indeed the
three-site interaction reaches values large enough to be in the
CSL phase before the system turns metallic.

Finally, to lend further support to this proposal, we have
pushed the strong-coupling expansion for the Mott phase to
higher order to check the effect of residual interactions, and
the conclusion is that a CSL phase appears to survive the
inclusion of these terms.

Altogether, the proposal that there is a CSL phase in the
SU(3) Hubbard model on the triangular lattice between the
three-sublattice color ordered phase and the metallic phase is
we believe fairly solid, and we hope that the present paper
will encourage the experimental investigation of this model
with cold fermionic atoms.
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In that respect, we would like to briefly discuss the tem-
perature effects. Since the chiral phase reported here spon-
taneously breaks time-reversal symmetry, it is expected to
give rise to an Ising transition at finite temperature. It would
be nice to have an estimate of this Ising temperature to
see if it is accessible for the lowest entropies per particle
that can be reached with state-of-the-art cooling protocoles.
Unfortunately our methods are limited to zero temperature,
and this has to be left for future investigation.

Finally, as a byproduct, we have also come up with a new
version of the full phase diagram of the J-K model with real
K , including all signs of J and K , and we have shown that,
just above the CSL, it contains a large lattice nematic phase
that had been overlooked so far. Whether such a phase is
also present in the Hubbard model before the Mott transition
remains to be seen.
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APPENDIX A: DETAILS ON ED USING IRREPS OF SU(N)

The method described in Ref. [40] allows to directly con-
struct a basis of a given irrep of the SU(3) group and to
compute the matrix elements of the Hamiltonian efficiently.
In general, any SU(3) invariant Hamiltonian which can be
expressed solely in terms of transposition operators Pi j , see
Eq. (3), can be effectively dealt with using such a Young
tableau basis. A general Young tableau for SU(N ) has a
maximum of N rows. For Ns sites, each hosting a particle in
the fundamental representation, the possible Young tableaus
contain Ns boxes in total. That means, it can be labeled by
N integers [n1, n2, . . . , nN ], where ni counts the number of
boxes in the ith row. According to the rules of Young tableau
diagrams, the number of boxes in each row must not increase
going from top to bottom. As an example, Fig. 18 shows all
possible SU(3) Young tableau diagrams for Ns = 3 sites. Each
of these diagrams corresponds to an irrep of SU(3). Thus, for

FIG. 18. All possible SU(3) Young tableaus for Ns = 3 and the
corresponding labels.

FIG. 19. Triangular lattice clusters with 12, 21, and 27 sites used
to derive the ED results presented in this work.

any given Ns we can draw the Young-diagram representing the
irrep of SU(3) we want to consider, and construct the basis for
this irrep as well as the matrix elements of the Hamiltonian
using the rules presented in Ref. [40]. Figure 19 shows the
different clusters used to derive the ED results.

APPENDIX B: DETAILS ON THE LCE

Let us consider a generic problem on an arbitrary lattice
and an extensive quantity P. Then, the ratio P/n with the
number of lattice sites n is given by a weighted sum over all
topological different clusters c

P

n
=

∑
c

L(c)WP(c) . (B1)

The multiplicity L(c) is the number of ways in which a cluster
can be embedded on the full lattice of interest and determines
the impact of each cluster. The weight of a cluster WP(c) to
the property P is given by the inclusion-exclusion principle.
This means that only reduced contributions appearing on the
considered cluster but not on its subclusters are taken into
account

WP(c) = P(c) −
∑
s⊂c

WP(s) . (B2)

One calculates the physical property P(c) on cluster c and
subtracts the weights of all subclusters s. Evidently, all pro-
cesses on a disconnected cluster are already included in the
sum of its pieces and the weight vanishes. Therefore only
linked clusters contribute and the weight of a cluster contains
only properties that arise from all bonds of the cluster. This
fact can be used to calculate the weights directly with a
white-graph expansion [45], which makes the subtraction in
Eq. (B2) unnecessary. To this end, every bond on a linked-
cluster is labeled with a different exchange constant during
the calculation. For instance, on the triangle we take three
exchange constants h1, h2, and h3 connecting different sites.
The perturbation is written as

Vtriangle =
3∑

α=1

(h1c†1αc2α + h2c†2αc3α + h3c†3αc1α ) + H.c.

The subtraction of the effective Hamiltonian derived in this
way is then achieved by taking only terms that include every
exchange constant at least once and hence emerge from per-
turbations that link the whole cluster. This procedure can be
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extended to include complex phase factors by splitting up a
hopping process on a link into the hopping from left to right
and from right to left. For the triangle, one can choose

Vtriangle =
3∑

α=1

(h1Ac†1αc2α + h1Bc†1αc2α )

+
3∑

α=1

(h2c†2αc3α + h3c†3αc1α ) + H.c.

with h1A = h1ei� = h∗
1B.

APPENDIX C: EIGENVALUES OF THE QUADRATIC
CASIMIR OPERATOR FOR SU(2) AND SU(3)

In Fig. 9, it seems that every eigenvalue of the SU(2)
quadratic Casimir operator is shifted to larger values by some
offset, but reappears in the SU(3) observable. Since this is
not obvious, we determine the origin of this effect in the
following. To this end, we first show that the lowest eigenvalue
of the SU(2)-like irreps inside SU(3) (the irreps with only
two colors) depends only on the number of lattice sites Ns.
Second, we prove that the eigenvalues have the same slope as
their SU(2) counterparts. We start from the SU(3) case, and
consider an irrep [na, nb, nc], which can also be labeled by
only two numbers

p = na − nb , (C1)

q = nb − nc . (C2)

In the language of Young tableaus, p and q give the difference
in the numbers of columns between the first and second row,
and the second and third row, respectively. The eigenvalues
of the quadratic Casimir operator in the SU(3) case are then
given by

CSU(3)
2 (p, q) = p + q + 1

3 (p2 + q2 + p · q). (C3)

For effective SU(2) irreps inside SU(3), it is nc = 0, which
yields

p = na − nb = 2na − Ns , (C4)

q = nb = Ns − na . (C5)

We can thus write the eigenvalues of the SU(3) quadratic
Casimir operator for two-color states as

CSU(3)
2 (na) = na + n2

a − na · Ns + N2
s

3
, (C6)

which only depends on Ns and na. We then compute the
difference of the eigenvalues for increasing na

CSU(3)
2 (na + 1) − CSU(3)

2 (na) = 2 · na − Ns + 2 = p + 2 .

