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Homeorhesis in Waddington’s landscape by epigenetic feedback regulation
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In multicellular organisms, cells differentiate into several distinct types during early development. Determina-
tion of each cellular state, along with the ratio of each cell type, as well as the developmental course during
cell differentiation are highly regulated processes that are robust to noise and environmental perturbations
throughout development. Waddington metaphorically depicted this robustness as the epigenetic landscape in
which the robustness of each cellular state is represented by each valley in the landscape. This robustness is
now conceptualized as an approach toward an attractor in a gene-expression dynamical system. However, there
is still an incomplete understanding of the origin of landscape change, which is accompanied by branching of
valleys that corresponds to the differentiation process. Recent progress in developmental biology has unveiled
the molecular processes involved in epigenetic modification, which will be a key to understanding the nature of
slow landscape change. Nevertheless, the contribution of the interplay between gene expression and epigenetic
modification to robust landscape changes, known as homeorhesis, remains elusive. Here, we introduce a
theoretical model that combines epigenetic modification with gene expression dynamics driven by a regulatory
network. In this model, epigenetic modification changes the feasibility of expression, i.e., the threshold for
expression dynamics, and a slow positive-feedback process from expression to the threshold level is introduced.
Under such epigenetic feedback, several fixed-point attractors with distinct expression patterns are generated
hierarchically shaping the epigenetic landscape with successive branching of valleys. This theory provides a
quantitative framework for explaining homeorhesis in development as postulated by Waddington, based on
dynamical-system theory with slow feedback reinforcement.
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I. INTRODUCTION

In most multicellular organisms, cells differentiate into
several types in the course of development, which show
distinct gene expression patterns that are robust to external
perturbations and internal noise. As a theoretical explanation
for this robustness, Waddington introduced the concept of the
epigenetic landscape more than 60 years ago, as shown in
Fig. 1(a). In this concept, a ball falling along the landscape
represents the cell differentiation process over time, and each
valley corresponds to a differentiated cell type [1]. Although
presented visually as a metaphor, Waddington also proposed
that this differentiation process can be understood in terms
of the dynamical systems of gene expression. Following his
insight, each valley is now interpreted as an attractor of an
intracellular dynamical system for gene (protein) expression.
The cellular state is represented by a set of gene (protein)
expression levels reached as a result of such dynamical sys-
tem, as represented by an attractor of such dynamical system.
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Then, the cellular state remains in the vicinity of the attractor
even under internal noise or external perturbation. In fact,
several dynamical-systems models with mutual activation and
inhibition of protein expression demonstrated the coexis-
tence of multiple attractors that correspond to distinct cell
types [2–5], and supporting experiments have been carried
out [6,7].

According to this dynamical-systems approach, the X axis
characterizing the cellular state in Fig. 1(a) is represented
by the gene expression pattern. However, since there are
thousands of genes (or components) in a cell, the state may not
be accurately represented by a one-dimensional variable X .
Nevertheless, the cellular state can potentially be represented
by only a few variables extracted from data reduction of the
expression levels of a huge number of components, such as
principal component analysis (PCA) [8].

Moreover, the height of the landscape (Z axis) represents
changeability of the state. Cellular states are attracted to the
bottom of the valley, which, in terms of dynamical systems,
are fixed-point attractors at which point no more change will
occur.

Along with the dynamics falling onto the bottom of the
valley, as represented by motion along the X axis in Fig. 1(a),
the landscape itself is shaped along the other (Y ) axis rep-
resenting the developmental course, in which the valleys are
shaped successively and are deepened, in a process known
as canalization. Therefore, a fundamental question remains:
given that the attraction to each valley along the X axis is
represented by gene-expression dynamical systems, what does
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FIG. 1. (a) Waddington’s epigenetic landscape. The cell differ-
entiation process is conceptually explained as motion of a ball along
the landscape in which valleys correspond to differentiated cell types.
Here, the horizontal axis (X ) represents a cellular state, the height
(Z axis) represents the inverse of the frequency (probability) that
a cell takes state X , and the Y axis represents slow developmental
change. Adapted from Ref. [1]. (b) Shaping the landscape by genes,
represented by strings (also adapted from Ref. [1]). Waddington
entitled the figure as the “complex system interaction underlying the
epigenetic landscape,” where interactions among genes control the
landscape as metaphorically represented by strings.

