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We investigate the phases of two-dimensional electron-hole systems strongly coupled to a microcavity photon
field in the limit of extreme charge imbalance. Using variational wave functions, we examine the competition
between different electron-hole paired states for the specific cases of semiconducting III-V single quantum wells,
electron-hole bilayers, and transition-metal dichalcogenide monolayers embedded in a planar microcavity. We
show how the Fermi sea of excess charges modifies both the electron-hole bound state (exciton) properties
and the dielectric constant of the cavity active medium, which in turn affects the photon component of the
many-body polariton ground state. On the one hand, long-range Coulomb interactions and Pauli blocking of the
Fermi sea promote electron-hole pairing with finite center-of-mass momentum, corresponding to an excitonic
roton minimum. On the other hand, the strong coupling to the ultra-low-mass cavity photon mode favors zero-
momentum pairs. We discuss the prospect of observing different types of electron-hole pairing in the photon

spectrum.
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I. INTRODUCTION

Recent technological progress has opened up the possi-
bility to study the interplay between strong light-matter cou-
pling and electronic doping in semiconductor structures [1-8].
Here, there is the prospect of generating and controlling novel
strongly correlated phases involving photons, electron-hole
pairs, and an electron gas. Electron-hole systems with charge
imbalance are expected to display exotic pairing phenomena
such as the spontaneous appearance of electron-hole pairs (ex-
citons) with finite center-of-mass (COM) momentum [9-12].
This finite COM paired state is equivalent to the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) phase [13,14], a spatially
modulated paired phase first proposed in the context of spin-
imbalanced conventional superconductors. The study of this
inhomogeneous superfluid phase has attracted noticeable in-
terest over the past five decades in a wide range of physi-
cal systems—see, e.g., the recent reviews in Refs. [15-17].
However, a conclusive experimental observation of the FFLO
state remains a challenge. Signatures and indirect evidence
of the FFLO phase have been reported in heavy-fermion
systems [18], layered organic superconductors [19-23], and
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iron-based superconductors [24]. There has also been related
work on ultracold gases in one-dimensional (1D) optical
lattices, paving the way toward studying FFLO states in such
systems [25]. It is therefore of particular interest to understand
how such a state in an electron-hole system might be probed
and controlled with light.

One particularly interesting class of materials giving access
to this regime are transition-metal dichalcogenide (TMDC)
monolayers [26]. These structures are characterized by dis-
tinctive excitonic effects, ascribed to two-dimensional (2D)
confinement and weak dielectric screening of the carrier
Coulomb interactions in the 2D limit [27,28]. Coupling be-
tween excitons and electrically injected free charge carri-
ers has been recently demonstrated (see, e.g., Ref. [29]),
together with the realization of electron-hole bilayers with
independently tunable carrier densities [30]. Further, the large
exciton binding energies and strong light-matter coupling of
these materials grant the possibility of accessing polaritonic
(exciton-photon superposition) phenomena at room tempera-
ture. Indeed, the strong light-matter coupling regime has been
recently achieved by embedding a TMDC monolayer into an
optical microcavity [31], enabling the observation of valley-
polarized exciton polaritons at room temperature [32-34].
Such structures provide an ideal environment in which to
investigate the interplay between strong light-matter coupling
and electronic doping because of the possibility of externally
tuning the electron density and light-matter coupling [7].

Imbalanced electron-hole-photon systems may also be re-
alized using III-V and II-VI semiconducting single or cou-
pled quantum wells. In particular, double quantum wells
with independent electrical contacts, which allow one to
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independently tune the electron and hole densities in each
layer, have been realized [35-37]. Here, the 2D electron and
hole gases are separated by a barrier that is high enough to
prevent recombination while thin enough to allow interlayer
exciton formation. Such gated structures have not yet been
embedded in a microcavity, so they have not yet been studied
in the strong light-matter coupling regime. However, a 2D
electron gas (2DEG) in a single quantum well embedded into
a planar microcavity has been realized experimentally. Indeed,
such a device can be produced either optically, as shown for
GaAs-based quantum-well structures in Refs. [2-4], or by
using a modulation-doped CdTe [1] and GaAs [5,6] quantum
well embedded in a planar cavity. In these structures, at
low 2DEG density, the negatively charged exciton-polariton,
corresponding to a superposition of a trion (two electrons and
one hole) and a cavity photon, emerges as a dominant feature
in the system spectrum. At larger densities, this physics is ex-
pected to evolve into that of the Fermi-edge exciton polariton,
as described in Refs. [38,39] and references therein. A con-
nected problem is that of the Fermi-polaron polaritons [40].
Recent spectroscopic measurements in a gate-tunable mono-
layer MoSe, embedded into an open microcavity structure [7]
have shown strong signatures of both trion and polaron reso-
nances, where a mobile impurity, e.g., an optically generated
hole, is dressed by particle-hole excitations across the 2DEG
Fermi surface.

In this paper, we discuss pairing effects in strongly carrier
density imbalanced electron-hole 2D structures strongly cou-
pled to a microcavity photon field. In the absence of light,
it was previously shown that a sufficiently high density of
excess charge causes the exciton energy to develop a roton
minimum at finite CoM momentum [10,12] that is related
to the FFLO [13,14] phase first proposed for conventional
superconductors. Here, we study how strong coupling to
light affects this excitonic FFLO roton minimum. While
long-range Coulomb interactions and Pauli blocking promote
the formation of a finite CoM momentum bound state, the
strong coupling to low mass cavity photons tends to suppress
such a phase. Conversely, the formation of an FFLO phase
suppresses the coupling to light. We study the competition
between these processes by deriving the phase diagram of
the equilibrium extremely imbalanced electron-hole-photon
system, focusing solely on pairing phenomena. We show that
the exciton mode is affected not only by the presence of the
majority species Fermi sea, but, at the same time, the excess
charge modifies the dielectric constant of the active medium,
and thus it also affects the energy of the cavity photon mode.
Consequences of this predicted energy shift of the photon
mode in the presence of a Fermi sea can be observed by com-
paring structures with different light-matter coupling, e.g.,
by embedding a different number of quantum wells into the
planar cavity and thus in effect changing the Rabi splitting.

The paper is organized as follows: In Sec. II we introduce
the electron-hole-photon system that we consider, its Hamil-
tonian, and the renormalization of the cavity photon energy
in the presence of an active medium (Sec. II A), i.e., a single
or double quantum well embedded into a planar microcavity.
In Sec. III, we describe the variational approach we employ
to describe the extremely imbalanced electron-hole-photon
system. The paired (bound) and normal (unbound) polariton

phases we consider are described in Secs. III A and III B,
respectively. Results for the case of III-V structures are de-
scribed in Sec. IV, while the specific case of doped TMDC
monolayers embedded into a planar cavity is discussed in
Sec. V. Conclusions and perspectives are gathered in Sec. VI.
Additional information related to this work can be found in
the Appendixes.

II. MODEL

We consider an electron-hole system in either a bilayer
or a single-layer geometry, embedded in a planar cavity.
We consider the spin-polarized case, where electrons and
holes are in a single spin state (e.g., by introducing external
magnetic field). The system can be described by the following
Hamiltonian (in the following, we set 7 = 1):

H = Hy + Hcou + Henc, (1a)
N E, At
Hy = Z (61(,(, + )ck oCko T Z Veqlgdys (1b)
ko
W()’(f
N a4 At A . .
Hcou = Z o clvacl,yo,ck%q_o,cqu’a, (1¢)
kk'q,00’
5 g N
He_h_c=—2(cﬂ+k]cq _alq +He). (1d)
VAL

Here, A is the system area, which also determines the spacing
of allowed momenta Kk, q. The operators appearing in this
Hamiltonian correspond to cavity photons, &q, and fermionic
excitations (either electrons or holes, as discussed below),
Cy s=1- The index o = 1 labels the majority species, and this
spécies has density n; and Fermi energy

kI% 2
Ep = — = —ny, (2)

where kr is the Fermi momentum. The index o = 2 indi-
cates the minority species, for which we have at most one
particle. Majority and minority particles correspond to distinct
bands—conduction-band electrons and valence-band holes. In
addition, for the bilayer geometry [Fig. 1(a)], the two species
exist in two distinct quantum wells with transverse separation
d. For the single-layer geometry [Fig. 1(b)], both species
live in the same quantum well. The electrons and holes have
dispersions €k , = K2 /2m,, where m, is the mass, k is the
two-dimensional (2D) momentum, and E, is the band gap.
For GaAs, the particle mass ratio is m;/m; = 4 in the case
of a minority hole in a majority Fermi sea of electrons, or
my/m; = 0.25 for an electron in a Fermi sea of holes.