(C7)

From Eq. (C6), it follows that the eigenvalues grow with na.
The smallest eigenvalue of the effective SU(2) irreps inside
SU(3) is therefore given by inserting the lowest allowed value
n∗

a, while nc remains 0. Since the number of columns in Young
tableaus must not increase going from top to bottom, this

value is determined by

n∗
a =

{
Ns
2 for Ns even
Ns+1

2 for Ns odd
. (C8)

The lowest eigenvalue of effective SU(2) irreps inside SU(3)
is thus given by

CSU(3)
2 (n∗

a ) =
{

N2
s

12 + Ns
2 for Ns even

N2
s

12 + Ns
2 + 3

4 for Ns odd
, (C9)

and therefore depends only on the number of sites Ns. The
eigenvalues of the quadratic Casimir operator of the SU(2)-
like irreps of SU(3) start at CSU(3)

2 (n∗
a ) and increase by p + 2

where p starts from 0 (or 1 for odd Ns) and increases by 2
for constant Ns. Starting from SU(2), the quadratic Casimir
operator only depends on p since the number of rows of the
corresponding Young tableaus is 2. It can be written as

CSU(2)
2 (p) = p2

4
+ p

2
, (C10)

which follows by setting S = p/2 into the usual eigenvalue
expression CSU(2)

2 (S) = S(S + 1). For even Ns, the lowest
eigenvalue is 0, while for odd Ns it is 3/4. If p is increased,
the eigenvalues of the SU(2) quadratic Casimir operator
changes by

CSU(2)
2 (p + 2) − CSU(2)

2 (p) = p + 2 . (C11)

Thus the slope is the same as for the SU(3) quadratic Casimir
operator. So, every eigenvalue of the SU(2) quadratic Casimir
operator also appears in SU(3), shifted by CSU(3)

2 (n∗
a ). E.g. for

21 sites, n∗
a = 11 and CSU(3)

2 (11) = 48, which perfectly agrees
with Fig. 9. Mathematically, one may summarize the situation
as follows. Let G ∈ {SU (2), SU (3)} be a Lie-Group and σ (G)
denote the spectrum of the quadratic Casimir operator of the
group G, then

∀s ∈ σ (SU(2))∃t ∈ σ (SU(3)) such that

t − s =
{

N2
s

12 + Ns
2 for Ns even

N2
s

12 + Ns
2 + 3

4 for Ns odd
. (C12)

APPENDIX D: TOPOLOGICAL PROPERTIES OF THE CSL

In Sec. IV, we argue that the six-fold degenerate ground
state corresponds to an Abelian CSL. Here, we focus on
the three variational states with π/3 flux and compare the
numerical results from VMC with the predictions for the
π/3-flux CSL.

We use the variational state overlap method [56–58] to
confirm the topological properties of the anyonic excitations
in the CSL phase. Similar VMC constructions were shown to
produce topological fractional quantum Hall states in SU(2)
systems [53,59–61]. The information on the topological spins
and mutual statistics of the anyonic quasiparticles can be de-
termined by calculating the matrix elements of the generators
of the modular transformations in the ground-state manifold
on the torus [62]. Modular transformations are the mappings
of the torus onto itself, mapping each vertex of the lattice
to another one. All such transformations can be given as a
composition of powers of two generators, S and T (Dehn
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twist), and they form the SL(2,Z) group. A general modular
transformation can be represented by an integer valued 2 × 2
matrix with unit determinant, which describes how the vectors
�ω1 and �ω2 defining the torus periodicity change under the
transformation. The two generators are given by

S

(�ω1

�ω2

)
=

(
0 1

−1 0

)(�ω1

�ω2

)
=

( �ω2

−�ω1

)
,

T

(�ω1

�ω2

)
=

(
1 1
0 1

)(�ω1

�ω2

)
=

(�ω1 + �ω2

�ω2

)
. (D1)

On the square lattice the S transformation is equivalent to a
π/2 rotation around a site, but this is not true in general. In
case of the triangular lattice S is not a symmetry transforma-
tion either, but T −1 · S is equivalent to a π/3 rotation, while
T S gives a rotation by 2π/3.

Calculating the matrix elements of S and T over the
ground-state manifold in the basis of minimum entropy states
(MES) [62] gives access to the topological spins and the
exchange statistics of the anyonic quasiparticles

〈a|S|b〉 = e−αSL2+O(1/L2 )Sab ,

〈a|T |b〉 = e−αT L2+O(1/L2 )Tab

= e−αT L2+O(1/L2 )e−i 2π
24 cδabθa , (D2)

where |a〉 and |b〉 are the MES [58]. The S and T transfor-
mations are not symmetries of the triangular lattice and they
do not preserve the connectivity of the sites, therefore their
matrix elements only give the desired topological quantities
up to prefactors exponentially small in the system size [58].
In Eq. (D2), Sab gives the phase the ath quasiparticle acquires
when going around the bth quasiparticle. In the MES basis
the matrix of T is diagonal and the entries of θa give the
topological spin of each quasiparticle. One of the topological
angles is always 1 corresponding to the trivial topological
sector. The topological or chiral central charge c is the dif-
ference of the central charges for the left and right moving
edge excitations [63]. However, the states obtained from the
overlap calculations are not necessarily in the MES basis
and diagonalizing the matrix of the T transformation does
not immediately give the MES basis if several quasiparticles
have the same topological spin. Therefore some other criterion
needs to be used to identify the MES basis.

Before presenting the results from our VMC calculations,
we determine the expectations for the π/3-flux CSL. On top
of the trivial sector, the two other sectors correspond to two
anyons with topological spins −2π/3, which we denote as
a and ā, emphasizing that they are the antiparticles of each
other. The fusion rules are

× 1 a ā
1 1 a ā
a a ā 1
ā ā 1 a

. (D3)

The Abelian nature is manifested in the fact that fusing
two quasiparticles always results in only one quasiparticle.
Based on the fusion rules and the topological spins, we can
deduce the elements of the S-matrix based on the Verlinde

formula [64]

Sab =
∑

c

1

D
Nc

ab

θc

θaθb
dc , (D4)

where Nc
ab are the coefficients in the fusion rules, dc are the

quantum dimensions of each quasiparticle (1 for all quasi-
particles in an Abelian theory), and D = √∑

d2
c is the total

quantum dimension. The topological spins in our case are
θ1 = 1 and θa = θā = e−i2π/3. The topological central charge
c satisfies eic2π/8 = ∑

α θαd2
α/D2 [65,66], which is consistent

with c = −2. The topological spin −2π/3 can be understood
at the mean-field level. In order to exchange two fermions,
they need to be moved around a triangular plaquette and
thus the overall phase is a combination of the π phase of
exchanging two fermions plus the extra π/3 phase picked up
from the gauge flux. Also, for the π/3-flux case the fermions
go around counter-clockwise in the bulk, thus the skipping
modes on the edge travel clockwise, which agrees with
c = −2. Based on this and Eq. (D4), the modular matrices
T and S have the form

T = eiπ/6

⎛
⎜⎝

1 0 0

0 e−i2π/3 0

0 0 e−i2π/3

⎞
⎟⎠ ,

S = 1√
3

⎛
⎜⎝

1 1 1

1 ei2π/3 e−i2π/3

1 e−i2π/3 ei2π/3

⎞
⎟⎠ , (D5)

and since it is an Abelian spin liquid all elements of S have
the same magnitude.

Next, we present our VMC results for the matrix elements
of the S and T modular transformations and show that they
agree with the predictions for the Abelian CSL phase. The
modular matrices are based on 1010 and 109 independent
measurements in 100 batches for the 6 × 6 and 9 × 9 clusters,
respectively. The MES basis is identified with the case where,
on top of the T matrix being diagonal, all elements of the S
matrix have the same magnitude. In order to fix the overall
phase of the minimally entangled states, one can use the fact
that the row and column of the S matrix corresponding to the
trivial sector should be 1/

√
3. This yields

T(36) = eμ
(T )
(36)

⎛
⎜⎝

1 0 0

0 1.005e−i0.699π 0

0 0 1.017e−i0.683π

⎞
⎟⎠,

S(36) = eμ
(S)
(36)

√
3

⎛
⎜⎝

0.965 1.006 1.006

1.006 1.003ei0.663π 1.003e−i0.663π

1.006 1.003e−i0.663π 1.003ei0.663π

⎞
⎟⎠,

T(81) = eμ
(T )
(81)

⎛
⎜⎝

1 0 0

0 0.991e−i0.668π 0

0 0 1.005e−i0.667π

⎞
⎟⎠,

S(81) = eμ
(S)
(81)

√
3

⎛
⎜⎝

1.018 1.009 0.990

1.015 0.997ei0.676π 1.002e−i0.670π

0.984 0.989e−i0.664π 0.995ei0.658π

⎞
⎟⎠.