the Y axis representing (slower) landscape change represent?
To address this fundamental question, there are three basic
questions to resolve with respect to the postulates of Wadding-
ton’s landscape itself.

First, there is the issue of hierarchical branching. That is,
since the valleys are successively generated over developmen-
tal time [Fig. 1(a)], many valleys (attractors) are not generated
independently, but rather the shallower valleys are generated
first and are then branched, and these branching processes are
repeated [9,10].

Second, Waddington argued that the developmental pro-
cess itself, i.e., the motion along the shaping of valleys, is
also robust to perturbation, and coined the term homeorhesis
to represent such path stability [1,11]. However, the mecha-
nism contributing to the robustness of this shaping process,
including successive branchings, remains elusive [4].

Finally, the number ratio of each cell type is also rather
robust to perturbations or initial conditions. If we assume that
a deeper valley attracts more cells, this robustness implies
overall robustness of the landscape, in particular, the depth
of each valley [12–18].

Considering these three postulates of the landscape, let
us now come back to the fundamental question of the na-
ture of the Y axis representing slow developmental change.
Waddington drew the diagram Fig. 1(b) to show schematically
how genes control the epigenetic landscape, in particular the
change of valleys along the developmental time. After 60
years since proposal of the epigenetic landscape, we have now
possible candidates that could cause such a slow landscape
change. One candidate is the cell-cell interactions [16–18].
As development progresses and the cell number increases,
the influence of cell-cell interactions on the intracellular dy-
namics for each cell type is stronger. Slow modifications of
intracellular expression dynamics can lead to novel attractors
or the increase in their robustness.

Another potential source for slow landscape change is
change in chromatin structure with epigenetic modification,
which is currently one of the hottest topics in cell and devel-

opmental biology [19–25]. Epigenetics is a field derived from
a term “epi(above)-genetic” coined by Waddington, 60 years
ago [1,11]. At that moment it would cover all possible changes
beyond the genetic one. Now, epigenetics are mainly studied
as a variety of molecular mechanisms that affect feasibility
of the expression of each gene at a given time and place
without change in DNA sequences, such as the methylation or
some other molecular modifications in DNA [26–28]. These
modifications change, for example, the openness of chromatin
around a promoter of gene, which affects the flows of gene
regulation, i.e., the efficiency of transcription binding pro-
moter changes depending on the degree of openness [29,30].
If the chromatin is more open around a gene, it is more
feasible to be expressed by the actions of other genes on its
promoter. As for modifications to the DNA influencing on the
openness over a long time span, novel molecular mechanisms
are still being uncovered, with the ongoing development in the
field of epigenetics [31].

Note that epigenetic modification generally depends on
a given cellular state, i.e., the expression levels of proteins,
whereas the epigenetic changes, e.g., openness of chromatin
structures, influence the expression levels. In general, the
epigenetic process is slower than the expression dynamics,
and the epigenetic change lasts over the time span in the
change in protein concentrations [29,32–35]. The epigenetic
change leads to stabilization of cellular states, which can be
corresponded to deepening the valleys as schematically repre-
sented in Fig. 1(b). This stabilization may imply the existence
of a positive-feedback process between the expression and
epigenetic change as suggested experimentally [30,36], and
also theoretically [32–34,37].

