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We study strongly confined plasmons in ultrathin gold and silver films by simulating electron energy-loss
spectroscopy. Plasmon dispersion relations are directly retrieved from the energy- and momentum-resolved
loss probability under normal incidence conditions, whereas they can also be inferred for aloof parallel beam
trajectories from the evolution of the plasmon features in the resulting loss spectra as we vary the impinging
electron energy. We find good agreement between nonlocal quantum-mechanical simulations based on the
random-phase approximation and a local classical dielectric description for silver films of different thicknesses
down to a few atomic layers. We further observe only a minor dependence of quantum simulations for these
films on the confining out-of-plane electron potential when comparing density-functional theory within the
jellium model with a phenomenological experimentally fitted potential incorporating atomic layer periodicity
and in-plane parabolic bands of energy-dependent effective mass. The latter shows also a small dependence on
the crystallographic orientation of silver films, while the unphysical assumption of energy-independent electron
mass leads to spurious features in the predicted spectra. Interestingly, we find electron band effects to be more
relevant in gold films, giving rise to blueshifts when compared to classical or jellium model simulations. In
contrast to the strong nonlocal effects found in few-nanometer metal nanoparticles, our study reveals that a
local classical description provides excellent quantitative results in both plasmon strength and dispersion when
compared to quantum-mechanical simulations down to silver films consisting of only a few atomic layers, thus
emphasizing the in-plane nearly free conduction-electron motion associated with plasmons in these structures.

DOI: 10.1103/PhysRevResearch.2.023096

I. INTRODUCTION

Surface plasmons—the collective electron oscillations at
material surfaces and interfaces—provide the means to con-
centrate and amplify the intensity of externally applied light
down to nanoscale regions [1,2], where they interact strongly
with molecules and nanostructures, thus becoming a powerful
asset in novel applications [3] such as biosensing [2,4,5],
photocatalysis [6,7], energy harvesting [8,9], and nonlinear
optics [10–13].

Surface plasmons were first identified using electron
energy-loss spectroscopy (EELS), starting with the prediction
[14] and subsequent measurement of associated loss features
in electrons scattered under grazing incidence from Al [15],
Na and K [16], and Ag [17,18] surfaces. The main char-
acteristics of surface plasmons in noble and simple metals
were successfully explained using time-dependent density-
functional theory (TD-DFT) [19] within the jellium model
[20,21], while inclusion of electron band effects was required
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for other metals [22]. Interestingly, multipole surface plas-
mons were predicted as additional resonances originating in
the smooth electron density profile across metal-dielectric
interfaces [22–24] and subsequently found in experiments
performed on simple metals such as K and Na [25], but con-
cluded to be too weak to be observed in Al [25] and Ag [26].
These studies focused on the relatively high-energy plasmons
supported by planar surfaces in the short-wavelength regime.
However, plasmons can hybridize with light forming surface-
plasmon polaritons (SPPs) in planar surfaces, which become
lightlike modes at low energies, thus loosing confinement,
as they are characterized by in-plane wavelengths slightly
smaller than those of light and long-range penetration into the
dielectric material or empty space outside the metal [27–29].

Highly confined plasmons can also be achieved in sharp
metallic tips and closely spaced metal surfaces [30], where
strong redshifts are produced due to the attractive Coulomb
interaction between neighboring noncoplanar interfaces. This
effect, which depends dramatically on surface morphology,
can also be observed in planar systems such as ultrathin
noble metal films [31,32] and narrow metal-dielectric-metal
waveguides [12,31,33]. More precisely, hybridization takes
place in metal films between the plasmons supported by
their two interfaces, giving rise to bonding and antibonding
dispersion branches that were first revealed also through
EELS in self-standing aluminum foils [34]; in ultrathin films
of only a few atomic layers in thickness, the antibonding
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plasmon dispersion is pushed close to the light line, whereas
the bonding plasmon becomes strongly confined (reaching
the quasistatic limit [31,32]), as experimentally corroborated
through angle-resolved low-energy EELS in few-monolayer
Ag films [35] and monolayer (ML) DySi2 [36], as well as in
laterally confined wires formed by In [37] and silicide [38],
and even in monatomic Au chains grown on Si(557) surfaces
[39]. Additionally, graphene has been shown to support long-
lived mid-infrared and terahertz plasmons [40] that can be
tuned electrically [41,42] and confined vertically down to a
few nanometers when placed in close proximity to a planar
metal surface [43,44]. While most graphene plasmon studies
have been performed using far- and near-field optics setups
[45–47], low-energy EELS has also revealed their dispersion
relation in extended films [48,49]. Here, we focus instead on
visible and near-infrared plasmons supported by atomically
thin metal films, which have been recently demonstrated in
laterally patterned crystalline Ag layers [32], where they also
experience strong spatial confinement.

In this paper, we investigate plasmons in atomically thin
noble metal films by theoretically studying EELS for electron
beams either traversing them or moving parallel outside their
surface, and in this way accessing different regions of the
dispersion diagram. Specifically, we explore nonlocal and
quantum-confinement effects in the frame of the random-
phase approximation (RPA). Our results are in excellent
agreement with classical dielectric theory based on the use
of frequency-dependent dielectric functions for both Ag and
Au films of small thickness down to a few atomic layers.
However, this conclusion is in stark contrast to the strong
nonlocal effects observed in metal nanoparticles of similar
or even larger diameter [50,51], a result that we attribute to
the predominance of in-plane electron motion associated with
the low-energy plasmons of thin films, unlike the combination
of in- and out-of-plane motion in higher-energy SPPs. We
also provide a comprehensive description of the influence
of various quantum-mechanical effects, such as the variation
of the effective mass in the dispersion relation of electronic
quantum-well states in the thin films, the detailed dependence
on the model used to describe valence electrons, and the
inclusion of electron spillout and surface orientation.