The bare intra- and interspecies Coulomb interactions for
a bilayer geometry involving two inorganic quantum wells,
such as III-V structures, are given, respectively, by

oo _y 27 e? (3a)
W — . = , a
4 a eq
Wq12 = qu21 = —Vyg=—Ugpe ™™, (3b)

where we use Gaussian units 47 &y = 1. In the absence of both
doping and coupling to light, the Coulomb attraction between
one electron and one hole leads to the Schrédinger equation

023089-2



EXTREMELY IMBALANCED TWO-DIMENSIONAL ...

PHYSICAL REVIEW RESEARCH 2, 023089 (2020)

(@) (b)
C_

FIG. 1. Schematic representation of the system. (a) Two quantum
wells, labeled by the index o = 1,2 and separated by a distance
d, form an electron-hole bilayer in the extremely imbalanced limit.
The minority species belongs to the o = 2 layer, while the majority
species at 0 = 1 forms an interacting Fermi sea—the mass ratio
my/m; establishes which layer is populated by either electrons or
holes. Uq and V, are, respectively, intra- and interspecies Coulomb
interactions. The bilayer is located inside a planar cavity that confines
the cavity photon mode (C). The (blue) shaded area represents the
finite-size external laser pump spot. (b) Same setup in a single
quantum-well geometry. Here, the majority o = 1 and minority
o = 2 species belong to the same well.

for a 2D exciton [41]:
Ve

(E —ex1 — €x2)px = — Ors 4

©
where we measure the energy E from the electron-hole band
gap E,. Here, ¢y is the electron-hole wave function at relative
momentum k. The negative energy solutions of this equation
describe bound states and yield the exciton energies. Of

particular interest is the 1s exciton, with wave function d>(1‘jl)(

and binding energy |E)((d)|, where £ = E)((d) < 0 is the lowest
energy eigenvalue of Eq. (4). For bilayers at a given separation
d, the exciton properties can be found by numerically solving
the Schrodinger equation (4). However, in the case of a single-
layer geometry d = 0, where Vy = Uy, the Schrodinger equa-
tion can be solved analytically, giving the 1s exciton binding
energy (or exciton Rydberg) in two dimensions in terms of the
Bohr radius ax and the reduced mass u = mymy/(m; + my):
- e €
RX = |E)((d 0)| = @, ax = W

&)

In this case, one recovers the known expression for the exciton
wave function,

@=0 _  V8max

Electrons and holes couple with a strength g to photons via
the term H.,.c (1d). The bare cavity photon dispersion is that
of a passive cavity in the absence of the active medium (in our
case a single or a double quantum well),

Q)

2

= + —. 7
Vcq = Voo e @)

We fix the photon mass mc to an experimentally relevant
value [42], mc ~ 10~*(m; + my). In the presence of an active
medium, the cavity photon frequency is shifted by the cou-
pling to matter excitations, as we discuss in the next section.

A. Renormalization of the cavity photon energy

In the presence of both light and matter degrees of freedom,
the contact coupling term of our model, H. ¢ in Eq. (1d), im-
plies an ultraviolet logarithmic divergence of the ground-state
energy [43]. Since the details of the high-momentum physics,
such as the band curvature due to the crystal lattice structure,
are not included within our low-energy model, we will treat
the ultraviolet physics via the process of renormalization. This
allows us to deduce universal properties of our system that are
independent of microscopic details.

To see how the ultraviolet divergence emerges, it is in-
structive to first consider the description of lower and upper
polaritons within our model. To this end, we follow Ref. [43]
and consider the most general superposition of a cavity photon
at normal incidence and an electron-hole pair:

[Z U at
|Wo) = (Z =08, + aoao) |0). ®)
k \/V_4

Here, |0) is the vacuum state (i.e., a filled valence band, so a
vacuum for valence-band holes), o is the photon amplitude,
and ¢ is the electron-hole wave function at relative momen-
tum k and zero COM momentum. Minimizing (Wy|(H — E —
E,)|Wy) with respect to the complex amplitudes ¢y and «p,
we obtain the coupled eigenvalue equations for the energy E
(measured with respect to the band gap E,) of the polariton
state:

Vik—x

(E —ex,1 — €x2)k0 = — oo + gag, (%)

K

(E = veo + Ean = 53 (9b)
k

Inserting Eq. (9a) in Eq. (9b) and rearranging, we obtain

& 1
E—vo+E+2Y — — a
( <0 ¢ AXk:—E—i-Gk,l-i-Ek,z 0

\

8 Ny "kkPko
A2 ; —E 4 ek + ek

10)

The sum on the left-hand side of this equation diverges. If we
introduce an ultraviolet momentum cutoff A, the divergence
is logarithmic in A. In contrast, the right-hand side is finite
when A — oo [43]. One can easily check this in the exciton
limit—i.e., where g is small—using the explicit form of the
exciton wave function in a single quantum well, Eq. (6). As
a consequence, the photon amplitude g must approach zero
as 1/1In A for energies E + E, ~ vcg, which is a signature
that the photon frequency shifts in the presence of an active
medium. To have finite answers, it is therefore necessary that
Voo also diverges as In A—i.e., we should write quantities
in terms of the renormalized (finite and measurable) photon
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energy [43] wco as follows:

¢
o =153
A k

correct to logarithmic accuracy. Here, we have taken the 1s
exciton binding energy to be the relevant energy scale E =~
E;(d), since we are considering the scenario where the photon
is resonantly coupled to the 1s exciton. One can thus define the
renormalized photon-exciton detuning at zero momentum,

1
—E)((d) + €x,1 + €k2

; 1)

8 = wco — (B + E,), (12)

where E>((d) + E, is the actual exciton energy that would be
measured spectroscopically. Hence, the logarithmic diver-
gence of Eq. (11) exactly cancels the divergence appearing
in Eq. (10) such that, when this is expressed in terms of the
dressed photon energy wcy rather than the bare photon energy
Vo, one obtains convergent cutoff independent results.

While the photon frequency is renormalized in the presence
of an active medium, the Rabi splitting between the lower and
upper polaritons remains finite [43]. In the limit g < axRx,
this splitting can be written as

2
Q= chpgi;(. (13)
k

Here, @ﬁf])( is the ground-state wave function of Eq. (4) at layer
separation d. Indeed, we see from Eq. (10) that, had we chosen
to cancel the logarithmic divergence by taking g ~ 1/+/In A,
then the right-hand side of that equation would go to zero as
A — 00, and we would have had no coupling between light
and matter.

One can show [43] that the implementation of the renor-
malization scheme in Egs. (9a) and (9b) recovers the coupled
exciton-photon oscillator model in the limit g <« axRx. The
generalization to finite momentum is straightforward [43],
and one finds that the lowest eigenvalue E + E, of Eqgs. (9a)
and (9b) well matches the one-particle lower polariton (LP)
energy expression coming from the coupled oscillator model,

wcQ + (E)((‘g + Eg)
2

- %\/[ch ~(EQ+E)+@ (14
where the exciton is assumed to be a structureless parti-
cle. Here, E)((’g = ED + Q%/2(m; 4+ my) and weq = weo +
Q?/2mc. As shown in Ref. [43], the definitions of the effective
detuning, Eq. (11), and Rabi splitting, Eq. (13), represent
a first-order approximation in the expansion parameter g <
axRx to the experimentally measured detuning and Rabi split-
ting. An effort to obtain a better estimate of both parameters
and a comparison with the approximation carried out here
is discussed in Appendix A. There, we employ a definition
of detuning and Rabi splitting that is similar to a possible
experimental procedure. In particular, we obtain their values
by least-squares fitting to match the LP dispersion obtained
from the coupled oscillator model, Eq. (14). In this way, we
find that the differences between the fitted parameters and
those defined in Egs. (12) and (13) are small. This implies only

wLpQ =

small quantitative changes in our results below when we push
our results beyond the g < Rxax validity regime of Egs. (12)
and (13).