(D6)
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FIG. 20. Scaling of the prefactors μ(S) and μ(T ) as a function of
the squared system size L2. We show data for L = {6, 9}. The extrap-
olated value of Imμ(T ) gives an estimate on the chiral central charge
of c ≈ −2.34. The value ImμT (L = 0) = π/6 would correspond to
central charge c = −2.

for the 6 × 6- and 9 × 9-site system, respectively.
In the left panel of Fig. 20, we show how the real part

of the prefactors Reμ(S) and Reμ(T ) scale with the system
size. Our results fulfill an L2 scaling, and we find an estimate
for the chiral central charge c ≈ −2.34, which is consistent
with the expected c = −2. In the right panel of Fig. 20,
we present the imaginary part of the prefactors Imμ(S) and
Imμ(T ) corrected by the phase factors ±π/2 · L2, which does
not change the extrapolated value. We note that the values
of Imμ(S) and Imμ(T ) can be extracted only mod 2π . So
the values for the different system sizes could be shifted by
an integer multiple of 2π independently of each other. This
can change the extrapolated value at L = 0 by an integer
multiple of 2π/5, which would result in a shift of an integer
multiple of 4.8 in the extrapolated chiral central charge c. So,
this is clearly not the source of the discrepancy between the
extrapolated and theoretical values.

We used the results from independent batches of calcu-
lations (compare Sec. III B) to estimate the statistical errors
of the simulation. These are collected in Table I. However,
the main source of error is systematic, and stems from the
finite system sizes as well as from the fact that the projected
states are not perfect topological CSL states. Carrying out
calculations on larger systems could help to further verify our
results, but based on the calculations on the 36- and 81-site
clusters we find that for the 12 × 12 system the exponential
prefactor would be O(10−5). Since the error of Monte Carlo
measurements scales as the inverse square root of the number
of samples, it would require a minimum of 1012 samples to

TABLE I. Estimates of the numerical/stochastic error of the
matrix elements of the numerically obtained modular matrices from
VMC.

6 × 6 9 × 9

�|Tab| ±0.0005 ±0.004
�|Sab| ±0.005 ±0.02
� arg(Taa) ±0.0001π ±0.01π

� arg(Sab) ±0.005π ±0.05π

TABLE II. Eigenvalues of symmetry operators for the six chiral
states |�i〉 or |�∗

i 〉 (|�1〉 is the ground state, |�2〉 and |�3〉 are
the first-excited states, etc.) on the 12-site cluster. The states |�2〉
and |�3〉 as well as |�5〉 and |�6〉 are degenerate. The eigenvalues
t1(t2) correspond to a translation along the lattice vectors �r1(�r2). The
eigenstates denoted without (with) a star are diagonalized in the joint
eigenbasis of the Hamiltonian and the translation (rotation) operator.
The results from ED and VMC are identical.

|�1〉 |�2〉 |�3〉 |�4〉 |�5〉 |�6〉
t1 1 e−i2π/3 ei2π/3 1 e−i2π/3 ei2π/3

t2 1 ei2π/3 e−i2π/3 1 ei2π/3 e−i2π/3

|�1 〉 |�∗
2 〉 |�∗

3 〉 |�4 〉 |�∗
5 〉 |�∗

6 〉
rπ/3 1 e−i2π/3 eiπ/3 1 ei2π/3 e−iπ/3

see anything beyond the numerical error. This goes beyond
the scope of our current VMC method.

APPENDIX E: SYMMETRIES OF THE CSL

Let the lattice constant be a and the lattice vectors �r1 =
(a, 0) and �r2 = a(cos(π/3), sin(π/3)), and let us denote by T1

and T2 the corresponding translation operators. Furthermore,
let us define the rotation operator Rπ/3 that rotates counter-
clockwise by an angle π/3. These translations and the rotation
do not have a joint eigenbasis. To distinguish them, we will
mark the eigenstates of H and Rπ/3 with a star.

The eigenvalues for the six chiral states on the 12- and
21-site clusters are given in Tables II and III, respectively.
The results from the ±π/3 CSL variational states from VMC
and from the low-lying energy eigenstates at K/J = 0.35
(α ≈ 0.11π ) from ED show a perfect match.

The spectrum of the 12-site cluster is discussed in Sec. V B.
On this particular system the ground-state manifold of six
states is intertwined with another state. However, if the states
are analyzed with respect to their symmetry values, the appar-
ent six low-lying CSL states can be identified.

The symmetry properties of the chiral states for clusters
larger than 21 sites were only studied by VMC. For systems
where the vectors defining the torus lie in the �r1 and �r2

directions all six chiral states have a wave vector zero. The
smallest example is the 36-site cluster for which we provide
the symmetry properties in Table IV. For this specific finite
size, only one pair of states is degenerate, the other states are
not.

TABLE III. Eigenvalues of symmetry operators for the six chiral
states on the 21-site cluster. The notation is as in Table II. The
degeneracies on 12 and 21 sites are identical, as are the results from
ED and VMC.

|�1〉 |�2〉 |�3〉 |�4〉 |�5〉 |�6〉
t1 1 e−i2π/3 ei2π/3 1 e−i2π/3 ei2π/3

t2 1 ei2π/3 e−i2π/3 1 ei2π/3 e−i2π/3

|�1 〉 |�∗
2 〉 |�∗

3 〉 |�4 〉 |�∗
5 〉 |�∗

6 〉
rπ/3 −1 e−i2π/3 eiπ/3 −1 ei2π/3 e−iπ/3
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TABLE IV. Eigenvalues of symmetry operators for the six chiral
states on the 36-site cluster from VMC only. The notation is similar
to Tab. II. On 36 sites all the six states are at the � point in the
Brillouin zone. The states |�3〉 and |�4〉 are degenerate, the others
are not.

|�1〉 |�2〉 |�3〉 |�4〉 |�5〉 |�6〉
t1, t2 1 1 1 1 1 1
rπ/3 1 1 e−i2π/3 ei2π/3 −1 −1
irrep of D6 A1 A2 E2 B2 B1

APPENDIX F: EFFECTIVE MODEL ON 12-SITE
CLUSTER WITH PBCS

On a cluster consisting of a finite number of sites the
effective model is different from the model in the thermody-
namic limit. In the case of PBCs this is due to the fact that
a finite number of fermionic hoppings in one direction leads
back to the starting site. For the 12-site torus, this becomes
relevant in order 4 in t/U , where the four-site plaquette can be
embedded surrounding the cluster via the PBCs. This leads to
an additional effective interaction around the 12-site torus, but
also to modifications of other coupling constants compared to
the infinite lattice. The easiest approach to derive the effective
Hamiltonian for the most interesting case � = π is to con-
sider the model without phases and then perform the trans-
formation t → −t , which is identical to � = 0 → � = π .
For general fluxes �, the calculation is done by choosing the

gauge for the 12-site cluster depicted in Fig. 21. Every second
line of horizontal bonds in the cluster gets assigned with a
phase �, whereas the parallel intermediate bonds contribute
with a phase −�. All nonparallel bonds yield a vanishing
phase. With this gauge some of the exchange constants in
the effective model on 12 sites, which are symmetric on the
infinite lattice, take different values along different directions.
For instance, the nearest-neighbor exchange on the bonds with
a phase Jhoriz and the nearest-neighbor exchange on the bonds
without a phase Jdiag differ. From the perspective of a LCE
this relates to the contributions from the four-site plaquette
looping around the torus with distinct phases for different
directions. In order 4 in t/U, we find