II. THEORETICAL FORMALISM

We present the elements needed to calculate EELS prob-
abilities in the nonretarded approximation using the linear
response susceptibility to represent the metallic thin film. The
latter is obtained in the RPA, starting from the one-electron
wave functions of the system, which are organized as vertical
quantum-well (QW) states, discretized by confinement along
the out-of-plane direction and exhibiting quasifree motion
along the plane of the film. We further specify the EELS prob-
ability for electron trajectories either parallel or perpendicular
with respect to the metal surfaces.

A. Calculation of EELS probabilities from the susceptibility
in the nonretarded limit

The loss probability �EELS(ω) measured through EELS
in electron microscopes must be normalized in such a way

that
∫ ∞

0 dω h̄ω �EELS(ω) gives the average energy loss expe-
rienced by the electrons. Taking the latter to follow a straight-
line trajectory with constant velocity vector v parallel to the z
axis and impact parameter R0 = (x0, y0), we can write [52]

�EELS(ω) = e

π h̄ω

∫
dz Re

{
E ind

z (R0, z, ω) e−iωz/v
}

(1)

as the integral along the electron trajectory of the frequency-
resolved self-induced field E ind

z (r, ω) = ∫
dt E ind

z (r, t )eiωt ,
which can be in turn calculated by solving the classical
Maxwell equations with the electron point charge acting as an
external source in the presence of the sample. This equation is
rigorously valid within the approximations of linear response
and nonrecoil (i.e., small energy loss h̄ω compared with the
electron kinetic energy E0).

In the present study, we consider relatively small elec-
tron velocities v � c and films of small thickness compared
with the involved optical wavelengths. This allows us to
work in the quasistatic limit and write the field E ind

z (r, ω) =
−∂zφ

ind(r, ω) as the gradient of a scalar potential, so Eq. (1)
can be integrated by parts to yield

�EELS(ω) = e

π h̄v

∫
dz Im{φind(R0, z, ω) e−iωz/v}. (2)

We can now express the induced potential in terms of the
induced charge as

φind(r, ω) =
∫

d3r′ ν(r, r′) ρ ind(r′, ω), (3)

where ν(r, r′) is the Coulomb interaction between point
charges located at positions r and r′. Likewise, we write the
induced charge as ρ ind(r, ω) = ∫

d3r′ χ (r, r′, ω)φext (r′, ω),
where χ (r, r′, ω) is the linear susceptibility, φext (r, ω) =∫

d3r′ ν(r, r′) ρext (r′, ω) is the external electric potential
generated by the electron charge density ρext (r, ω) =
−e

∫
dt δ(r − R0 − vt ) eiωt = (−e/v)δ(R − R0) eiωz/v , and

we use the notation r = (R, z) with R = (x, y).
In free space one has ν(r, r′) = ν0(r − r′) = 1/|r − r′|,

but we are interested in retaining a general spatial dependence
of ν(r, r′) in order to describe the polarization background
produced in the film by interaction with everything else other
than conduction electrons (see below). Combining these ele-
ments with Eq. (2), we find the loss probability

�EELS(ω) = e2

π h̄v2

∫
d3r

∫
d3r′ w∗(r) w(r′)

× Im{−χ (r, r′, ω)}, (4)

where

w(r) =
∫

dz′ν(r, R0, z′) eiωz′/v (5)

is the external potential created by the electron and we have
made use of the reciprocity property χ (r, r′, ω) = χ (r′, r, ω)
to extract the complex factors w outside the imaginary part.
Next, we apply this expression to calculate EELS probabilities
from the RPA susceptibility. But first, for completeness, we
note that the integral in Eq. (5) can be performed analytically
for the bare Coulomb interaction [53] yielding

w(r) = 2K0(ω|R − R0|/v) eiωz/v,
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where K0 is a modified Bessel function [53], thus allowing us
to write

�EELS(ω) = 4e2

π h̄v2

∫
d3r

∫
d3r′ cos

[ω

v
(z′ − z)

]

× K0

(ω

v
|R − R0|

)
K0

(ω

v
|R′ − R0|

)

× Im{−χ (r, r′, ω)}

for the loss probability, which we can directly apply to sys-
tems in which any background polarization is already con-
tained in χ , or when ν is well described by the bare Coulomb
interaction (e.g., in simple metals).

B. RPA susceptibility of thin metal films

We follow the same formalism as in Ref. [33], which
is extended here to account for an energy dependence of
the in-plane electron effective mass. One starts by writ-
ing χ (r, r′, ω) in terms of the noninteracting susceptibility
χ0(r, r′, ω) through χ = χ0 · (I − ν · χ0)−1, where we use
matrix notation with spatial coordinates r and r′ acting as ma-
trix indices, so that matrix multiplication involves integration
over r, and I (r, r′) = δ(r − r′). We further adopt the RPA by
calculating χ0 as [33,54]

χ0(r, r′, ω) = 2e2

h̄

∑
ii′

( fi′ − fi )
ψi(r)ψ∗

i (r′)ψ∗
i′ (r)ψi′ (r′)

ω + iγ − (εi − εi′ )

(6)

from the one-electron wave functions ψi of energies h̄εi and
Fermi-Dirac occupation numbers fi. Here, the factor of 2
accounts for spin degeneracy and γ is a phenomenological
damping rate.