As in Ref. [43], the renormalization procedure we consider
is defined for the case at zero gating/doping (Er = 0). We
then increase the density of majority particles while keeping
the other parameters fixed. Interestingly, a TMDC monolayer
flake embedded in a planar cavity offers the possibility to
measure independently the renormalized photon energy wcy
and compare it to the bare value vcy. In this structure, the
TMDC flake has a reduced size compared to the planar
cavity, and thus there are regions where the cavity mode
is passive and does not couple to the active medium [31].
Such a measurement would reveal that in the real system,
the energy correction due to dressing is actually finite. That
is, an effective UV cutoff does indeed exist associated with
the nature of electronic states at large momenta; however,
this cutoff is a high-energy effect, beyond the scope of our
low-energy Hamiltonian.

The definitions we adopt above for renormalization—i.e.,
how we choose to calibrate the definitions of detuning—
match what we anticipate as a typical experimental protocol.
Specifically, it corresponds to a process where, in the absence
of gating/doping, i.e., at Er = 0, one deduces the photon-
exciton detuning § and the Rabi splitting 2 by fitting the
single-particle polariton dispersion measured in the optical
pumping linear regime via a coupled oscillator model. After
fixing these experimental conditions, one then increases Ep
by doping or gating. The Rabi splitting €2 can be changed
by considering microcavities with different numbers of em-
bedded quantum wells [44]. The detuning § can be changed
because of the cavity mirror wedge and thus by changing the
location of the optical pump spot. Crucially, the value of § we
use is defined as that measured in the absence of doping or
gating before increasing Er—i.e., we assume a definition of &
that does not vary with doping.

B. Screening

In writing the Coulomb interaction above, we so far consid-
ered the bare Coulomb interaction. However, as we consider
a system with electronic doping, these electrons can screen
and thus modify the Coulomb interaction. As explained in
Sec. II1, the screening of Coulomb interactions causes, in the
absence of photons, a transition from bound to unbound exci-
tonic states when the majority species density increases [10].
With the aim of including the possibility of describing the
binding-unbinding transition, we will present results for both
the unscreened case and for screened Coulomb interactions
within the static random phase approximation (RPA). In the
RPA, the intraspecies potential reads

Ug

U= — 94 (15a)
4 l_UqHI(q)
N;m \/‘12_4]‘%
M, (q) = 2ﬂ‘ e Cr Rl RCED)

with Ny = 1 for the spin-polarized case. As before, the inter-
species potential is then found by V4 = U;ce_qd. We expect
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the RPA to provide a good approximation when the exciton
Bohr radius greatly exceeds the interparticle spacing of the
majority species, i.e., axn; >> 1. In the opposite limit, axn; <
1, screening is negligible. With this in mind, unscreened and
RPA screened interactions represent extreme limiting cases,
thus allowing us to place a bound on the effect of screening in
a realistic material.

III. VARTIATIONAL APPROACH TO THE IMBALANCED
ELECTRON-HOLE-PHOTON SYSTEM

As described in the Introduction, the aim of this paper is
to understand how strong light-matter coupling affects the
transition from excitons with zero to finite COM momentum,
as one varies the majority species density. To address this, we
focus on the extreme limit, where there is a single minority
particle o = 2 interacting with a Fermi liquid of majority
particles o = 1 via both Coulomb attraction and the cavity
mode. To determine the zero-temperature phase diagram, we
find the ground state by a variational approach. The variational
state we consider describes a superposition of a photon and an
electron-hole pair, on top of a Fermi sea of majority particles,
[FS) = |FS); ® |0)2 ® |0)c:

PkQ A A
=(> chﬂcg o Foead |IFS).  (16)
k>kp

Here, ¢xg and «g are the excitonic and photonic variational
parameters, respectively, and the normalization condition re-
quires that (Wg|Wo) = A" Y\ . loxol* + lagl* = 1. The
momentum Q is the COM momentum of the polaritonic
bound state, while the label k denotes the relative electron-
hole momentum. Pauli blocking forbids occupation of all ma-
jority particle states below the Fermi momentum kg, and we
use the notation ), to indicate summation over allowed
states.

A. FF and SF bound states

In the following, we will refer to the many-body polaritonic
bound state with finite COM momentum [Wq-g) as the Fulde-
Ferrel (FF) state. Note that we use the notation FF rather
than FFLO because the pairing wave function we consider
is a single plane wave, and thus it does not have any spatial
modulation of density [13]. If we would consider increasing
the density of minority particles, we expect a smooth evo-
lution from the finite Q bound state we describe here to a
modulated coherent FFLO paired phase [11]. In the absence of
cavity photons, the finite Q bound state for a single impurity
has already been analyzed for GaAs [10] and TMDC [12]
structures, where it was predicted to occupy a sizable region
of the phase diagram. For an imbalanced state of electron-hole
bilayers, with a nonvanishing density of minority particles, a
FFLO phase was also described in Refs. [9,11].

Also by analogy to the terminology used to describe the
states at nonzero minority density, we refer to the zero COM
momentum bound state |Wy) as the superfluid (SF) state. For
a finite minority particle density, the SF state is an excitonic
condensate where pairing occurs for a balanced fraction of
electrons and holes at zero COM momentum (but finite rela-

tive momentum), while the excess majority species occupies
a Fermi sea around k = 0.

To find which state occurs in the presence of coupling to
photons, we minimize (\IIQ|(I:I — Eq — E,)|W¥q) with respect
to the complex amplitudes kg and g (16). This gives the
coupled eigenvalue equations

V —k’
(EQ — §kQ)PkQ = — Z K g + gag, (17a)
K'>kp
(Eq — veq + Epag = Z Q- (17b)
k>kp

The lowest energy eigenvalue Eq represents the energy of a
bound lower polariton state in the presence of a Fermi sea,
accounting for the modification of the exciton wave function
both by light-matter coupling and by Pauli blocking. Here,
&kQ = €Q—k2 F €x1 — % Zk/<kp Ux—_x includes the exchange
correction to the electron dispersion. Note again that we
define the energy Eq with respect to the band-gap energy E,;
furthermore, we neglect the energy of the interacting Fermi
sea |FS), &rs =Dy lext +Eg/2 =Y 4 Uk /(2A)],
because we are interested in comparing Eq with that of the
normal state, which also includes &g (see Sec. III B).

In the absence of photons, we set g = 0 in Eq. (17a) and
obtain the energy Eq = E)((‘EEF) of a many-body exciton state
in the presence of a Fermi sea as the lowest energy solution of
the Schrodinger equation,

Vi—k

(Eq — &Pk = — ), ——¢KaQ- (18)
K> ke
(d 0.E¢=0) (d=0)
At zero doping and for a single layer, Ey TV =Ey =

—Rx < 0 as given in Eq. (5). The elgenvalue problem in
Eq. (18) has been solved numerically for GaAs electron-hole
structures in Ref. [10]. There, it was found that, when increas-
ing the majority particle density, the many-body excitonic
state eventually acquires a finite COM momentum Q, as
this state reduces the kinetic energy cost. As such, this FF-like
state induced by Pauli blocking is favored when the minority
particle is lighter. Further, as also discussed below, the long-
range nature of the Coulomb interaction also stabilizes the
finite Q exciton state [10]. Recently, these results have been
extended to the specific case of TMDC monolayers [12].
Note that, in the presence of a Fermi sea, one cannot just
consider the sign of E;;LEF) to determine whether the many-
body exciton state is bound or not. One must instead compare

E)((‘gEF) with the energy of the normal state, as defined next.

B. Normal state

Under some conditions, we find that at large majority parti-
cle density, the finite COM momentum exciton can undergo an
unbinding transition to the normal (N) state. This comprises
an unbound minority particle on top of a Fermi sea of majority
particles:

W) = &) ,e! . [FS), (19)

kek, 1
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FIG. 2. Particle-hole excitation process via a photon without
(a) and with (b) a Fermi sea—all photon-mediated transitions are
approximately vertical in a cavity.

where K is an arbitrary direction, and this state has energy

Z Uik—x» (20)

k’<k]:

En =Ef — —

where, as for Eq, we are defining this with respect to E, and
neglecting the energy of the interacting Fermi sea, &gs.

In the absence of light-matter coupling, g = 0, the exci-
tonic FF state [Wq) (16) would reduce to the normal state | W)
when we take Q = kpk and the exciton wave function takes
the form ¢xq = \/ZSk_ kk- This corresponds to a wave func-
tion that has weight only when relative and COM momenta
are equal and match the Fermi momentum kg.