Jhor = 2
t2

U 2
+ 12 cos �

t3

U 3
+ (60 + 40 cos 2�)

t4

U 4
,

Jdia = 2
t2

U 2
+ 12 cos �

t3

U 3
+ (36 + 64 cos 2�)

t4

U 4
. (F1)

For the newly arising four-site ring exchange around the PBCs
different phases occur depending on the location. In total there
are three directions with 18 loops each. All ring exchanges
along the vertical direction have a zero flux. For the two
other directions, 2/3 of the exchanges contribute with a phase
factor, whereas 1/3 of them do not. Similarly, for the constant
part E0 = 12ε0 several versions of the four-site plaquettes
either with or without fluxes have to be taken into account.
The full effective Hamiltonian can be written

(F2)

where the depicted graphs under every sum indicate in which
orientations the exchanges lie on the cluster. For the three

site ring exchange on a triangle K all triangles have to be
taken. The four-site ring exchange around the torus is only
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FIG. 21. Triangular lattice cluster with 12 sites (yellow) and
PBCs (white). The chosen gauge is illustrated by the arrows on
the bonds: a hopping in the direction of the arrow (respectively, in
the opposite direction) has a positive phase factor ei� (respectively,
the complex conjugate e−i�.

stated. The explicit shapes differ and lead to either a phase
factor or not; In total every site is part of 18 four-site ring
exchanges around the PBCs, wherein 10 contribute without a
phase factor and 8 with a phase factor. In total these exchanges
double due to the hermitian conjugated exchanges. For the
real exchange constants (J, L2sp

s , L2sp
d , L3sp

d, vert, L4sp
r, pbc,�=0), the

turning direction is arbitrary, since the Cosine is symmetric
and the coupling constants are identical under the transfor-
mation � → −�. For the exchanges contributing with a
nontrivial phase factor the turning direction has to be chosen
accordingly. For two-site interactions such a turning direction
cannot be defined, which is why such couplings contribute
with purely symmetric phase factors.

The effective nearest-neighbor exchange constants are
given in Eq. (F1). All other couplings and the constant con-
tributions are

K = −6ei� t3

U 3
+ (−14 − 20e2i�)

t4

U 4
,

L2sp
s = (18 + 16 cos 2�)

t4

U 4
,

L2sp
d,diag =

(
88

3
+ 32 cos 2�

)
t4

U 4
,

L2sp
d,vert = 184

3

t4

U 4
, L3sp

s,diag =
(

−34

3
− 10e2i�

)
t4

U 4
,

L3sp
s,horiz =

(
−4

3
− 20e2i�

)
t4

U 4
,

L3sp
d,diag =

(
−34

3
− 20e2i�

)
t4

U 4
,

L3sp
d,vert = −94

3

t4

U 4
, L4sp

r = 20e2i� t4

U 4
,

L4sp
r,pbc,��=0 = 20e2i� t4

U 4
, L4sp

r,pbc,�=0 = 20
t4

U 4
,

ε0 = −6
t2

U 2
− 12 cos �

t3

U 3
− (54 + 32 cos 2�)

t4

U 4
.

(F3)

Note that one could also derive an effective model for
the 12-site cluster in which neither phases around the torus
nor distinct exchange constants for topologically equivalent
interactions (like for Jhor and Jdia) occur. This can be achieved
by fulfilling the �-flux condition on every triangle without
assigning specific phases to specific bonds. However, this does
not matter since the eigenenergies do not depend on the gauge.

APPENDIX G: CSL FOR � �= π

For the J-K model at � = π/2, hence for purely imaginary
ring exchange, a π/3-flux CSL was discovered for SU(3)-
symmetric spins in Ref. [36]. As for the spontaneous time-
reversal symmetry breaking CSL found for the same model
but at � = π , discussed in the main part of the manuscript,
the relevant question is whether this CSL is a feature of the
Hubbard model, and therefore reachable in experiments with
artificial gauge fields.

We first study the fifth-order effective model in Eq. (14) for
� = π/2 and find that the same set of Padé extrapolations as
described for � = π in Sec. V A works best. The convergence
behavior of all coupling constants is shown in Fig. 22. A
number of interesting and subtle features of the effective
model become clear. The three-site ring exchange K is purely
imaginary only in order 3. The fourth-order term partly arises
from fluctuations around two triangles leading to a flux of
2�, therefore a real part is present in higher orders. Similarly,
the imaginary part of the fourth-order contribution to the
four-site ring exchange vanishes and it effectively becomes
an order 5 term. As a consequence the model is dominated
by a real nearest-neigbor and an imaginary three-site ring

FIG. 22. Effective couplings in units of U of the Hubbard model
as a function of t/U for � = π/2 in a double logarithmic plot.
Shown are the nonvanishing real (left) and imaginary (right) con-
tributions in bare orders. The diamonds encircled in black (gray)
give the Padé extrapolants with the exponents [3,2] ([2,1]). Note
that all uneven (even) terms in the real (imaginary) part vanish.
The background colors are defined as in Fig. 12 in the main
text.
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FIG. 23. Imaginary part of the ratio of effective coupling con-
stants −K/J depending on t/U for � = π/2 using bare series up
to order 5. The ratios of Padé extrapolants with the exponents [3,2]
as well as the direct Padé extrapolation of the ratio −ImK/J are
indicated. The insets show similar plots for the imaginary part of
the negative three-site ring exchange −ImK and the nearest-neighbor
exchange J . Extrapolations of J with different pairs of exponents
[2,2] and [2,3] are identical at � = π/2. The background colors are
defined as in Fig. 12 in the main part of the manuscript.

exchange. For exactly this subset of interactions the CSL
phase occurs for Im(K/J ) � 0.3 [36]. In Fig. 23, the ratios
of Padé extrapolants for the imaginary part of −K and the
real amplitude J (green larger diamonds) and the direct Padé
extrapolation of the ratio −ImK/J (black smaller diamonds)
are shown. We see that in the regime of the CSL not only the
extrapolations, but also the bare fifth-order (solid line) series
are well converged.

Second, the numerical study of the full fifth-order ef-
fective model yields the signature of the CSL phase by
three low-lying chiral states. Using ED on the 21-site cluster
we find (t/U )O(3),ED

c ≈ (t/U )O(5),ED
c ≈ 0.09 for the third-

and fifth-order effective model. In VMC the values are

smaller (t/U )O(3),VMC
c ≈ (t/U )O(5),VMC

c ≈ 0.04. This is plau-
sible since the VMC captures CSL phases more naturally than
long-range ordered phases. The apparent areas in Figs. 22 and
23 are shaded in yellow.

This CSL is stable in the J-K model for fluxes
π/2 � � � π . The fifth-order effective model in this range
partly suffers from spurious poles in the Padé extrapolants of
several coupling constants. More precisely, for L2sp

d around
� ≈ 0.6π and for L3sp

s around � ≈ 0.55π and � ≈ 0.75π

divergences occur, depending on t/U . Here one has to use
the bare series, which generally decreases the quality of
convergence.