Despite these suggestions and growing reports on
epigenetic changes, however, the detailed interplay between
epigenetic modification and gene expression dynamics has
not been fully explored. In contrast to the extensive body of
theoretical and empirical literature on expression dynamics
or epigenetic modifications, there is little experimental
elucidation of the underlying molecular mechanisms
nor theoretical model for the interplay proposed to date.
Therefore, at this stage, a simple phenomenological model is
needed to investigate how such slow epigenetic change can
introduce a novel expression pattern or stabilize the existing
expression patterns. Such a model would provide a bridge
between epigenetic modification and the epigenetic landscape
as Waddington conceptualized.

To formulate the epigenetic process in terms of dynamical
systems, we here introduce an epigenetic variable for each
expressed gene, represented as a threshold level of the input
needed for the gene of concern to be expressed. Using the
simplest feedback process, we elucidate the possible condi-
tions for the epigenetic landscape and its properties. Rather
than seeking detailed models extracted from realistic expres-
sion dynamics, we instead consider a minimal conceptual
model that captures the interplay between the relatively faster
gene expression dynamics and slower epigenetic dynamics
to address how an epigenetic landscape satisfying the requi-
sites of (i) hierarchical branching, (ii) homeorhesis, and (iii)
robustness in the cell-number ratio is generated. Instead of
the simplicity in the model, we have simulated thousands of
networks to extract a universal mechanism and draw a general
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conclusion, which will hold true in a complicated system with
biological reality.

II. MODEL

We consider a cell model with a gene regulatory network
(GRN) and epigenetic modification. The cell has N genes and
the cellular state is represented by the expression level (or
concentration) xi of each gene i. Here, the GRN represents
the mutual control of genes via synthesized proteins. Gene
expression typically shows an on-off-type response to the
input: a gene is expressed (suppressed) when its input value
is above (below) a certain threshold, whereas its expression
level is saturated as the input value increases. By normalizing
the maximal (i.e., saturated) expression level to unity, we
adopt the following gene expression dynamics for simplicity
[38–42]:

dxi

dt
= F

⎛
⎝ N∑

j

Ji j√
N

xj + θi + ci

⎞
⎠ − xi, (1)

where Ji j is the regulatory matrix. If Ji j is positive (nega-
tive), gene j activates (represses) the expression of gene i,
whereas Ji j is set to 0 if no regulation exists. To represent the
on-off-type expression of genes, we adopt F (z) = tanh(βz)
(β = 40). xi = 1 indicates the full expression of the ith gene
and xi = −1 indicates no expression of the ith gene. ci is a
constant input value, interpreted as an input outside of the N
genes (for example, upstream genes) or the natural trend for
expression. For most examples, however, ci is set to 0 unless
otherwise noted.

Here, −θi represents the threshold for the input, beyond
which the expression is activated. As θi is increased (de-
creased), the ith gene tends to be expressed (repressed). In
the standard GRN model, this threshold is fixed. By contrast,
we regard it as a variable by assuming that θi represents the
epigenetic modification level for each gene i, such as histone
modification or openness of chromatin structure.

Further, the epigenetic change depends on the expression
level of gene i. In accordance with some theoretical and
experimental reports [30,32,33,36,44,45], we adopt a positive-
feedback process from gene expression to epigenetic modifi-
cations: when a gene is expressed (repressed), it tends to be
expressed (repressed), as is consistent with the stabilization by
the epigenetic changes. Thus the epigenetic change (openness
in the chromatin structure) is given by:

dθi

dt
= v(axi − θi ). (2)

This assumption is rather natural considering the concept of
canalization, i.e., each valley becomes deeper (or more stable)
as development. In Eq. (2), the parameter a(> 0) represents
the strength of the positive-feedback mechanism, and v(> 0)
gives the rate of change in the epigenetic modification.

In the model, both θi that characterizes the degree of
openness and

∑
j Ji jx j that represents the actions from other

proteins synergetically determine the expression. In the equa-
tion, only if

∑
j Ji jx j + θi is larger than the threshold ci, i.e.,

if the input is large and the chromatin is sufficiently open, xi

is expressed. As the term
∑

j Ji jx j is bounded by unity, if θ

decreases goes to a negative value (towards −α), the gene is
not expressed. Hence if the chromatin is closed, the gene is not
expressed. Further, because θi increases as a result of positive
feedback from xi, the gene turns to be expressed only when
the chromatin is open and activators bind to the promoter.