In Ref. [10] it was shown that unscreened Coulomb interac-
tions (Ny; = 0) always lead to a bound many-body exciton state
for any value of the density, and thus the normal state (19) is
never the ground state. We will show here that this is the case
also in the presence of light-matter coupling. When screening
is nonzero, however, a normal state can occur. It is worth
noting that when this state occurs, the only possible normal
state is purely electronic—i.e., it has zero photon fraction
and is thus given by Eq. (19). This can be seen from the
renormalization scheme of the photon energy (11), which
has the consequence that any nonzero photon fraction always
implies a bound state between minority and majority particles.
That is to say, the presence of light can bind an otherwise
unbound electron-hole pair.

C. Effective photon energy in the presence of a Fermi gas

To understand how the ground state evolves with doping,
it is instructive to consider how the effective photon energy
changes as the majority density increases, due to a modi-
fication of the dielectric constant of the quantum well. As
described in Sec. I A, in order to reproduce the experimental
protocol for measurements, we have defined the renormal-
ization of the photon energy using a procedure defined at
zero gating/doping Er = 0. This means that we define the
renormalized photon energy wcy (or equivalently the photon-
exciton detuning §) in such a way that it approximately
matches what would be experimentally measured at Er = 0.
As illustrated in Fig. 2, the available particle-hole excitations
contributing to the dressing of the photon depend on Ep. As
such, at a ﬁmte den51ty of majority species, the effective
photon energy a)c(; differs from wcq defined at Er = 0. Here,
we want to identify and estimate the magnitude of the photon

energy shift in the presence of doping. We start by rewriting
the eigenvalue equations (17a) and (17b) in an equivalent form
by inserting Eq. (17a) in (17b) and defining the new wave

function Bxg = f‘ > ki Ve 9wQ/ (—EqQ + £kQ):

Eq—vco+E, +

Z Bk -

k>k}:

A Z —EQ + &ko

k>kp
(2D

The divergence of the sum on the left-hand side of Eq. (21)
is exactly canceled by the renormalization of the bare pho-
ton energy vcq by particle-hole excitations, as described in
Sec. IT A. The form of Eq. (21) suggests that, in the presence
of a Fermi sea, the effective renormalized photon energy can
be estimated as

(EF) ~
Weq = VeQ

A Z —EQ +&kQ 22

K> kg

This estimate is expected to be valid in the limit of small light-
matter coupling and sufficiently small density, where there is a
well-defined exciton bound state that is only weakly perturbed
by light. In this limit, one can approximate Eq =~ Ey . Ep)

Taking the COM momentum to be zero, we then estlmate the
difference between w(coF) and the photon energy wcy at zero

doping (11) as

E
ol oo~ -5 Y

k>kp

AZ £ )

+ €x,1 + €k2

E(d Ep) + &xo

This energy difference is clearly finite because the logarithmic
divergence of the first sum cancels with that of the second
sum. Thus, we see that the photon energy shift with doping
depends quadratically on the light-matter coupling strength g,
provided Q2 « IE%’EF) — Ex|. By numerically evaluating the
density dependence of the exciton energy at Q = 0, E)(g)’EF)
(see Appendix B), as well as the exchange correction to the
electron dispersion, we find that, in the small €2 and Ef limit,
the photon energy shift a)( E) _ ey is always negative (see
the solid line of Fig. 3). Such a shift could be observed
in experiments either by comparing structures with different
Rabi splittings or by changing the doping.

An alternative way of estimating the photon energy shift
a)gf) — wey in the presence of a Fermi sea is by identifying
the detuning 504, at which the many-body Q = 0 exciton state
and the cavity photon are at resonance:

ol = Eg™ + Ey. (24)

We assume that this condition is satisfied when the photon
fraction |ag|? is 1 /2. We can rewrite the condition (24), which
defines the detuning at resonance, Js0q,, by subtracting the
energy of the photon mode at zero doping/gating wco (11)
from both sides. Then using the definition 6 = wcy — (E)((d) +
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FIG. 3. Photon energy shift in the presence of a Fermi gas
w(clff) — wey as estimated from Eq. (23) (solid line) and from Eq. (25)
(dashed line) for either fixed Fermi energy Er and varying Rabi
splitting €2 (a),(b) or conversely fixed €2 and varying Er (c),(d).
Parameters are for a GaAs single quantum well (d = 0), mass ratio
my/m; = 0.25, and screened interactions Ny, = 1.

E,) on the right-hand side gives

E d,E d
a)(COF) — wcy) = E;(O' F) _ E;( ) _ 550%. (25)

We can thus estimate the photon shift a)(clff) — wcyp at a fixed

value of Er and €2 by evaluating E%’EF) - E)((d), i.e., by solving
Eq. (18), and by numerically estimating the value of detuning
8509 at which the photon fraction is exactly 1/2. The results
of this estimate are plotted in Fig. 3 and compared with
those obtained from Eq. (23). Note that, even at Egp = 0, this
estimate predicts a photon energy shift because, beyond the
weak-coupling regime g < axRx, the exciton wave function
is strongly modified by matter-light coupling, affecting the
definition of detuning § given in Eq. (12) (see the discussion in
Appendix A and Fig. 9). At small and finite Ep, the estimates
given by Eqgs. (23) and (25) agree for small 2 giving a negative
shift of the photon energy, while when 2 increases, Eq. (25)
predicts an upturn of the shift to positive values.

Predicting the exact behavior of a)gff) — wco with either
or Er is nontrivial, since both estimates of Egs. (23) and (25)
are based on the assumption that the system behaves like a
coupled oscillator model, a hypothesis that loses validity when
either 2 or Ef increases. As we will see in the next section, the
shift of the photon energy with doping has little consequence
for the phase diagram at fixed Rabi splitting €2, while the
implications are larger when we fix Er and change 2.

D. Numerical implementation

We obtain the ground-state phase diagram by numerically
diagonalizing the coupled equations (17) and analyzing the
nature of the lowest energy state while comparing it with the
energy of the normal state (20). We use a nonlinear grid in
the relative momentum k-space and evaluate, at a given value
of the COM momentum Q, the lowest eigenvalue Eq and the
associated excitonic ¢kq and photonic «q eigenvectors, with

lag|? representing the state photon fraction. The results we
show are numerically converged with respect to the number
of points employed in the momentum grid. We then minimize
the energy Eq with respect to Q = |Q|, and we indicate the
momentum at which the energy is minimized by Qu;n.

In the following, we rescale energies by the 2D exciton
binding energy Rx and lengths by the Bohr radius ax defined
in Egs. (5). Hence, only a few independent dimensionless
parameters are left to characterize the system properties and
phase diagram, namely the mass ratio between minority
and majority particles, m,/m; the rescaled bilayer distance,
d/ax; the dimensionless majority particle density, Er/Rx;
the photon-exciton detuning, §/Rx [Eq. (12)]; and the Rabi
splitting, 2/Rx [Eq. (13)].

IV. CHARGE-IMBALANCED QUANTUM WELLS
IN PLANAR MICROCAVITIES

We first consider the case of a GaAs quantum-well system
embedded in a microcavity. In Fig. 4 we show our calculated
phase diagram as a function of majority particle density
and detuning, keeping the Rabi splitting fixed. We compare
the results for both screened and unscreened Coulomb in-
teractions, for a single quantum well (d = 0) and a bilayer
geometry (d = ax), and for one electron in a Fermi sea of
holes (m,/m; = 0.25) and one hole in a Fermi sea of electrons
(my/m; = 4). In all cases, we see that the coupling to cavity
light modes suppresses the formation of the finite momentum
FF state as compared to the case without light-matter cou-
pling. In particular, a strong coupling to light favors the Q = 0
state, since the photon mode at nonzero Q is at high energy,
due to the small photon mass. As such, strong coupling to light
imposes that for detunings below a minimal value, § < §pin,
only the Q = 0 SF phase is allowed.

Fixing the detuning § > 8y, and increasing Eg, one first
finds a SF-FF transition between a Q = 0 many-body mixed
polariton state and a Qnin # 0 FF state weakly coupled to
light. This state has also been referred to as a roton mini-
mum [12]. This occurs because the energy gained by form-
ing a finite Q exciton state is larger than that obtained by
dressing the Q = 0 exciton with a zero momentum photon.
For screened interactions, the transition can be directly to the
unbound N state, while for unscreened interactions there is no
normal phase, just as in the absence of photons [10]. Both the
SF-FF and SF-N transitions are first order (see Appendix C),
with Onin changing discontinuously from Qpi, = O to a finite
value, as shown in Fig. 5. Because of the small cavity photon
mass, the finite Qni, FF phase has a small photon fraction
that decreases further upon increasing Er (see Fig. 5). Thus,
the value of Qni, almost coincides with that in the absence
of the cavity field, and in particular Qp,;, locks to kg at the
FF-N transition. In contrast, for unscreened interactions, Qmin
asymptotically tends to kg in the FF region only for large
values of Eg. In addition, the FF-N transition is always second
order and it is only weakly affected by the coupling to light—
thus it is approximately independent of both § and 2.