Furthermore, similar to � = π/2, cancellation effects of
different orders at specific values of the flux � lead to
additional subtleties in the convergence behavior. For most
parts of the full � phase diagram we find a good convergence
by comparing the ED and VMC results in different orders.
It is only in the area around � ≈ 3π/4 that the results be-
tween fourth- and fifth-order change qualitatively. A possible
explanation is the strong suppression of a lower-order term
compared to a higher-order one for certain values of � and
t/U , which can lead to a decreased quality of convergence.
Here the real part of the leading fourth-order ring exchange
vanishes in order 5 due to an alternating behavior by contrast
to a large monotonic five-site ring-exchange. The interplay of
these two effects arises only in order 5.

In summary, the π/3-flux CSL phase at � = π/2 is
extended in the J-K model for larger fluxes � up to the
spontaneous time-reversal symmetry broken case at � = π .
At � = π/2, the CSL is a robust feature within the effective
fifth-order model describing the SU(3) Hubbard model in
the strong-coupling regime. If the metal-insulator transition
occurs at values similar to the ones at � = π , the π/3-
flux CSL is also a feature of the SU(3) Hubbard model at
� = π/2 on the triangular lattice. Whether this phase is
directly connected to the spontaneous time-reversal symmetry
broken CSL present at � = π remains an open question.

[1] L. Balents, Spin liquids in frustrated magnets, Nature (London)
464, 199 (2010).

[2] L. Savary and L. Balents, Quantum spin liquids: A review, Rep.
Prog. Phys. 80, 016502 (2016).

[3] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[4] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with
ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[5] U. Schneider, L. Hackermüller, S. Will, T. Best, I. Bloch, T. A.
Costi, R. W. Helmes, D. Rasch, and A. Rosch, Metallic and
insulating phases of repulsively interacting fermions in a 3D
optical lattice, Science 322, 1520 (2008).

[6] S. Taie, R. Yamazaki, S. Sugawa, and Y. Takahashi, An
SU(6) Mott insulator of an atomic Fermi gas realized
by large-spin Pomeranchuk cooling, Nat. Phys. 8, 825
(2012).

[7] C. Hofrichter, L. Riegger, F. Scazza, M. Höfer, D. R. Fernandes,
I. Bloch, and S. Fölling, Direct Probing of the Mott Crossover

in the SU(N ) Fermi-Hubbard Model, Phys. Rev. X 6, 021030
(2016).

[8] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Realization of the Hofstadter Hamiltonian with
Ultracold Atoms in Optical Lattices, Phys. Rev. Lett. 111,
185301 (2013).

[9] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton,
and W. Ketterle, Realizing the Harper Hamiltonian with Laser-
Assisted Tunneling in Optical Lattices, Phys. Rev. Lett. 111,
185302 (2013).

[10] M. A. Cazalilla, A. F. Ho, and M. Ueda, Ultracold gases of
ytterbium: ferromagnetism and Mott states in an SU(6) Fermi
system, New J. Phys. 11, 103033 (2009).

[11] A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne,
J. Ye, P. Zoller, E. Demler, M. D. Lukin, and A. M. Rey, Two-
orbital SU(N) magnetism with ultracold alkaline-earth atoms,
Nat. Phys. 6, 289 (2010).

[12] F. Scazza, C. Hofrichter, M. Höfer, P. C. De Groot, I.
Bloch, and S. Fölling, Observation of two-orbital spin-exchange

023098-20

https://doi.org/10.1038/nature08917
https://doi.org/10.1038/nature08917
https://doi.org/10.1038/nature08917
https://doi.org/10.1038/nature08917
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1126/science.1165449
https://doi.org/10.1126/science.1165449
https://doi.org/10.1126/science.1165449
https://doi.org/10.1126/science.1165449
https://doi.org/10.1038/nphys2430
https://doi.org/10.1038/nphys2430
https://doi.org/10.1038/nphys2430
https://doi.org/10.1038/nphys2430
https://doi.org/10.1103/PhysRevX.6.021030
https://doi.org/10.1103/PhysRevX.6.021030
https://doi.org/10.1103/PhysRevX.6.021030
https://doi.org/10.1103/PhysRevX.6.021030
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1088/1367-2630/11/10/103033
https://doi.org/10.1088/1367-2630/11/10/103033
https://doi.org/10.1088/1367-2630/11/10/103033
https://doi.org/10.1088/1367-2630/11/10/103033
https://doi.org/10.1038/nphys1535
https://doi.org/10.1038/nphys1535
https://doi.org/10.1038/nphys1535
https://doi.org/10.1038/nphys1535


TIME-REVERSAL SYMMETRY BREAKING ABELIAN … PHYSICAL REVIEW RESEARCH 2, 023098 (2020)

interactions with ultracold SU(N)-symmetric fermions, Nat.
Phys. 10, 779 (2014).

[13] X. Zhang, M. Bishof, S. L. Bromley, C. V. Kraus, M. S.
Safronova, P. Zoller, A. M. Rey, and J. Ye, Spectroscopic
observation of SU(N)-symmetric interactions in Sr orbital mag-
netism, Science 345, 1467 (2014).

[14] M. A. Cazalilla and A. M. Rey, Ultracold Fermi gases with
emergent SU(N) symmetry, Rep. Prog. Phys. 77, 124401
(2014).

[15] M. Hermele, V. Gurarie, and A. M. Rey, Mott Insulators of
Ultracold Fermionic Alkaline Earth Atoms: Underconstrained
Magnetism and Chiral Spin Liquid, Phys. Rev. Lett. 103,
135301 (2009).

[16] M. Hermele and V. Gurarie, Topological liquids and valence
cluster states in two-dimensional SU(N ) magnets, Phys. Rev. B
84, 174441 (2011).

[17] S. Sachdev, Kagomé- and triangular-lattice Heisenberg antifer-
romagnets: Ordering from quantum fluctuations and quantum-
disordered ground states with unconfined bosonic spinons,
Phys. Rev. B 45, 12377 (1992).

[18] B. Bernu, C. Lhuillier, and L. Pierre, Signature of Néel Order in
Exact Spectra of Quantum Antiferromagnets on Finite Lattices,
Phys. Rev. Lett. 69, 2590 (1992).

[19] L. Capriotti, A. E. Trumper, and S. Sorella, Long-Range Néel
Order in the Triangular Heisenberg Model, Phys. Rev. Lett. 82,
3899 (1999).

[20] W. Zheng, J. O. Fjærestad, R. R. P. Singh, R. H. McKenzie,
and R. Coldea, Excitation spectra of the spin- 1

2 triangular-lattice
Heisenberg antiferromagnet, Phys. Rev. B 74, 224420 (2006).

[21] S. R. White and A. L. Chernyshev, Neél Order in Square and
Triangular Lattice Heisenberg Models, Phys. Rev. Lett. 99,
127004 (2007).

[22] O. I. Motrunich, Variational study of triangular lattice spin-
1/2 model with ring exchanges and spin liquid state in
κ-(ET)2Cu2(CN)3, Phys. Rev. B 72, 045105 (2005).

[23] D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher, Spin Bose-
metal phase in a spin- 1

2 model with ring exchange on a two-leg
triangular strip, Phys. Rev. B 79, 205112 (2009).

[24] H.-Y. Yang, A. M. Läuchli, F. Mila, and K. P. Schmidt, Effective
Spin Model for the Spin-Liquid Phase of the Hubbard Model on
the Triangular Lattice, Phys. Rev. Lett. 105, 267204 (2010).

[25] R. Kaneko, S. Morita, and M. Imada, Gapless spin-liquid phase
in an extended spin 1/2 triangular heisenberg model, J. Phys.
Soc. Jpn. 83, 093707 (2014).