We describe metal films assuming translational invariance
along the in-plane directions and parabolic electron dispersion
with different effective mass m∗

j for each vertical QW band j.
This allows us to write the electron wave functions as [55]
ψi(r) = ϕ j (z)eik‖·R/

√
A, where k‖ is the two-dimensional

(2D) in-plane wave vector, A is the quantization area, and
the state index is multiplexed as i → ( j, k‖). Likewise, the
electron energy can be separated as h̄ε j,k‖ = h̄ε⊥

j + h̄2k2
‖/2m∗

j ,
where h̄ε⊥

j is the out-of-plane energy that signals the QW
band bottom (relative to the vacuum level). Inserting these ex-
pressions into Eq. (6) and making the customary substitution∑

i → A
∑

j

∫
d2k‖/(2π )2 for the state sums, we find [56]

χ (r, r′, ω) =
∫

d2Q
(2π )2

χ (Q, z, z′, ω) eiQ·(R−R′ ), (7)

which directly reflects the in-plane homogeneity of the film.
We can now work in Q space, where Eq. (6) reduces, using
the above assumptions for the wave functions, to

χ0(Q, z, z′, ω) = 2e2

h̄

∑
jj′

χ jj′ (Q, ω)ϕ j (z)ϕ∗
j (z′)ϕ∗

j′ (z)ϕ j′ (z
′),

(8)

where

χ jj′ (Q, ω) =
∫

d2k‖
(2π )2

(
f j′,|k‖−Q| − f j,k‖

)

× 1

ω + iγ − [
ε⊥

j − ε⊥
j′ + h̄

2

(
k2
‖/m∗

j − |k‖ − Q|2/m∗
j′
)] ,

(9)

which only depends on the modulus of Q due to the in-plane
band isotropy. We evaluate the integral in Eq. (9) assuming
zero temperature [i.e., f j,k‖ = θ (EF − h̄ε j,k‖ ), where EF is
the Fermi energy] and taking Q = (Q, 0) without loss of
generality.

Incidentally, simple manipulations of the above expres-
sions reveal a dependence on frequency and damping through
(ω + iγ )2 that is maintained in the local limit (Q → 0), in
contrast to ω(ω + iγ ) in the Drude model. The RPA formal-
ism thus produces spectral features with roughly twice the
width of the Drude model in the local limit. This problem
(along with a more involved issue related to local conserva-
tion of electron number for finite attenuation) can be solved
through a phenomenological prescription proposed by Mer-
min [57], which unfortunately becomes rather involved when
applied to the present systems. As a practical and reasonably
accurate solution, we proceed instead by setting γ = γ exp/2
in the above expressions (i.e., half the experimental damping
rate; see the Appendix).

We obtain the out-of-plane wave functions ϕ j (z)
as the eigenstates of the one-dimensional Hamiltonian
−(h̄2/2me)∂zz + V (z), using the free-electron mass me for
the transversal kinetic term and two different models for the
confining potential V (z): (i) the self-consistent solution in the
jellium (JEL) approximation within density-functional theory
(DFT) [20,21] and (ii) a phenomenological atomic-layer po-
tential (ALP) that incorporates out-of-plane bulk atomic-layer
corrugation and a surface density profile with parameters
fitted to reproduce relevant experimental band-structure
features, such as affinity, surface-state energy, and projected
bulk band gap, which depend on material and crystal
orientation as compiled in Ref. [58].

The JEL model corresponds to the self-consistent DFT
solution for a thin slab of background potential and energy-
independent effective mass m∗

j = me [20,21], computed here
through an implementation discussed elsewhere [59].

In the ALP model we fit m∗
j to experimental data (see

Table I) and consider an effective electron density neff . Upon
integration over the density of states of the parabolic QW
bands, we can then write the Fermi energy of an N-layer film
as

EF =
⎛
⎝ M∑

j=1

m∗
j

⎞
⎠

−1⎛
⎝neffasNh̄2π +

M∑
j=1

m∗
j h̄ε⊥

j

⎞
⎠, (10)

where j = M is the highest partially populated QW band (i.e.,
ε⊥

M < EF/h̄ < ε⊥
M+1) and as is the atomic interlayer spacing

[i.e., the film thickness is d = Nas, with as = 0.236 nm for
Ag(111) and Au(111), and as = 0.205 nm for Ag(100)]. This
expression reduces to a similar one in Ref. [33] when m∗

j is
independent of j. We adjust neff for each type of metal surface
in such a way that Eq. (10) gives the experimental bulk values
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TABLE I. Parameters used to describe the parabolic dispersion of quantum wells in Ag(111), Ag(100), and Au(111) films. We take the
effective mass of each QW j to linearly vary as m∗

j /me = ah̄ε⊥
j + b with band-bottom energy h̄ε⊥

j , where the parameters a and b are taken to
match m0 at the highest occupied QW [below the surface state (SS)] in the semi-infinite surface and m∗ = me at the bottom of the conduction
band. The effective electron density neff , given here relative to the bulk conduction electron density n0, is required to fit the experimentally
observed Fermi energy EF (relative to the vacuum level) and SS energy.