The SF-FF transition is strongly affected by the coupling to
a cavity field. In particular, the many-body exciton at Q = 0
strongly couples to the cavity photon when both energies are
comparable, resulting in a half-matter half-light many-body
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FIG. 4. Phase diagram of photon-exciton detuning § and majority particle Fermi energy Er for a GaAs heterostructure with either a single
quantum well (d = 0) [panels (a),(b),(e),(f)] or a bilayer geometry at a distance d = ax [(c),(d),(g),(b)]. Panels (a)—(d) are for RPA screened
Coulomb interactions (N, = 1), while (e)—(h) are for unscreened interactions (N, = 0). The mass ratio is fixed to either m,/m; = 0.25, i.e.,
one electron in a Fermi sea of holes, or m,/m; = 4, i.e., one hole in a Fermi sea of electrons. The Rabi splitting is fixed to Q2 = 2Ry for
the d = 0 case and to Q2 = 2|E)((d)| =~ 0.64Rx for the bilayer at the d = ax case. Solid lines are first-order transitions (SF-FF and SF-N). The
dashed almost vertical line is the second-order FF-N transition occurring for screened interactions. First- and second-order transitions meet at
a critical end point. The diamond symbols indicate the value of the density, Egy, at which the SF-FF transition occurs in the absence of the
cavity field 2 = 0 = aq. The color map represents the photon fraction |ag|>.

polariton state. In Fig. 4, the red region of the color map indi-
cates where the photon fraction is around 50%, corresponding
to resonance between the cavity photon and the many-body
exciton. The value of the detuning 6 for which resonance
occurs is seen to grow with the majority density. This is
mostly due to the Q = 0 exciton energy E)%’EF) growing with
Er due to Pauli blocking (see Appendix B). Indeed, one can
show that E)%’EF) grows sublinearly for Er < Ry and screened
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FIG. 5. Momentum Q,,, (filled [blue] circles) minimizing the
many-body polaritonic energy Eq as a function of the majority Fermi
energy Er for a single quantum well d = 0, mass ratio m,/m; =
0.25, Rabi splitting 2 = 2Rx and detuning § = 8Rx. Interactions
are RPA screened (N, = 1) in panel (a), and unscreened (N, = 0)
in panel (b). Solid (violet) lines represent the value of Qu, in the
absence of light-matter coupling (€2 = 0), while the thick dashed
(black) line is the Fermi momentum kg. The corresponding photon
fraction |org |2 is plotted with open (red) circles and the corresponding
axes are on the right side of each panel.

interaction, while it grows linearly ~Ep for Er > Rx (see
Appendix B and Figs. 10 and 11).

At large positive detunings, we recover, as expected, the
results obtained in Ref. [10] for GaAs single wells and
bilayers in the absence of light-matter coupling. Here, as
one increases the majority particle density, Pauli blocking
causes the many-body exciton energy Eq = E)((%EF) obtained
by solving Eq. (18) to develop a minimum at finite COM
momentum Qnin, as this reduces the kinetic energy cost of
the minority particle. We denote the Fermi energy at which
this transition occurs in the excitonic limit by Epp, and, in
the figures, this is illustrated by a diamond symbol. Without
light, the transition to the FF state is always second order (see
Appendix C).

By further increasing the density at fixed (large positive)
photon-exciton detuning, there is eventually an additional
first-order transition to an almost completely photonlike Q =
0 SF state. This is because the energy of the FF and N states is
pushed up by Pauli blocking such that they exceed the photon
energy at sufficiently large density. As such, larger values of
the detuning require larger values of density for this second
transition to occur. Since this transition depends only weakly
on the light-matter coupling, the FF-SF (N-SF) boundary
essentially occurs when § ~ E)((‘gif“) - E)((d) (6 = En— E)((d)),

where E;(‘i)?) is the FF many-body exciton energy at Fermi
energy Er and bilayer distance d in the absence of the photon
field—see Eq. (18).

From the study of the phase diagram at fixed Rabi split-
ting, we can draw similar conclusions about the mechanisms
promoting the existence of a FF phase to those known in the
absence of the cavity photon [10]: the FF phase is favored
by unscreened Coulomb interactions and by a small minority
particle mass. In addition, considering the unscreened case,
a finite bilayer distance also favors FF. This is because the
interlayer interaction suppresses large momentum scattering
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FIG. 6. In panel (a), the solid lines are SF-FF (or SF-N) phase boundaries for different values of the Rabi splitting €2, for a single quantum
well with hole doping, d = 0 and m,/m; = 0.25, and for screened interactions Ny, = 1. In particular, the region above a solid line is either FF
(on the left of the dashed line) or N (on the right). The almost vertical dashed line is the approximately Q2-independent FF-N boundary (see
Fig. 4). Below each solid line, the phase is SF. Each symbol represents the minimal detunings §,,;, of the boundaries—special values are 2 = 0
(filled diamond) and the €2 at which 8, = 6* (filled circle). A special value common to all boundaries is (6*, E}) (filled circle). In panel (b),
the solid line and symbols give the behavior of 8, as a function of €2 for screened N, = 1 interactions, while the dot-dashed line represents

Smin for unscreened N, = 0 interactions.

and promotes an exciton wave function kg peaked at the
k ~ Q direction, and also because a finite interlayer distance
reduces the effective electron-hole coupling to light. While
our results demonstrate that embedding the quantum-well
structure into a cavity reduces the parameter region where FF
can occur, this phase is still weakly coupled to light. Thus, the
FF ground state should be visible in the photon momentum
distribution, in an experiment with sufficient sensitivity. Note
that for our simplified scenario in Eq. (16) of a single minority
particle and thus a single photon in the cavity, the system
photoluminescence is peaked at the energy Eq + Eg, with
a weight given by the corresponding photon fraction |erg|?.
Because, as shown in Fig. 5, this photon fraction is very
small, it would require a very sensitive experimental probe.
Even when (in the presence of strong coupling to light) the
lowest energy state is a Q = 0 polariton state, it has been
suggested that the formation of a FF state could drastically
change photoluminescence, due to the bottleneck effect of
high momentum excitons relaxing to the true lowest energy
polariton state [45].

A. Comparison of structures with different Rabi splitting

It is possible to study the evolution of the FF phase with
changing Rabi splitting by considering a sequence of cavities
that have different numbers Now of embedded quantum wells,
since © ~ ,/Now [46,47]. In particular, in Ref. [44], two
structures with either 1 or 28 quantum wells stacked at the
antinodes of the cavity field have been compared, allowing
one to study the change of the Rabi splitting in the range
0.3Rx < € < 1.3Rx. Note that in inorganic microcavities,
while typically Q < E,, the very-strong-coupling regime
2 > Ry can also be routinely achieved [47—49]. Studying the
evolution of the phase diagram with increasing Rabi splitting
should in principle directly show how the introduction of
light-matter coupling modifies the phase diagram.

With this motivation, in Fig. 6(a), we compare the bound-
aries between the SF and the FF (SF and N) phases for
different values of €2. Screened and unscreened interactions

give qualitatively the same results, with the only difference
being the absence of the N phase for unscreened interactions.
The boundaries are also quantitatively similar in the two cases.
In the absence of light-matter coupling, the SF-FF boundary
is given by (EF > EFQ)

(d,EF) (d)
§ =Exg,.. —Ex . (26)
where E)((d’Ef) is the FF many-body exciton energy at Fermi

energy Ef. For the SE-N boundary at 2 = 0, this expression
becomes § = Ey — E;{”. We observe an evolution of the
minimal photon-exciton detuning J.,;, with 2 [Fig. 6(b)],
which, starting from the value §p = E)((“Z)? 0 _ E;(d) at Q2 =0,
grows up to a maximum value 6*, and then decreases again.
Consequently, the light-matter coupling is detrimental to the
formation of a finite momentum phase for small values of €2,
while it favors finite Q at = 4Ry.