Remark. Here we remark on the simplification adopted in
our modeling and its limitation. Biologically plausible models
often adopt the Hill function such as F Hill (z) = zα/(zα +
Kα ) [or F Hill

s (z) = 1/(zα + Kα )] for the expression dynamics,
instead of F (z), where combination of xα

m/(xα
m + Kα

m ) (for
activation) and 1/(xα

m + Kα
m (for suppression) provides the

expression dynamics [46,47]. The qualitatively same gene-
expression dynamics (e.g., on/off expression patterns, multi-
stability, oscillation), however, is observed both for the models
with F (z) [38–41] and the Hill-type model.

In the Hill function, the value K corresponds to the
threshold for the on/off -type expression dynamics. With
the increase in K , the threshold for expression increases.
Hence, K and θ in our model play the same role. Now K’s
change with the affinity with the prompter and proteins, or
in other words, with the chromatin openness. Considering
that epigenetic change to stabilize each expression pattern, as
discussed above, the feedback from x to K in the form of Eq.
(2) was introduced in a previous research [46] for a Hill-type
model extracted from the real data. Indeed, Eq. (2) is obtained
by replacing K by θ .

Here, as long as the threshold-type expression dynamics
and slow positive epigenetic feedback process in the type of
Eq. (2) is adopted, qualitatively similar behaviors are obtained
with regard to the classes of the expression dynamics and the
fixation from oscillatory dynamics, to be discussed below.1

Note that the two basic assumptions (i) threshold-type gene
expressions via synthesized proteins and (ii) slow epigenetic
modification (chromatin openness) that stabilizes the expres-
sion pattern by the feedback are essential to draw the con-
clusion in the present paper. By our approach, however, one
cannot make a direct, quantitative prediction on the epigenetic
landscape for a specific example, as it requires quantitative
information on the specific form of gene expression dynamics
and epigenetic feedback. This is a limitation in our modeling.

III. FIXED-POINT ANALYSIS

The fixed-point solutions of (1) and (2) are obtained by
setting each term to zero. From the latter, we get θi = axi and
from the former we obtain

tanh β

(
N∑
i

Ji j√
N

x∗
j + ax∗

i

)
− x∗

i = 0 (3)

(note that the case with ci = 0 is considered here). In the large
β limit, the tanh function is approximated by the step function,

1The reason for such agreement comes from the dynamical-systems
theory. As shown in the later sections, types of attractors (which of
the genes are expressed, multistability, oscillation) are determined by
how nullclines are crossed, whereas a consequence of the epigenetic
change is determined by how the nullclines are shifted. Indeed, our
model and the Hill-type model have common behaviors as for the
crossings and shift of nullclines.
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so that the fixed point x∗
i is given by a sequence of {−1, 1} that

satisfies (3). The number of fixed points of (3) then increases
monotonically with the value of a (Fig. S1 in Supplemental
Material [43]). If it is large enough (that is, the second term
in the brackets in (3) is sufficiently larger than the first term),
all of the 2N patterns with any combination of x∗

i = ±1 (with
θ∗

i = ax∗
i ) satisfy (3). All of these are fixed-point attractors,

which are reached by choosing initial conditions close to each
{−1, 1}N state. However, for a = 0, the number of fixed points
satisfying x∗

i = tanh β(
∑

Ji jx∗
j /

√
N ) is much smaller.