Material a (eV−1) b m∗(SS)/me m0/me neff/n0 EF (eV)

Ag(111) −0.1549 −0.5446 0.40 [60] 0.25 [61] 0.8381 −4.63 [62,64]
Ag(100) −0.0817 0.2116 0.40 [63] 0.8710 −4.43 [58]
Au(111) −0.1660 −0.8937 0.26 [60] 0.21 [61] 0.9443 −5.50 [62,64]

of EF listed in Table I. Incidentally, although the effective
mass of surface states also varies with energy [65,66], we take
it as constant because of the lack of data for ultrathin Au and
Ag films; this should be a reasonable approximation for films
consisting of N � 5 layers, where the surface-state energy is
already close to the semi-infinite surface level.

Conduction electrons interact through the bare Coulomb
potential in simple metals, which in Q space reduces to
ν(Q, z, z′) = (2π/Q)e−Q|z−z′ |. However, polarization of inner
electronic bands plays a major role in the dielectric response
of Ag and Au. We describe this effect by modifying ν(Q, z, z′)
in order to account for the interaction between point charges
in the presence of a dielectric slab of local background permit-
tivity fitted to experimental data [67] after subtracting a Drude
term representing conduction electrons (see the Appendix).
We thus adopt the local response approximation for this con-
tribution originating in localized inner electron states, whereas
conduction electrons are treated nonlocally through the above
RPA formalism. Similar to Eq. (7), translational symmetry in
the film allows us to write

ν(r, r′) =
∫

d2Q
(2π )2

ν(Q, z, z′) eiQ·(R−R′ ), (11)

where ν(Q, z, z′) is reproduced for convenience from Ref. [33]
in the Appendix. We note that Eq. (11) neglects the effect of
lateral atomic corrugation in this interaction (i.e., the back-
ground permittivity is taken to be homogeneous inside the
film).

Finally, we calculate χ (Q, z, z′, ω) from the noninteracting
susceptibility [Eq. (8)] and the screened interaction by dis-
cretizing both of them in real space coordinates (z, z′) and
numerically performing the linear matrix algebra explained
above. We obtain converged results with respect to the number
of discretization points and also compared with an expansion
in harmonic functions [33].

C. EELS probability under normal incidence

Direct insertion of Eqs. (7) and (11) into Eqs. (4) and (5)
leads to the result

�EELS
⊥ (ω) =

∫ ∞

0
dQ �EELS

⊥ (Q, ω) (12)

with

�EELS
⊥ (Q, ω)

= e2 Q

2π2h̄v2

∫
dz

∫
dz′ I∗

⊥(Q, z)I⊥(Q, z′) Im{−χ (Q, z, z′, ω)},
(13)

where

I⊥(Q, z) =
∫

dz′ ν(Q, z, z′) eiωz′/v (14)

contains the external electron potential. For completeness,
we note that when ν(Q, z, z′) is the bare Coulomb in-
teraction (2π/Q)e−Q|z−z′ |, Eq. (14) becomes I⊥(Q, z) =
4πeiωz/v/(Q2 + ω2/v2), so Eq. (13) reduces to

�EELS
⊥ (Q, ω) = 8e2

h̄v2

Q

(Q2 + ω2/v2)2

×
∫

dz
∫

dz′ cos[ω(z − z′)/v]

× Im{−χ (Q, z, z′, ω)}, (15)

where we have used reciprocity again [i.e., χ (Q, z, z′, ω) =
χ (Q, z′, z, ω)].

In the simulations that we present below, we compare the
RPA approach just presented with classical electromagnetic
calculations based on the use of a local frequency-dependent
dielectric function for the metal. This configuration has been
theoretically studied for a long time [68], and in particular,
we use the analytical expressions derived in a previous pub-
lication for an electron normally incident on a dielectric slab
[69] with the bulk contribution integrated up to a cutoff wave
vector Q = 5 nm−1.

D. EELS probability in the aloof configuration

For an electron moving parallel to the film at a distance z0

from the metal surface, it is convenient to make the substi-
tutions z → x, R → (y, z), and R0 → (0, z0) in Eqs. (4) and
(5), so combining them with Eqs. (7) and (11), and retaining
R = (x, y) in the latter, we readily obtain

�EELS
‖ (ω) = e2L

π2h̄v2

∫ ∞

0
dQy

∫
dz

∫
dz′ν∗(Q, z, z0)

× ν(Q, z′, z0) Im{−χ (Q, z, z′, ω)}, (16)

where Q =
√

ω2/v2 + Q2
y and L is the electron path length.

Again for completeness, when ν(Q, z, z′) is the bare Coulomb
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interaction, Eq. (16) reduces to

�EELS
‖ (ω) = 4e2L

h̄v2

∫ ∞

0

dQy

Q2

×
∫

dz
∫

dz′e−Q(|z−z0|+|z′−z0|)

× Im{−χ (Q, z, z′, ω)}.
The above expressions can be applied to electron impact
parameters z0 both inside and outside the metal, but they can
be simplified when the beam is not overlapping the conduction
electron charge [see Fig. 3(a)], so that z0 > z, z′ lies in the
region inside the above integrals in which χ (Q, z, z′, ω) is
zero, and therefore, changing the variable of integration from
Qy to Q, we can write

�EELS
‖ (ω) = 2e2L

π h̄v2

∫ ∞

ω/v

dQ
e−2Qz0√

Q2 − ω2/v2
Im{rp(Q, ω)},

(17)

where

rp(Q, ω) = − Q

2π

∫
dz

∫
dz′ ν∗(Q, z, z0)ν(Q, z′, z0)