There is a special point (6%, EY) that is common to all
SF-FF (SF-N) boundaries as one varies €2, i.e., one observes
in Fig. 6(a) that all lines appear to cross at a single point.
At this particular value of the photon-exciton detuning and
density, all the dependence on the Rabi splitting and thus the
light-matter coupling is lost. Here, the decrease in energy due
to forming a polariton is exactly counterbalanced by doping-
induced changes to the cavity dielectric constant discussed in
Sec. III C. Note that this behavior is not accurately captured by
the estimated photon shift in Eq. (23), since this is not valid
in the regime Er > Rx. However, we can determine (6*, E})
once we account for all the electron-hole scattering processes,
as shown in Appendix D. We have checked that the existence
of the special point (6*, Eff) is common to both structures with
single-well and bilayer geometry, and it is also independent of
whether interactions are screened or unscreened.

To further illustrate the special role played by the detuning
8* and Fermi energy E};, we plot in Fig. 7 the three different
types of phase diagrams at fixed detuning § that arise by vary-
ing 2 and Er. A common feature for all three cases is that, for
Er < EF, the FF and N phases are suppressed upon increasing
Q in favor of a strongly mixed light-matter polaritonic SF
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FIG. 7. Different possible topologies of the phase diagram as a function of the Rabi splitting 2 and the majority particle Fermi energy
Ef for a GaAs heterostructure with a single quantum well (d = 0), m,/m; = 0.25, and screened interactions N; = 1. The detuning has been
fixed to § =0 < §y [panel (a)], 8o < 8 = 1.5Rx < &* [panel (b)], and § = 4Rx > §* [panel (c)]. In all panels, the vertical dot-dashed line is
the value of E} (see Fig. 6), while all other lines and labels are as in Fig. 4.

phase with lotg|? ~ 0.5. Note also that for Ep < Ej, the FF
(N) phase occurs only for § > 8. In this small Ef case, the
lowering of energy of the strongly mixed Q = 0 LP state with
2 dominates over any change of the cavity dielectric constant
because of gating/doping. Note that the phase diagram we
see in this small Er case illustrates the idea that increasing
light-matter coupling can stabilize a polaritonic ground state
even when the purely excitonic system is unbound.

For Er > E}, we see quite a different behavior—a finite
momentum FF or N phase is favored at larger values of the
Rabi splitting €2, regardless of the value of the detuning.
In this large Ep case, the SF-FF (SF-N) transition typically
occurs from an almost purely photonic SF phase |aty|> ~ 1
to an almost purely excitonic FF (N) phase with |ag|? < 1
(lg)* = 0). This transition occurs because the shift in the
cavity dielectric constant at finite Er increases with 2, while
the excitonic or normal state energy is 2-independent, so that
eventually, increasing €2 to large enough values, one favors the
excitonic phase over the polaritonic.

Note that for GaAs heterostructures with a single quantum
well and my/m; = 0.25, we find that Ef >~ 1.55Rx (Ef ~
1.95Rx) for screened N, = 1 (unscreened N; = 0) interac-
tions, respectively—see Appendix D. This value of the Fermi
energy is well below typical energies at which band curvature
and structure start being important, so it lies within the range
of the validity of our model. Indeed, from the GaAs lattice
constant @ ~ 0.56 nm, we can estimate that 1/(2ua?) ~
150Rx > Ef.

V. TMDC MONOLAYER EMBEDDED INTO
A PLANAR MICROCAVITY

As mentioned in the Introduction, one context in which
electronically doped polariton systems have been studied ex-
perimentally are TMDC materials [7,32—-34]. We derive here
the phase diagram for the specific case of doped MoSe;; see
Fig. 8. In particular, we consider the case of a single hole in
a Fermi sea of electrons, with all electrons being spin- and
valley-polarized, a regime that can be experimentally realized
by applying a magnetic field [50]. Further, we have assumed a
large enough spin-orbit splitting so that only the lowest energy
conduction band is considered.

Due to the fact that most of the dielectric screening takes
place within the two-dimensional layer, TMDC materials re-
quire a separate analysis from the case of III-V semiconductor
heterostructures. Specifically, we consider the same model
Hamiltonian as before, Eq. (1), with a screened electron-hole
interaction appropriate for a monolayer in vacuum [51-53]:

RK _ 27 e 1
a qg (1+r0q)

For MoSe;, the screening length is 7y =5 nm [27]. Note
that, in contrast to Thomas-Fermi screening, the dielectric
screening vanishes at large distances, i.e., VqRK — 27é? /q for
g — 0. The electron and hole masses are m; = m, = 0.56my
and mp = my, = 0.59mg [27,54], where my is the free-electron
mass. Because m, and m;, have very similar values, little
difference is expected whether the minority species is a hole—
as explicitly considered here—or an electron. Following
Ref. [12], we neglect electron exchange; furthermore, we ne-
glect screening by the electron gas on the basis that, for these
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FIG. 8. Phase diagram for a MoSe, monolayer embedded into a
planar cavity as a function of photon-exciton detuning é and electron
Fermi energy Er. We take the Rabi splitting € = 40 meV. The solid
line is the first-order SF-FF transition, while the diamond symbol
indicates the value of Egy at which the SF-FF transition occurs in
the absence of the cavity field (2 = 0 = «q) [12]. The color map
represents the photon fraction |ag|*.
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materials, the plasma frequency, wpi(kg) =~ vV kGV,EK /my ~
90 meV (for Eg = 20 meV), is much smaller that the exciton
binding energy |Ex| = 485 meV [27,54,55].

For TMDC monolayers, strong coupling to light can be
attained by placing flakes of material in planar cavities. Strong
light-matter coupling leading to exciton-polariton formation
is now routinely achieved [31-33,56,57]. We fix the cavity
photon mass to mc = 10~>myq and the Rabi splitting to =
40 meV [31]. Note that, even with such a large value of
2, because the exciton binding energy is even larger, the
regime of very strong coupling [58] € 2 |Ex| has not yet been
reached for TMDCs. However, recently there has been strong
progress in this direction; see, e.g., Refs. [59,60]. Importantly
for our analysis, the renormalization scheme of the photon
energy described in Sec. I A is unchanged.

By considering the same variational many-body polariton
state as in Eq. (16), we derive the phase diagram versus
detuning § and electron Fermi energy Er. The resulting phase
diagram is shown in Fig. 8, and is seen to qualitatively agree
with the unscreened case of GaAs presented in Fig. 4. Because
the long-range unscreened Coulomb interaction promotes the
finite momentum bound FF phase, it is not surprising that
the system never transitions to the normal state N for the
potential in Eq. (27). As shown in Ref. [10], the bare Coulomb
interaction always implies a bound exciton state for any
density of majority particles. In the absence of the cavity
photon mode, we recover the results of Ref. [12], which
predicted a SF-FF transition at Ery = 20 meV—as before, this
value is labeled with a diamond symbol in Fig. 8. Because
of the large value of |Ex| relative to €2, the minimal photon-
exciton detuning for observing FF is found to be rather large,
dmin == 147 meV. However, we expect this value to eventually
decrease for Q2 2 |Ex| in a manner similar to that shown in
Fig. 6.

VI. CONCLUSIONS AND PERSPECTIVES

We have studied polaritonic phases in an extremely charge-
imbalanced electron-hole mixture in either a single quantum
well, a bilayer, or for TMDC monolayers embedded into a
planar cavity. In particular, we have analyzed the competition
between the formation of an FF-like [13] bound excitonic
pair at finite COM momentum, which is promoted by both
long-range Coulomb interactions and the Pauli blocking of
the Fermi sea [10,12], and the formation of a strongly coupled
many-body polariton state at zero momentum, which is pro-
moted by the strong coupling to the cavity field. By fixing the
light-matter coupling, i.e., the Rabi splitting, we find that, as
expected, strong coupling to a cavity photon mode competes
against the formation of the finite momentum FF state, and so
reduces the parameter range of majority species density where
this phase occurs. Note that the FF phase does weakly couple
to light in order to allow its detection in photoluminescence
experiments with enough sensitivity. For large photon-exciton
detunings, the photon becomes less relevant, and so the FF
phase occupies a sizable region at finite density of the majority
species. At small densities the FF phase is replaced by bound
polariton states with zero COM momentum, which lowers
their energy through strong light-matter coupling. At large
densities, one instead finds an almost purely photonic state
(with zero momentum) because, due to Pauli blocking, the

exciton energy grows roughly linearly with the density. As
already known for the case without photons, a bound state
always exists for unscreened Coulomb interactions, whereas
with screening, an unbound state can replace the excitonic FF
state.