[26] Z. Zhu and S. R. White, Spin liquid phase of the S = 1
2 J1 − J2

Heisenberg model on the triangular lattice, Phys. Rev. B 92,
041105(R) (2015).

[27] W.-J. Hu, S.-S. Gong, W. Zhu, and D. N. Sheng, Competing
spin-liquid states in the spin- 1

2 Heisenberg model on the trian-
gular lattice, Phys. Rev. B 92, 140403(R) (2015).

[28] W.-J. Hu, S.-S. Gong, and D. N. Sheng, Variational Monte Carlo
study of chiral spin liquid in quantum antiferromagnet on the
triangular lattice, Phys. Rev. B 94, 075131 (2016).

[29] Y. Iqbal, W.-J. Hu, R. Thomale, D. Poilblanc, and F. Becca, Spin
liquid nature in the heisenberg J1 − J2 triangular antiferromag-
net, Phys. Rev. B 93, 144411 (2016).

[30] A. Wietek and A. M. Läuchli, Chiral spin liquid and quantum
criticality in extended S = 1

2 Heisenberg models on the triangu-
lar lattice, Phys. Rev. B 95, 035141 (2017).

[31] A. Szasz, J. Motruk, M. P. Zaletel, and J. E. Moore, Observation
of a chiral spin liquid phase of the Hubbard model on the
triangular lattice: a density matrix renormalization group study,
arXiv:1808.00463.

[32] S. Hu, W. Zhu, S. Eggert, and Y.-C. He, Dirac Spin Liquid
on the Spin-1/2 Triangular Heisenberg Antiferromagnet, Phys.
Rev. Lett. 123, 207203 (2019).

[33] S. Bieri, M. Serbyn, T. Senthil, and P. A. Lee, Paired chiral spin
liquid with a Fermi surface in S = 1 model on the triangular
lattice, Phys. Rev. B 86, 224409 (2012).

[34] H.-H. Lai, Possible uniform-flux chiral spin liquid states in the
SU(3) ring-exchange model on the triangular lattice, Phys. Rev.
B 87, 205111 (2013).

[35] H.-H. Lai, Possible spin liquid states with parton Fermi surfaces
in the SU(3) ring-exchange model on the triangular lattice,
Phys. Rev. B 87, 205131 (2013).

[36] P. Nataf, M. Lajkó, A. Wietek, K. Penc, F. Mila, and A. M.
Läuchli, Chiral Spin Liquids in Triangular-Lattice SU(N )
Fermionic Mott Insulators with Artificial Gauge Fields, Phys.
Rev. Lett. 117, 167202 (2016).

[37] H. Tsunetsugu and M. Arikawa, Spin nematic phase in S = 1
triangular antiferromagnets, J. Phys. Soc. Jpn. 75, 083701
(2006).

[38] A. Läuchli, F. Mila, and K. Penc, Quadrupolar Phases of the
S = 1 Bilinear-Biquadratic Heisenberg Model on the Triangular
Lattice, Phys. Rev. Lett. 97, 087205 (2006).

[39] B. Bauer, P. Corboz, A. M. Läuchli, L. Messio, K. Penc,
M. Troyer, and F. Mila, Three-sublattice order in the SU(3)
Heisenberg model on the square and triangular lattice, Phys.
Rev. B 85, 125116 (2012).

[40] P. Nataf and F. Mila, Exact Diagonalization of Heisenberg
SU(N ) Models, Phys. Rev. Lett. 113, 127204 (2014).

[41] A. Wietek, M. Schuler, and A. M. Läuchli, Studying con-
tinuous symmetry breaking using energy level spectroscopy,
arXiv:1704.08622.

[42] H. Yokoyama and H. Shiba, Variational Monte-Carlo studies of
Hubbard model. I, J. Phys. Soc. Jpn. 56, 1490 (1987).

[43] C. Gros, Physics of projected wavefunctions, Ann. Phys. 189,
53 (1989).

[44] P. Corboz, M. Lajkó, A. M. Läuchli, K. Penc, and F. Mila, Spin-
Orbital Quantum Liquid on the Honeycomb Lattice, Phys. Rev.
X 2, 041013 (2012).

[45] K. Coester and K. P. Schmidt, Optimizing linked-cluster expan-
sions by white graphs, Phys. Rev. E 92, 022118 (2015).

[46] T. Kato, Upper and lower bounds of eigenvalues, Phys. Rev. 77,
413 (1950).

[47] M. Takahashi, Half-filled hubbard model at low temperature,
J. Phys. C 10, 1289 (1977).

[48] A. H. MacDonald, S. M. Girvin, and D. Yoshioka, t
U expansion

for the Hubbard model, Phys. Rev. B 37, 9753 (1988).
[49] E. Müller-Hartmann and A. Reischl, Derivation of effective spin

models from a three band model for CuO-planes, Eur. Phys. J.
B 28, 173 (2002).

[50] A. C. Guttmann, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. Lebowitz (Academic, New York,
1989), Vol. 13.

[51] S.-S. Gong, W. Zhu, and D. N. Sheng, Emergent chiral spin
liquid: Fractional quantum hall effect in a kagome heisenberg
model, Sci. Rep. 4, 6317 (2014).