× e2Qz0 χ (Q, z, z′, ω) (18)

is the Fresnel reflection coefficient of the film for p polariza-
tion (i.e., with the magnetic field parallel to the surface) in the
quasistatic limit. Incidentally, Eq. (18) is independent of the
source location z0 when it does not overlap the metal because
ν(Q, z, z0) then depends on z0 only through a factor e−Qz0

(see the Appendix). Equation (17), which agrees with previ-
ous derivations from classical dielectric theory [70], reveals
Im{rp(Q, ω)} as a loss function, which is used below to visu-
alize the surface plasmon dispersion. We also provide results
from a local dielectric description based on the textbook solu-
tion of the Poisson equation for the reflection coefficient [33],

rclassical
p = (ε2 − 1)(1 − e−2Qd )

(ε + 1)2 − (ε − 1)2e−2Qd
, (19)

for a metal film of thickness d and permittivity ε. The
poles of the reflection coefficient lead to the bonding
plasmon dispersion relation coth (Qd/2) = ω2

p/ω
2 − εb,

which depends on the background permittivity εb and the
plasma frequency ωp =

√
4πn0e2/me. These parameters are

in turn dependent on the choice of material, and in particular,
the conduction-electron density n0 indicates the number of
electrons that participate in the plasmonic excitations, so they
strongly affect the plasmon dispersion relation, the frequency
of which is proportional to

√
n0.

III. RESULTS AND DISCUSSION

We show examples of the two types of confining elec-
tron potentials used in our RPA calculations for Ag films
in Figs. 1(a) and 1(b), along with the resulting conduction-
electron charge densities. The JEL potential is smooth at the
surface and describes electron spillout and Friedel oscilla-
tions [71]. The phenomenological ALP further incorporates
corrugations due to the atomic planes in the bulk, which
result in strong oscillations of the density. The computed
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FIG. 1. RPA description of plasmons in atomically thin Ag(111)
films. (a, b) Effective confining potential for conduction electrons
across a 10-ML film. The conduction charge density is shown as
shaded areas. (d, c) Electronic energies as a function of film thickness
expressed as the number of (111) atomic layers (blue dots). Red
curves and green dots represent the Fermi energy and the surface
states (SSs). (e, f) Loss function Im{rp} calculated in the RPA [color
plot, Eq. (18)], compared with the plasmon dispersion relation in
the local Drude dielectric model (red curves). Left (right) panels are
calculated in the jellium (ALP) model.

electron energies h̄ε j (see Sec. II B), which correspond to
the bottom points of the QW bands (i.e., for vanishing in-
plane momentum), are distributed with N of them below the
Fermi level in a Ag(111) film consisting of N monolayers
[Figs. 1(c) and 1(d)] [72]. The band structure quickly evolves
toward the semi-infinite surface for a few tens of MLs in
both models. Additionally, the ALP hosts surface states and
a projected bulk gap of energies fitted to experiment [58].
We note that this gap depends on surface orientation: it
is present in Ag(111) but absent in Ag(100) at the Fermi
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10 ML

0

1

-1

2

Distance along z

FIG. 2. Plasmon charge density across a thin 10-ML Ag(111)
film. We plot the real (solid curves) and imaginary (dashed curves)
parts of the induced charge density ρ ind as calculated in the RPA
for excitation by a source placed to the left of the film at the
plasmon energies h̄ω = 3.54 eV and h̄ω = 3.47 eV corresponding to
a parallel wave vector Q = 0.5 nm−1 in the ALP (blue) and JEL
(orange) models, respectively.

level, as revealed by photoemission measurements [73] (see
also Fig. S1(a) in the Supplemental Material (SM) [74]).
Remarkably, despite the important differences in the details
of the potentials and electron bands, both models predict a
similar plasmon dispersion [Figs. 1(e) and 1(f), density plots,
obtained from Eq. (18)], which is in excellent agreement with
classical theory [Figs. 1(e) and 1(f), red curves, obtained from
the poles of Eq. (19)]. This is mainly attributed to the fact
that the dispersion relation is dominated by the background
dielectric function and the number of electrons undergoing the
plasmonic excitation. Incidentally, we observe the response to
also converge toward the semi-infinite surface limit for a few
tens of atomic layers (see Fig. S2 in the SM [74]). Similar
good agreement is found in the reflection coefficients of Ag
films computed for different thickness with either of these
potentials, with a square-barrier potential, or with a model
potential constructed by gluing on either film side a jellium
DFT potential tabulated for semi-infinite surfaces [20] (see
Fig. S3 in the SM [74]).

The transversal distribution of charge densities associated
with thin-film plasmons shows a clear resemblance when
calculated using the ALP or JEL model potentials, although
one can still observe substantial discrepancies between the
two of them (see for example Fig. 2, where the ALP model
charge appears to be smaller in magnitude). However, this
different behavior hardly reflects in the dispersion relation
and plasmon strength (Fig. 1). Interestingly, the z-integrated
charge is nonzero, revealing that plasmons involve net charge
oscillations along the in-plane directions for finite wave
vector Q.