To understand the topology of the phase diagram, we
note that it is important that the presence of a Fermi sea
not only changes the energy of the exciton but also the
background cavity dielectric constant of the active medium,
i.e., the gated/doped quantum well, the bilayer, or the TMDC
monolayer. This change has few consequences for the phase
diagram at fixed Rabi splitting because the exciton energy
shift with density dominates over the shift of the photon
energy. However, the photon energy shift increases for suf-
ficiently large values of the Rabi splitting, and consequently it
does have a significant effect on the phase diagram at fixed de-
tuning. In particular, we find that increasing the Rabi splitting
at low enough doping/gating densities always promotes the
formation of a zero momentum strongly bound polariton state.
However, surprisingly, at large enough densities, this behavior
is reversed, and increasing the coupling to light promotes the
formation of finite momentum excitonic states weakly mixed
to light.

The results in this paper focus entirely on the regime of
extreme imbalance, where there is only a single minority
species particle. It is of course interesting to consider the
behavior of the many-body state with a larger minority particle
density; this will be discussed in a subsequent paper [61].
Another important question concerns the possibility of more
complex pairing states, even in the extreme imbalance state.
The ansatz we use in this paper assumes that the pairing state
has no effect on the majority Fermi sea, however Coulomb
interactions between majority particles mean this assumption
will not necessarily hold. Relaxing this assumption allows
the excitonic state to be dressed by electron-hole pairs of the
majority band—such effects have been considered recently for
a tightly bound exciton in doped TMDCs [7,40]. Understand-
ing the interplay of this dressing with the internal structure
of pairing, the coupling to light, and the crossover from the
behavior we discuss here to the Fermi-edge polariton regime
is a topic for future work.

The research data underpinning this publication can be
accessed at Ref. [62].
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FIG. 9. Comparison between detuning é (12) and Rabi splitting
2 (13), as defined in the renormalization procedure of Sec. Il A, and
the respective quantities S and 2. obtained by a least-squares
fitting procedure described in Appendix A. Parameters are for a
GaAs microcavity with a single quantum well (d = 0), my/m; =
0.25, and Er = 0.

This work was performed in part at Aspen Center for Physics,
which is supported by National Science Foundation Grant No.
PHY-1607611. This work was partially supported by a grant
from the Simons Foundation.

APPENDIX A: VALIDITY OF THE RENORMALIZATION
PROCEDURE BEYOND THE g « axRx LIMIT

We discuss here an improvement of the renormalization
procedure employed in the main text to increase its accuracy
beyond the weak-coupling limit. In Sec. Il A we saw that in
the weak-coupling limit g <« axRx, defining the renormalized
photon-exciton detuning é as in Eq. (12) and the Rabi splitting
Q as in Eq. (13) enables one to recover the one-particle LP
energy of the coupled oscillator model, Eq. (14). Beyond weak
coupling, the exciton wave function is strongly modified by
light-matter coupling, thus impacting the detuning and the
Rabi splitting. Here, we provide alternative definitions for the
effective detuning S and Rabi splitting Q. that coincide
with the previous ones for g <« axRx, but whose validity
extends beyond this limit. Comparing the two results allows
one to estimate the quantitative error made in our study of the
evolution of the system phase diagram with increasing Rabi
splitting €2; see Sec. IV A.

To renormalize the theory, it is necessary to identify a mea-
surable quantity that can be used to define the renormalized
quantities in the theory. Ideally, the quantity we would use
would be the photon energy. However, this is not directly
measurable, since the renormalization only occurs for a cavity
that contains an active medium, and in that case the photon
mode is replaced by the strongly coupled polariton modes.
To circumvent this problem, as in Ref. [43], we define the
effective detuning S.ir and Rabi splitting Q2 in a way anal-
ogous to an experimental procedure—by fitting the polariton
dispersion to a coupled oscillator model.

In particular, we employ a two-parameter least-squares
fitting procedure to match the LP dispersion Eq evaluated
numerically from Eqs. (17) with the LP dispersion obtained
by the coupled oscillator model (14),

2 2
8eff + ZQTC + m

2

1 Q2 Q2 2
—— M e+ — — ————— ) +Q%., (Al
2\/< & 2mc 2(my +mp) (AL

where 8¢ and Q. are fitting parameters. In Fig. 9 we compare
the results obtained for the fitting parameters 8. and Qs
with § and Q2 as defined in Eqs. (12) and (13), respectively.
In Figs. 9(a)-9(d) we fix the light-matter coupling g and
vary &, while in Figs. 9(e)-9(h) we fix § and vary g. As
expected, Seif — 8 and Qe — 2 when g < Rxax. Moreover,
we observe that the differences |Ser — 8| and Qe — 2 remain
relatively small also when g 2 Rxax. These results allow us
to estimate the size of the corrections that would arise from an
improved renormalization scheme. We see that these appear
small. Nonetheless, there may be some changes in the results
of Sec. IV A when studying the phase diagram beyond the
g < Rxax regime.

wLpQ = E)((d) +E; +

APPENDIX B: EXCITON ENERGIES AT FINITE Ey

In Fig. 10, we compare the density dependence behavior of
the rescaled energies E)((d‘EF) - E)((d) of the many-body exciton
state at Q = 0 (solid line) and at Q,;, (dashed line) for
different mass ratios m,/m; = 0.25, 4 and for both screened
and unscreened interactions. Note that while the dependence
of Eg(do’EF ) on Er is sublinear for small values of Er and
screened interactions, it eventually becomes linear at large Eg.

In Fig. 11 we plot E)((%EF ) _ E)((d) as a function of density
for a specific choice of parameters and superimpose a color
map of the photon fraction |og|> of the many-body Q = 0
polariton state as a function of Er and detuning §. The
red region shows where the photon fraction is around 50%
indicating that the cavity photon energy is resonant with the
many-body Q = 0 exciton state—see Egs. (24) and (25). As
discussed is Sec. IIIC, the photon energy shift at Q =0,
a)gf) — wey, depends only weakly on Eg. In particular, for
the small value of 2 used in Fig. 11 (2 = 0.2Rx), we expect
that the Er dependence of the effective photon ener%y) is

negligible with respect to that of the exciton energy, |a)(coF

wcp| K |E)((‘3’EF) —E)((d)l. Thus, in this case, we expect that

8509 =~ E)((‘f)’EF) — E)((d), which matches what is observed in
Fig. 11: The detuning § at which resonance occurs (red region)
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(b) my/m;=4.0, screened

10 (a) my/my=0.25, screenji/

Ep/Ry

Ep/Ry

FIG. 10. Rescaled shift of exciton energies E)((%EF) —EPatQ=
0 (solid) and Q, (dashed) as a function of density. Parameters
are for a GaAs single quantum well (d = 0, E)((d:O) = —Ry), two
different mass ratios m,/m; = 0.25 and 4, and for both screened
(Ns; = 1) [panels (a),(b)] and unscreened (N; = 0) [panels (c),(d)]
interactions. Dot-dashed and dotted lines show the low- and high-
density fittings, respectively.

coincides with the energy shift of the exciton, E)((‘f)‘EF) - E;d)

(solid line).

APPENDIX C: FIRST- VERSUS SECOND-ORDER
TRANSITIONS

As shown in Ref. [10], in the absence of the photon
field, the excitonic SF-FF transition is always second order.
In Fig. 12 we show this by plotting the momentum Qin—
which minimizes the many-body exciton energy Eq = E)((‘gEF)

10 1
o 0.8
=
(%]
. 0.6
2 2
£ 1 ] |0t
& 0.4
s
Q
>
= 0.2
0.1 L L L L 0
0.001 0.01 0.1 1 10

Ep /Ry

FIG. 11. Rescaled shift of exciton energies E)((%EF) —EPatQ=
0 (solid) and Qu;, (dashed) as a function of the density. Parame-
ters are for a GaAs single quantum well (d =0, E)((dzo) = —Rx),
my/my = 0.25, and screened interactions N; = 1. The diamond sym-
bol represents the Fermi energy Egg at which the two energies split as
a consequence of a second-order transition where Q,,;, moves away
from 0. The color map is the photon fraction |a|? of the many-body
polariton state at Q = 0 for = 0.2Rx. The color map is plotted
against Er /Ry (x-axis) and detuning §/Rx (y-axis).