023098-21

https://doi.org/10.1038/nphys3061
https://doi.org/10.1038/nphys3061
https://doi.org/10.1038/nphys3061
https://doi.org/10.1038/nphys3061
https://doi.org/10.1126/science.1254978
https://doi.org/10.1126/science.1254978
https://doi.org/10.1126/science.1254978
https://doi.org/10.1126/science.1254978
https://doi.org/10.1088/0034-4885/77/12/124401
https://doi.org/10.1088/0034-4885/77/12/124401
https://doi.org/10.1088/0034-4885/77/12/124401
https://doi.org/10.1088/0034-4885/77/12/124401
https://doi.org/10.1103/PhysRevLett.103.135301
https://doi.org/10.1103/PhysRevLett.103.135301
https://doi.org/10.1103/PhysRevLett.103.135301
https://doi.org/10.1103/PhysRevLett.103.135301
https://doi.org/10.1103/PhysRevB.84.174441
https://doi.org/10.1103/PhysRevB.84.174441
https://doi.org/10.1103/PhysRevB.84.174441
https://doi.org/10.1103/PhysRevB.84.174441
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevLett.69.2590
https://doi.org/10.1103/PhysRevLett.69.2590
https://doi.org/10.1103/PhysRevLett.69.2590
https://doi.org/10.1103/PhysRevLett.69.2590
https://doi.org/10.1103/PhysRevLett.82.3899
https://doi.org/10.1103/PhysRevLett.82.3899
https://doi.org/10.1103/PhysRevLett.82.3899
https://doi.org/10.1103/PhysRevLett.82.3899
https://doi.org/10.1103/PhysRevB.74.224420
https://doi.org/10.1103/PhysRevB.74.224420
https://doi.org/10.1103/PhysRevB.74.224420
https://doi.org/10.1103/PhysRevB.74.224420
https://doi.org/10.1103/PhysRevLett.99.127004
https://doi.org/10.1103/PhysRevLett.99.127004
https://doi.org/10.1103/PhysRevLett.99.127004
https://doi.org/10.1103/PhysRevLett.99.127004
https://doi.org/10.1103/PhysRevB.72.045105
https://doi.org/10.1103/PhysRevB.72.045105
https://doi.org/10.1103/PhysRevB.72.045105
https://doi.org/10.1103/PhysRevB.72.045105
https://doi.org/10.1103/PhysRevB.79.205112
https://doi.org/10.1103/PhysRevB.79.205112
https://doi.org/10.1103/PhysRevB.79.205112
https://doi.org/10.1103/PhysRevB.79.205112
https://doi.org/10.1103/PhysRevLett.105.267204
https://doi.org/10.1103/PhysRevLett.105.267204
https://doi.org/10.1103/PhysRevLett.105.267204
https://doi.org/10.1103/PhysRevLett.105.267204
https://doi.org/10.7566/JPSJ.83.093707
https://doi.org/10.7566/JPSJ.83.093707
https://doi.org/10.7566/JPSJ.83.093707
https://doi.org/10.7566/JPSJ.83.093707
https://doi.org/10.1103/PhysRevB.92.041105
https://doi.org/10.1103/PhysRevB.92.041105
https://doi.org/10.1103/PhysRevB.92.041105
https://doi.org/10.1103/PhysRevB.92.041105
https://doi.org/10.1103/PhysRevB.92.140403
https://doi.org/10.1103/PhysRevB.92.140403
https://doi.org/10.1103/PhysRevB.92.140403
https://doi.org/10.1103/PhysRevB.92.140403
https://doi.org/10.1103/PhysRevB.94.075131
https://doi.org/10.1103/PhysRevB.94.075131
https://doi.org/10.1103/PhysRevB.94.075131
https://doi.org/10.1103/PhysRevB.94.075131
https://doi.org/10.1103/PhysRevB.93.144411
https://doi.org/10.1103/PhysRevB.93.144411
https://doi.org/10.1103/PhysRevB.93.144411
https://doi.org/10.1103/PhysRevB.93.144411
https://doi.org/10.1103/PhysRevB.95.035141
https://doi.org/10.1103/PhysRevB.95.035141
https://doi.org/10.1103/PhysRevB.95.035141
https://doi.org/10.1103/PhysRevB.95.035141
http://arxiv.org/abs/arXiv:1808.00463
https://doi.org/10.1103/PhysRevLett.123.207203
https://doi.org/10.1103/PhysRevLett.123.207203
https://doi.org/10.1103/PhysRevLett.123.207203
https://doi.org/10.1103/PhysRevLett.123.207203
https://doi.org/10.1103/PhysRevB.86.224409
https://doi.org/10.1103/PhysRevB.86.224409
https://doi.org/10.1103/PhysRevB.86.224409
https://doi.org/10.1103/PhysRevB.86.224409
https://doi.org/10.1103/PhysRevB.87.205111
https://doi.org/10.1103/PhysRevB.87.205111
https://doi.org/10.1103/PhysRevB.87.205111
https://doi.org/10.1103/PhysRevB.87.205111
https://doi.org/10.1103/PhysRevB.87.205131
https://doi.org/10.1103/PhysRevB.87.205131
https://doi.org/10.1103/PhysRevB.87.205131
https://doi.org/10.1103/PhysRevB.87.205131
https://doi.org/10.1103/PhysRevLett.117.167202
https://doi.org/10.1103/PhysRevLett.117.167202
https://doi.org/10.1103/PhysRevLett.117.167202
https://doi.org/10.1103/PhysRevLett.117.167202
https://doi.org/10.1143/JPSJ.75.083701
https://doi.org/10.1143/JPSJ.75.083701
https://doi.org/10.1143/JPSJ.75.083701
https://doi.org/10.1143/JPSJ.75.083701
https://doi.org/10.1103/PhysRevLett.97.087205
https://doi.org/10.1103/PhysRevLett.97.087205
https://doi.org/10.1103/PhysRevLett.97.087205
https://doi.org/10.1103/PhysRevLett.97.087205
https://doi.org/10.1103/PhysRevB.85.125116
https://doi.org/10.1103/PhysRevB.85.125116
https://doi.org/10.1103/PhysRevB.85.125116
https://doi.org/10.1103/PhysRevB.85.125116
https://doi.org/10.1103/PhysRevLett.113.127204
https://doi.org/10.1103/PhysRevLett.113.127204
https://doi.org/10.1103/PhysRevLett.113.127204
https://doi.org/10.1103/PhysRevLett.113.127204
http://arxiv.org/abs/arXiv:1704.08622
https://doi.org/10.1143/JPSJ.56.1490
https://doi.org/10.1143/JPSJ.56.1490
https://doi.org/10.1143/JPSJ.56.1490
https://doi.org/10.1143/JPSJ.56.1490
https://doi.org/10.1016/0003-4916(89)90077-8
https://doi.org/10.1016/0003-4916(89)90077-8
https://doi.org/10.1016/0003-4916(89)90077-8
https://doi.org/10.1016/0003-4916(89)90077-8
https://doi.org/10.1103/PhysRevX.2.041013
https://doi.org/10.1103/PhysRevX.2.041013
https://doi.org/10.1103/PhysRevX.2.041013
https://doi.org/10.1103/PhysRevX.2.041013
https://doi.org/10.1103/PhysRevE.92.022118
https://doi.org/10.1103/PhysRevE.92.022118
https://doi.org/10.1103/PhysRevE.92.022118
https://doi.org/10.1103/PhysRevE.92.022118
https://doi.org/10.1103/PhysRev.77.413
https://doi.org/10.1103/PhysRev.77.413
https://doi.org/10.1103/PhysRev.77.413
https://doi.org/10.1103/PhysRev.77.413
https://doi.org/10.1088/0022-3719/10/8/031
https://doi.org/10.1088/0022-3719/10/8/031
https://doi.org/10.1088/0022-3719/10/8/031
https://doi.org/10.1088/0022-3719/10/8/031
https://doi.org/10.1103/PhysRevB.37.9753
https://doi.org/10.1103/PhysRevB.37.9753
https://doi.org/10.1103/PhysRevB.37.9753
https://doi.org/10.1103/PhysRevB.37.9753
https://doi.org/10.1140/epjb/e2002-00219-5
https://doi.org/10.1140/epjb/e2002-00219-5
https://doi.org/10.1140/epjb/e2002-00219-5
https://doi.org/10.1140/epjb/e2002-00219-5
https://doi.org/10.1038/srep06317
https://doi.org/10.1038/srep06317
https://doi.org/10.1038/srep06317
https://doi.org/10.1038/srep06317


C. BOOS et al. PHYSICAL REVIEW RESEARCH 2, 023098 (2020)

[52] Y.-C. He, D. N. Sheng, and Y. Chen, Chiral Spin Liquid in a
Frustrated Anisotropic Kagome Heisenberg Model, Phys. Rev.
Lett. 112, 137202 (2014).

[53] A. Wietek, A. Sterdyniak, and A. M. Läuchli, Nature of chiral
spin liquids on the kagome lattice, Phys. Rev. B 92, 125122
(2015).

[54] K. Penc and A. M. Läuchli, Spin nematic phases in quantum
spin systems, in Introduction to Frustrated Magnetism, edited
by C. Lacroix, P. Mendels, and F. Mila, Springer Series in Solid-
State Sciences Vol. 164 (Springer, Berlin, Heidelberg, 2010),
Chap. 13.

[55] B. Bernu, P. Lecheminant, C. Lhuillier, and L. Pierre, Exact
spectra, spin susceptibilities, and order parameter of the quan-
tum Heisenberg antiferromagnet on the triangular lattice, Phys.
Rev. B 50, 10048 (1994).