We conclude from these results that it is the effective
number of valence electrons participating in the plasmons
that determines their main characteristics, irrespective of the
details of the electron wave functions and induced charge
densities. We further note that a classical description of EELS

(c)

(a)

0.01

0.02

N = 5

N = 5

N = 10

N = 20

N = 30

0.01

0.03

0.05
ALP
JEL
classical

N = 5

(b)

0 1 2 3 4 5 2 3 4

(d)
0 0.5 1

1

2

3

4

5

v=0.01c

0.05c0.1ccParallel trajectory

Ag(111)

= 1 keV

= 2.5 keV

= 2.5 keV
= 5 keV

= 10 keV

FIG. 3. Aloof EELS in thin Ag(111) films. (a) Scheme showing
an electron moving parallel to an N = 5 ML Ag(111) metal film at
a distance z0 from its upper surface. (b) Dispersion diagram showing
Im{rp} calculated in the ALP model for the film shown in (a). White
solid lines correspond to ω = vQ for different velocities v, while
the dashed horizontal line shows the classical high-Q asymptotic
surface-plasmon energy h̄ωs 
 3.7 eV. (c, d) EELS probability per
unit of path length for z0 = 0.5 nm calculated using different models
[see legend in (c)] for (c) different electron kinetic energies E0 with
fixed N = 5 and (d) different N’s with E0 = 2.5 keV.

is already in good agreement with experimental observation
[69], and in particular for silver films [17,18].

The loss function Im{rp} provides a convenient way to
represent the plasmon dispersion relation, as plasmons pro-
duce sharp features in the Fresnel reflection coefficient for p
polarization. A weighted integral of this quantity over in-plane
wave vectors gives the EELS probability under parallel aloof
interaction [Fig. 3(a)] according to Eq. (17). However, the
integration limit has a threshold at ω = Qv and the weighting
factor multiplying the loss function in the integrand diverges
precisely at that point. The cutoff condition ω = Qv is rep-
resented in Fig. 3(b) for different electron velocities (white
lines) along with the loss function (density plot). As expected,
the points of intersection with the plasmon band produce a
dominant contribution that pops up as sharp peaks in the
resulting EELS spectra [Figs. 3(c) and 3(d)]. An increase
in electron velocity (i.e., in the slope of the threshold line)
results in a redshift of the spectral peak [Fig. 3(c)], and
likewise, thinner films show plasmons moving farther away
from the ω = Qc light line, thus producing shifts toward
lower plasmon energies in the EELS spectra for fixed electron
energy. We remark that RPA and classical calculations lead
to quantitatively similar results for this configuration, and the
former are roughly independent of the choice of confining
electron potential.

The ALP model incorporates experimental information
on electronic bands, which depend on crystallographic
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0 1 2 3 4 5

Ag(111)
Ag(100)

= 1 keV

= 2.5 keV

= 5 keV

= 10 keV

0

0.01

0.02

0.03

FIG. 4. Plasmon dependence on crystallographic surface orienta-
tion: Ag(111) and Ag(100) films. We compare EELS spectra calcu-
lated in the ALP model under the same conditions as in Figs. 3(c) and
3(d) for N = 13 ML Ag(111) and N = 15 ML Ag(100) films (thick-
ness ratio differing by <0.1%).

orientation (see Table I). We explore the effects of this de-
pendence by comparing aloof EELS spectra obtained from
Ag(111) and Ag(100) films in Fig. 4. In order to eliminate dis-
crepancies arising from differences in thickness, we consider
films consisting of N = 13 and N = 15 MLs, respectively,
so that the thickness ratio is (2/

√
3) × (13/15) ≈ 1.001. We

remind that Ag(111) displays a projected bulk gap in the
electronic bands, in contrast to Ag(100) (see Fig. S1(a) in
the SM [74]); as a consequence the former supports electronic
surface states, unlike the latter [58]. Despite these remarkable
differences in electronic structure, the resulting spectra look
rather similar, except for a small redshift of Ag(100) plasmon
peaks relative to Ag(111), comparable in magnitude to those
observed in semi-infinite Ag(111) and Ag(110) crystal sur-
faces through angle-resolved low-energy EELS [75], although
the actual magnitude of the shift might be also influenced by
electron confinement in our ultrathin films.

The presence of a dielectric substrate of permittivity εs is
known to redshift the plasmon frequency of thin films by a fac-
tor of ∼1/

√
1 + εs due to the attractive image interaction [76].

This effect is observed in our calculated aloof EELS spectra,
for which we obtain the combined film-substrate reflection
coefficient by using a Fabry-Pérot approach, as discussed
elsewhere [33]. We find again excellent agreement between
RPA simulations using the ALP and classical calculations
(Fig. 5), and in fact, the resemblance between the spectral
profiles obtained with both methods increases with εs.

In Fig. 6 we examine the way lateral dispersion of QW
states affects the plasmonic properties of ultrathin Ag films
when using the ALP. Comparison of the band structures cal-
culated with [Fig. 6(b)] and without [Fig. 6(a)] inclusion of an
energy dependence in the in-plane effective mass anticipates
a clear difference between the two of them: the latter shows
the same energy jumps between different bands irrespective
of the electron parallel wave vector k‖; those energy jumps

0 1 2 3 4 5

ALP
classical

0

0.005

0.01

0.015

0.02

0.025

substrate

Ag(111)

FIG. 5. Substrate-induced plasmon shift. We show EELS spectra
for 2.5-keV electrons calculated in either the ALP model or the
local classical description under the same conditions as in Fig. 3
for a Ag(111) film consisting of N = 5 MLs supported on a planar
dielectric substrate of permittivity εs as indicated by labels.

will therefore be favored in the optical response, giving rise
to spurious spectral features. In contrast, differences in lateral
dispersion associated with the energy dependence of the ef-
fective mass (described here by fitting existing angle-resolved
photoemission data [60,61,63,64,77,78]) should at least par-
tially wash out those spectral features. This is clearly observed
in the resulting dispersion diagrams [Figs. 6(c) and 6(d)] and
aloof EELS spectra [Figs. 6(e) and 6(f)]. In particular, the dis-
persion relation for constant m∗

j [Fig. 6(c)] reveals a complex
mixture of resonances at energies above 3 eV, which we find
to be strongly affected by the HOMO-LUMO gap energy (not
shown); these resonances cause fine structure in the EELS
spectra that disappears when a realistic energy dependence is
introduced in the lateral effective mass [Fig. 6(e)].