2
(a) screened mylm =025 ——
mylm =1
g‘ my/m=4
g
g
Q
(b) unscreened
%L
g
g
Q

10

Ep/Ry

FIG. 12. Momentum Qp;, minimizing the many-body exciton
energy Eq = E)((%EF) obtained by solving Eq. (18) as a function of
the majority Fermi energy Er for a single quantum well (d = 0),
and for different values of the mass ratios m,/m; as indicated. In
panel (a) the interaction is screened, Ny = 1, while in panel (b) it is
unscreened, Ny = 0.

solution of Eq. (18)—as a function of the Fermi energy of the
majority species. We see that the transition from the SF Q = 0
to the finite momentum FF phase is continuous. In addition,
for screened interactions, when increasing the density further,
Omin locks to precisely kp at the FF-N transition.

In the presence of a cavity field, the transitions SF-FF and
SF-N are instead first order. This is shown in Fig. 13, where
we plot the energy of the polaritonic state versus Q. These
data refer to the parameters of Figs. 4 and 5. In panel (a)
we show three curves varying the majority species density
close to the first SF-FF transition. We have taken a positive
large value of the detuning at Er = 0, § = 8Rx, such that the
photon energy is far above the range of energies shown in this
figure. Nevertheless, by comparing the many-body LP energy
Q-dispersion with that of the many-body exciton (dashed
lines, corresponding to 2 = 0), we observe significant effects
of mixing between light and matter near Q = 0. The light-
matter mixing at Qmi, is much smaller, around |og,, |* =
107°. As a result, the energy shows two local minima that
cross—the signature of a first-order transition. For the N-
SF transition that occurs at larger majority species density,
Fig. 13(b), we observe that there is minimal coupling between
matter and light both for the SF Q = 0 state (because the Q =
0 exciton energy state is pushed here to very high energies by
Pauli blocking) and for the normal state at Oy, = kg, which
has zero photon fraction.

APPENDIX D: ORIGIN OF Ef AND §*

We explain here the origin of the “universal point” (E}f, 6*)
found in the phase diagram of Fig. 6. Remarkably, exactly
at this point there is no €2 dependence of either the SF-FF
transition (for unscreened interactions) or the SF-N transition
(for screened interactions). One way to understand the origin
of this universal point is by comparing the many-body LP
energy of the SF state at Q =0, Eyp, with that of the FF
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FIG. 13. Many-body polariton ground-state energy Eq with re-
spect to the normal-state energy Ey (solid lines) vs momentum Q.
Parameters are for a GaAs heterostructure with a single quantum well
(d = 0), mass ratio m, /m; = 0.25, Rabi splitting 2 = 2Ry, detuning
8 = 8Rx, and screened interactions (N; = 1). Dashed colored lines
are the many-body exciton energies E;(‘EEF) evaluated in the absence
of the light-matter coupling, 2 = 0. The gray dotted line indicates
where the minima at Q = 0 and Q # 0 are equal. Panel (a) shows
the first-order SF-FF transition when increasing the system density,
while panel (b) shows the N-SF first-order transition.

phase at Omin, Ep,,,- The two energies clearly coincide at this
first-order boundary (for screened interactions, the FF phase
may be replaced by the N phase if the density is large enough).
A limiting case of this boundary occurs when € — 0; in this
limit, the boundary occurs when

_ p@E) _ p@
§ = ESE) — E¢

XQmin (D 1)

(assuming Er > Epg), where E)(fiﬁf" ) is the many-body exciton
(i.e., 2 =0 case) energy of the FF phase for a majority
species Fermi energy Eg. This condition corresponds to a
crossing between a photonic SF state and the excitonic FF
state. At nonzero €2, the SF state becomes polaritonic.

The existence of the special point (E}, §*) corresponds
to a point where this critical condition is not affected by
light-matter coupling. To see this, we consider the following.
At each Ep, we can choose the detuning & so as to satisfy
Eq. (D1), thus on the SF-FF boundary at 2 = 0. We then
plot in Figs. 14(a) and 14(b) Ey — Eq,,,, the energy difference
between the LP energy at Q = 0 and Q = Qup, as a function
of Q2. We plot this energy difference for different values of Ep.
For Er < Ef, this energy difference decreases with 2. This
means that upon increasing €2, the SF-FF boundary moves
to larger values of the detuning (see Fig. 6). Conversely, if
Er > Eg, the energy difference increases with €2, so the SF-FF
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E 0 0 =
> S
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FIG. 14. Illustration of the dependence of energies on Rabi split-
ting close to Ef. The parameters are for a GaAs heterostructures
with a single quantum well d = 0, mass ratio m,/m; = 0.25, and
for screened [panels (a) and (c)] and unscreened [panels (b) and (d)]
interactions. (a) and (b) Energy difference between the many-body
polariton SF energy Ey and the FF energy Eq , [panel (b)] or
between E, and the normal-state energy Ey [panel (a)]. For each
Fermi energy, Ef, the detuning is fixed according to Eq. (D1),
describing the SF-FF boundary at 2 = 0. (c) and (d) Photon energy
wco — E, satisfying Eq. (D9) at Q =0 and Eg  —for the values
of Ep considered in the plot and for screened interactions, Eq
coincides with the normal-state energy Ey;, i.e., Quin = kFl:ip.

boundary moves down to lower detuning. Exactly at Er = E,
we observe that Ey — Eq,_,, = 0 becomes exactly independent
of Q. As such, at this value of E}, the critical detuning is §*,
independent of .

Given the effective 2 independence seen at £}, an alterna-
tive way of identifying the value of Eff and 6* is by finding a
condition for which the eigenenergy of the variational state
becomes independent of the coupling to light. To do this,
following Ref. [43], we rewrite the many-body eigenvalue
problem of Eqgs. (17) in terms of the renormalized photon
energy wcq = wco + Q? /2mc (11) to give an expression that
is independent of the UV cutoff. We thus separate out the
divergent part of the relative wave function ¢y,

_ 8% (D2)

¥Q = Bro + ,
Eq —ékq

and we rewrite (17) in the following equivalent forms:

! 8aQ Vi—k
(EQ — ékQ)Pro=—— Z View Brg + == Z _ Yk
AT A = —Eotéie
(D3a)
g 1
ooty Z—EQJrEkQ

k> kg

1
_ Xk: v )}ao - % > Buo- (D3b)

+ €k + €k2 Ko ke

All sums are now convergent. For the solution of these equa-
tions to be independent of light-matter coupling means the Eq
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must match the solution at g = 0, i.e.,

Eq = wco — E,. (D4)

This condition corresponds to the system energy Eq + E,
coinciding with wcq, the energy of the photon mode at Er =

0. Using Eq. (D4) in Eq. (D3b), we obtain the following
equation to define Ef:

1 1 1
Z—EQ‘kaQ_Z Z_ZﬁkQ.

d
k>ke k _E>(< T €kl T ek2  8%Q

(D5)

Note that this condition is indeed independent of g. To see this,
we formally invert Eq. (D3a) to give Bkq:

e = gaq Y (Mo iwLig. (D6)

K >kg

where the matrix Mg and vector Lq in relative momentum
space are defined, respectively, as

Mok = (EQ — &kQ)dkx + Vk—k'» (D7)
Vk—k
Lo=Y —kK (D8)
ke Z —Eq + ékq

We thus find that Eq. (D5) is independent of both g and aq:

1 1
2 —Eq + &k 3

(d)
ke fe . —Ex’ texit ek

= Z Z(MQil)k,k’Lk’Q~

K> kg K'>kg

In addition to satisfying Eq. (D9), E} lies on the SF-FF
(SF-N) boundaries for unscreened (screened) interactions, and
thus it also has to lie on the boundary at 2 = 0. With this in
mind, we plot in Figs. 14(c) and 14(d) the energy wco — E; =
Ey obtained by solving Eq. (D9) at Q = 0 as a function of
Eg. From the crossing of this curve with that of the FF state
in the absence of light, i.e., the FF exciton energy E;;é!?) (or,
for the screened case, the normal state energy Ex), we recover
the value of Ef. The corresponding value of the detuning

5* is given by Eq. (D1) for Ep = Ef, ie., 8" = Exq" —
E)((d). We thus find (E}, 6*) >~ (1.55Rx, 1.82Rx) (for screened
interactions) and (E}, §%) >~ (1.95Rx, 0.91Rx) (unscreened
interactions).

Finally, we remark that the g independence at E}f does not
imply that light and matter are fully decoupled at this point.
Indeed, the photon frequency depends on the active medium
through the process of renormalization. However, precisely
at Eff, the photon self-energy arising due to the light-matter
interaction only contains the term that appears in Eq. (11),
while all other terms cancel. Given the general arguments that
led us to determine the point (£}, §%), it is likely that it persists
as a special point in the photon self energy also beyond the
variational approach used in this work.
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