[56] L.-Y. Hung and X.-G. Wen, Universal symmetry-protected
topological invariants for symmetry-protected topological
states, Phys. Rev. B 89, 075121 (2014).

[57] H. Moradi and X.-G. Wen, Universal Wave-Function Overlap
and Universal Topological Data from Generic Gapped Ground
States, Phys. Rev. Lett. 115, 036802 (2015).

[58] J.-W. Mei and X.-G. Wen, Modular matrices from universal
wave-function overlaps in Gutzwiller-projected parton wave
functions, Phys. Rev. B 91, 125123 (2015).

[59] Y.-M. Lu and D.-H. Lee, Spin quantum Hall effects in feature-
less nonfractionalized spin-1 magnets, Phys. Rev. B 89, 184417
(2014).

[60] Z.-X. Liu, J.-W. Mei, P. Ye, and X.-G. Wen, U (1) × U (1)
symmetry-protected topological order in Gutzwiller wave func-
tions, Phys. Rev. B 90, 235146 (2014).

[61] W.-J. Hu, W. Zhu, Y. Zhang, S. Gong, F. Becca, and D. N.
Sheng, Variational Monte Carlo study of a chiral spin liquid
in the extended Heisenberg model on the kagome lattice, Phys.
Rev. B 91, 041124(R) (2015).

[62] Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A.
Vishwanath, Quasiparticle statistics and braiding from
ground-state entanglement, Phys. Rev. B 85, 235151
(2012).

[63] X.-G. Wen, Modular transformation and bosonic/fermionic
topological orders in Abelian fractional quantum Hall states,
arXiv:1212.5121.

[64] E. Verlinde, Fusion rules and modular transformations in 2D
conformal field theory, Nucl. Phys. B 300, 360 (1988).

[65] X.-G. Wen, Theory of the edge states in fractional quantum hall
effects, Int. J. Mod. Phys. B 06, 1711 (1992).

[66] Z. Wang, Topological Quantum Computation, Conference
Board of the Mathematical Sciences, CBMS Regional Confer-
ence Series in Mathematics (Conference Board of the Mathe-
matical Sciences, Washington, DC, 2010).

[67] I. Niesen and P. Corboz, A tensor network study of the complete
ground state phase diagram of the spin-1 bilinear-biquadratic
Heisenberg model on the square lattice, SciPost Phys. 3, 030
(2017).

[68] T. A. Tóth, A. M. Läuchli, F. Mila, and K. Penc, Three-
Sublattice Ordering of the SU(3) Heisenberg Model of Three-
Flavor Fermions on the Square and Cubic Lattices, Phys. Rev.
Lett. 105, 265301 (2010).

[69] T. A. Tóth, A. M. Läuchli, F. Mila, and K. Penc, Competition
between two- and three-sublattice ordering for S = 1 spins on
the square lattice, Phys. Rev. B 85, 140403(R) (2012).

[70] W.-J. Hu, S.-S. Gong, H.-H. Lai, H. Hu, Q. Si, and A. H.
Nevidomskyy, Nematic spin liquid phase in a frustrated spin-
1 system on the square lattice, Phys. Rev. B 100, 165142
(2019).

[71] W.-J. Hu, S.-S. Gong, H.-H. Lai, Q. Si, and E. Dagotto, Density
matrix renormalization group study of nematicity in two dimen-
sions: Application to a spin-1 bilinear-biquadratic model on the
square lattice, Phys. Rev. B 101, 014421 (2020).

023098-22

https://doi.org/10.1103/PhysRevLett.112.137202
https://doi.org/10.1103/PhysRevLett.112.137202
https://doi.org/10.1103/PhysRevLett.112.137202
https://doi.org/10.1103/PhysRevLett.112.137202
https://doi.org/10.1103/PhysRevB.92.125122
https://doi.org/10.1103/PhysRevB.92.125122
https://doi.org/10.1103/PhysRevB.92.125122
https://doi.org/10.1103/PhysRevB.92.125122
https://doi.org/10.1103/PhysRevB.50.10048
https://doi.org/10.1103/PhysRevB.50.10048
https://doi.org/10.1103/PhysRevB.50.10048
https://doi.org/10.1103/PhysRevB.50.10048
https://doi.org/10.1103/PhysRevB.89.075121
https://doi.org/10.1103/PhysRevB.89.075121
https://doi.org/10.1103/PhysRevB.89.075121
https://doi.org/10.1103/PhysRevB.89.075121
https://doi.org/10.1103/PhysRevLett.115.036802
https://doi.org/10.1103/PhysRevLett.115.036802
https://doi.org/10.1103/PhysRevLett.115.036802
https://doi.org/10.1103/PhysRevLett.115.036802
https://doi.org/10.1103/PhysRevB.91.125123
https://doi.org/10.1103/PhysRevB.91.125123
https://doi.org/10.1103/PhysRevB.91.125123
https://doi.org/10.1103/PhysRevB.91.125123
https://doi.org/10.1103/PhysRevB.89.184417
https://doi.org/10.1103/PhysRevB.89.184417
https://doi.org/10.1103/PhysRevB.89.184417
https://doi.org/10.1103/PhysRevB.89.184417
https://doi.org/10.1103/PhysRevB.90.235146
https://doi.org/10.1103/PhysRevB.90.235146
https://doi.org/10.1103/PhysRevB.90.235146
https://doi.org/10.1103/PhysRevB.90.235146
https://doi.org/10.1103/PhysRevB.91.041124
https://doi.org/10.1103/PhysRevB.91.041124
https://doi.org/10.1103/PhysRevB.91.041124
https://doi.org/10.1103/PhysRevB.91.041124
https://doi.org/10.1103/PhysRevB.85.235151
https://doi.org/10.1103/PhysRevB.85.235151
https://doi.org/10.1103/PhysRevB.85.235151
https://doi.org/10.1103/PhysRevB.85.235151
http://arxiv.org/abs/arXiv:1212.5121
https://doi.org/10.1016/0550-3213(88)90603-7
https://doi.org/10.1016/0550-3213(88)90603-7
https://doi.org/10.1016/0550-3213(88)90603-7
https://doi.org/10.1016/0550-3213(88)90603-7
https://doi.org/10.1142/S0217979292000840
https://doi.org/10.1142/S0217979292000840
https://doi.org/10.1142/S0217979292000840
https://doi.org/10.1142/S0217979292000840
https://doi.org/10.21468/SciPostPhys.3.4.030
https://doi.org/10.21468/SciPostPhys.3.4.030
https://doi.org/10.21468/SciPostPhys.3.4.030
https://doi.org/10.21468/SciPostPhys.3.4.030
https://doi.org/10.1103/PhysRevLett.105.265301
https://doi.org/10.1103/PhysRevLett.105.265301
https://doi.org/10.1103/PhysRevLett.105.265301
https://doi.org/10.1103/PhysRevLett.105.265301
https://doi.org/10.1103/PhysRevB.85.140403
https://doi.org/10.1103/PhysRevB.85.140403
https://doi.org/10.1103/PhysRevB.85.140403
https://doi.org/10.1103/PhysRevB.85.140403
https://doi.org/10.1103/PhysRevB.100.165142
https://doi.org/10.1103/PhysRevB.100.165142
https://doi.org/10.1103/PhysRevB.100.165142
https://doi.org/10.1103/PhysRevB.100.165142
https://doi.org/10.1103/PhysRevB.101.014421
https://doi.org/10.1103/PhysRevB.101.014421
https://doi.org/10.1103/PhysRevB.101.014421
https://doi.org/10.1103/PhysRevB.101.014421