We also analyze EELS spectra for normally impinging
electron beams (Fig. 7). The momentum- and energy-resolved
EELS probability given by Eq. (13) reveals the plasmon
dispersion in analogy to the loss function [cf. Figs. 3(b)
and 7(b)]. But now, this quantity is directly accessible under
normal incidence by recording angle- and energy-dependent
electron transmission intensities, as already done in pioneer-
ing experiments for thicker Al films showing both bonding
and antibonding plasmon dispersions [34]. In contrast to the
aloof configuration, the transmission EELS spectra exhibit
broader plasmon features [Figs. 7(c) and 7(d)], which in the
thin-film limit [70] are the result of weighting the loss function
with a profile Q2/(Q2 + ω2/v2)2 [see also Eq. (15); the extra
factor of Q emerges from χ in the small-Q limit], represented
in Fig. 7(b) for 2.5 keV electrons and different energies h̄ω

(colored curves); these spectra reveal indeed a broad spectral
overlap with the plasmon band. Again, we observe very
similar results from RPA and classical descriptions, and just
a minor dependence on electron potential in the former.

We conclude by showing EELS calculations for
Au(111) films in Fig. 8. This noble metal has a similar
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FIG. 6. The role of the electron effective mass. (a, b) In-plane
parabolic QW bands of an N = 10 ML Ag(111) film in the ALP
model with (a) constant and (b) energy-dependent effective mass
(m∗

j = me and m∗
j = (ah̄ε⊥

j + b)me, respectively; see Table I). The
surface-state band in (b) (blue curve) has a mass 0.4me. Solid
(dashed) curves represent bands that are occupied (unoccupied) at
k‖ = 0. The Fermi level is shown as a horizontal red line. (c, d) Loss
function Im{rp} under the conditions of (a) and (b), respectively. (e, f)
EELS probability under parallel aloof interaction at a distance z0 =
0.5 nm for two different electron energies corresponding to the
ω = Qv lines shown in (c) and (d) and different film thicknesses (see
labels) calculated in the ALP model with constant (dashed curves)
and energy-dependent (solid curves) electron effective mass.

conduction-electron density as Ag, but the Au d band
is closer to the Fermi energy, therefore producing large
screening (εb ∼ 9 in the plasmonic region) compared with Ag
(εb ∼ 4; see Fig. S4 in the SM [74]). This causes a shift of the
high-Q surface plasmon asymptote down to h̄ωs 
 2.5 eV.
Additionally, damping is also stronger (more than three
times larger than in Ag; see the Appendix), which results in
broader spectral features [cf. Fig. 8 for Au and Figs. 3(c) 3(d),
7(c) and 7(d) for Ag]. Interestingly, we observe significant
blueshifts in the plasmon spectral features when using the
ALP as compared with both jellium DFT and classical
models. This effect could originate in a more substantial role
played by the electronic band structure in Au(111) because
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00
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FIG. 7. EELS in thin Ag(111) films under normal incidence.
(a) Scheme showing an electron normally traversing a N = 5 ML
Ag(111) metal film. (b) Momentum- and energy-resolved EELS
probability �EELS

⊥ (Q, ω) [Eq. (13)] calculated for E0 = 2.5 keV elec-
trons (v/c ≈ 0.1) in the ALP model for the film shown in (a).
Colored solid curves show Q2/(Q2 + ω2/v2)2 profiles as a function
of Q for different energy losses h̄ω = 2, 3, and 5 eV, while the dashed
horizontal line indicates h̄ωs. (c, d) EELS probability calculated
using different models [see legend in (d)] for (c) different electron
kinetic energies E0 with fixed N = 5 and (d) different N’s with
E0 = 2.5 keV.
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FIG. 8. EELS spectra for gold Au(111) films. We consider (a, c)
aloof and (b, d) normal trajectories for either (a, b) fixed electron
energy (E0 = 2.5 keV) and varying film thickness (N = 5–30 MLs)
or (c, d) fixed N = 5 and varying electron energy. Calculations for
the same models as in Fig. 3 are presented. The plasmon dispersion
is shown for N = 10 MLs using the ALP model in the inset of (b).
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the projected bulk gap extends further below the Fermi level,
and additionally, the surface-state band is also more deeply
bound (see Fig. S1(b) in the SM [74]). This is consistent with
the general dependence of the optical surface conductivity on
Fermi momentum kF and velocity vF: in the Drude model for
graphene and the two-dimensional electron gas, this quantity
is proportional to kFvF and the surface plasmon frequency
scales as ∝ √

kFvF; the situation is more complicated in our
thin films because they have multiple 2D bands crossing the
Fermi level, but the presence of a deeper gap in Au(111)
indicates that the effective band-averaged value of kFvF (i.e.,
with kF defined by the crossing of each QW at the Fermi level
and vF as the slope of the parabolic dispersion at that energy)
is larger than in Ag surfaces, characterized by the presence
of shallower bands near EF. We thus expect an increase
in Drude weight, and consequently a plasmon blueshift, in
Au(111) relative to Ag; this argument is reinforced by the
small effective mass of surface states in Au(111) compared
with Ag(111), which also pushes up their associated vF.
In summary, the plasmon blueshifts observed in Au(111)
when using the realistic ALP seem to have a physical origin,
although more sophisticated first-principles simulations might
be needed to conclusively support this finding.

IV. CONCLUSION

In summary, we have shown that a local classical dielectric
model predicts reasonably well the intensities and dispersion
relations of plasmons in ultrathin silver films when compared
to quantum-mechanical simulations based on the RPA with
different potentials used to simulate the conduction one-
electron wave functions. We attribute the small effects of non-
locality and quantum confinement in the plasmonic response
of these films to the fact that their associated electron motion
takes place along in-plane directions, in contrast to metal
nanoparticles with a similar size as the film thickness here
considered (i.e., electron surface scattering is unavoidable in
such particles, thus introducing important nonlocal effects).
We confirm this agreement between classical and quantum
simulations in Ag and Au films down to a few atomic layers in
thickness [33,59], consistent with previous smooth-interface
hydrodynamic theory [79].

Additionally, our quantum RPA simulations are relatively
insensitive to the details of the confining electron potential,
so similar results are obtained when using either a smooth
jellium DFT model or a phenomenological potential that in-
corporates atomic-layer corrugation to fit relevant elements of
the electronic band structure. In particular, the latter produces
results that are rather independent of the crystallographic
orientation of the film. These results support the intuition that
the plasmons under consideration are integrated quantities,
which essentially depend on the number of electrons in the
system, as well as the effect of background screening pro-
duced by polarization of inner shell electrons, and not so much
on the details of the electronic wave functions. Nonetheless,
it is important to introduce the correct energy dependence
of the out-of-plane effective mass in the phenomenological

potential model, as otherwise spurious features show up in
the calculated plasmon spectra. Although jellium DFT and
phenomenological potentials lead to substantially different
plasmon charge distributions, spatial integration gives rise
to similar plasmon dispersion relations. Interestingly, band
effects described in the ALP model are more significant in Au,
where they produce plasmon blueshifts relative to the predic-
tions of classical and jellium DFT simulations; we attribute
this different behavior in Au(111) relative to Ag(111) and
Ag(100) to the fact that the former surface exhibits a projected
bulk gap that extends further below the Fermi level, and
additionally this gives rise to more bound surface states. We
remark that EELS provides the means to access the dispersion
relations of strongly confined plasmons in ultrathin metal
films, which are too far from the light line to be measured
by means of optical techniques.
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APPENDIX: BACKGROUND SCREENED INTERACTION

We introduce the effect of interband polarization in the
plasmonic spectral region of noble metals through a dielectric
slab of permittivity εb(ω) = ε(ω) + ω2

p/ω(ω + iγ exp), that is,
the local dielectric function of the bulk metal ε(ω) from
which we subtract a classical bulk Drude term representing the
contribution of conduction electrons. In practice, we take ε(ω)
from measured optical data [67] and use parameters h̄ωp =
9.17 eV and h̄γ exp = 21 meV for Ag, and h̄ωp = 9.06 eV
and h̄γ exp = 71 meV for Au. The resulting εb(ω) is plotted
in Fig. S4 of the SM [74]. Incidentally, as we explain in
Sec. II B, we set the damping parameter to γ = γ exp/2 in
the RPA formalism in order to fit the experimental plasmon
width. Following previous work [19], we take the background
dielectric slab to have a thickness d = Nas, where N is the
number of atomic layers and as is the interlayer spacing, so
that it extends symmetrically a distance as/2 outside the outer
atomic plane on each side of the film.

We reproduce for convenience a previously reported ex-
pression [33] for the screened interaction, used here to account
for background polarization in a self-standing metal film of
thickness d and background permittivity εb contained in the
0 < z < d region:

ν(Q, z, z′) = νdir (Q, z, z′) + νref (Q, z, z′),

where

νdir (Q, z, z′) = 2π

Q
e−Q|z−z′ | ×

⎧⎨
⎩

1, z, z′ � 0 or z, z′ > d
1/εb, 0 < z, z′ � d
0, otherwise,
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and

νref (Q, z, z′) = (2π/Q)

(εb + 1)2 − (εb − 1)2e−2Qd
×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − ε2

b

)
(e2Qd − 1) e−Q(z+z′ ), d < z, z′

2[(εb + 1)e−Q(z−z′ ) + (εb − 1)e−Q(z+z′ )], 0 < z′ � d < z

4εb e−Q(z−z′ ), z′ � 0 and d < z

2[(εb + 1)eQ(z−z′ ) + (εb − 1)e−Q(z+z′ )], 0 < z � d < z′

(1/εb)
{(

ε2
b − 1

)
[e−Q(z+z′ ) + e−Q(2d−z−z′ )]

+(εb − 1)2[e−Q(2d+z−z′ ) + e−Q(2d−z+z′ )]
}
, 0 < z, z′ � d

2[(εb + 1)e−Q(z−z′ ) + (εb − 1)e−Q(2d−z−z′ )], z′ � 0 < z � d

4εb eQ(z−z′ ), z � 0 and d < z′

2[(εb + 1)eQ(z−z′ ) + (εb − 1)e−Q(2d−z−z′ )], z � 0 < z′ � d(
1 − ε2

b

)
(1 − e−2Qd ) eQ(z+z′ ), z, z′ � 0.

For completeness, we illustrate the dramatic effects of interband processes in Fig. S5 of the SM [74] by comparing calculations
obtained for Ag films using either screened or bare Coulomb interactions.
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