Here, we focus on a case with sufficiently strong epigenetic
feedback, i.e., sufficiently large a, in which all of the possible
2N states could exist if any value of xi and θi is initially chosen.
However, for studying the canalization dynamics, we restrict
the initial condition of θi as follows: At the initial stages of
development, epigenetic modification is not yet introduced
[48–52], so that all of θis are set to 0. Under this restriction,
we investigate which of the 2N fixed points with x∗

i = ±1 and
θ∗

i = ax∗
i is reachable through developmental change of the

epigenetic modification. As we limit the dynamics to the state
of θi = 0, we refer to only the final states reached from such
initial conditions as attractors throughout the paper (whereas
the initial conditions of xis cover all possible {−1, 1} states).

IV. ATTRACTOR GENERATION AND PRUNING

First, we set N = 10 and prepare the initial conditions for
all gene expression patterns with null epigenetic modification
(i.e., 2N candidates with xi = ±1, θi = 0). In the context of
the epigenetic landscape, these initial conditions correspond
to the balls on the top of the landscape, whereas the valleys
are shaped with the change in θi and the balls are trapped at
the bottom of the landscape that correspond to the attractor.
We then examine which and how many attractors are selected
depending on the parameter v.

At the limit of v → 0, i.e., the adiabatic limit in terms of
physics, the time scales of the dynamics for xi and θi are well
separated. Only after the expression level xi reaches one of
the original attractors with θi originally fixed at 0, θi begins to
show gradual variation. Hence, the number of attractors will
be bounded by the expression dynamics when fixing θi = 0.
At the limit of v → ∞, θi reaches θi = axi faster, so that
all of the 2N states x∗

i = tanh(βax∗
i ) are attracted depending

on the initial xi values, as long as a is sufficiently large. By
considering these two extreme limits, v generally functions as
a parameter that limits the final state from all of the possible
2N states. Now, from naive expectation based on the above
two limits, it might be expected that the number of attractors
will monotonically increase with v. Indeed, such monotonic
increase could be observed for 80% of randomly chosen
networks Ji j for N = 10.

For v ∼ 0, the approach to the attractor is completed before
epigenetic modification and then θi is fixed accordingly. With
the introduction of v, θi increases or decreases depending on
the initial value of xi. If this process for xi is fast, xi is fixed
to ±1 depending on the initial condition; that is, before the
approach to the original attractor. Hence, the original basin of
attraction is partitioned. With the increase in v, more partitions
progress; accordingly, the few attractors that exist at v = 0
are successively partitioned toward 2N states with the increase

FIG. 2. (a) Dependence of the number of attractors (reached
states from θi = 0) upon v. Gray dotted lines show the case with
a monotonic increase of the attractor number against v. The black
and green solid lines are examples with nonmonotonic dependence
on v. Attractors are pruned at 2 × 10−3 < v < 1 × 10−2. N = 10.
(b) Dependence of the basin volume of each attractor upon v, for the
example of nonmonotonic dependence of attractor number shown
as the black line in (a). Basin volume is computed by taking 2N

initial conditions of {xi = ±1} and setting θi = 0 initially, and then
counting the number of initial conditions reaching each fixed-point
state. Each line with a different color shows the basin volume for
each different attractor.

in v. In this case, for a given v, fixation simply occurs from
the neighborhood of each on/off-pattern attractor provided by
the initial condition. There exists no hierarchical branching to
each attractor over developmental time. Moreover, since only
the attractor from the neighborhood of the initial expression
state is reached, the final state crucially depends on the initial
condition. Neither homeorhesis nor robustness in the cell-
number ratio is expected, as will be confirmed later.

However, in the case of N = 10, approximately 20% of the
randomly chosen matrix Ji j shows nonmonotonic dependency
of the attractor number on v. Here, different attractors are
generated and pruned successively with v in the intermediate
range of v. This implies that states separated at smaller v con-
verge again with the increase in v, even though the epigenetic
feedback tend to separate each xi to ±1. With mutual inter-
ference between the fast dynamics of xi and slower dynamics
of θi, both the convergence of initial states and divergence to
fixed states coexist, as will be discussed below. Further, as will
be shown, such convergence of orbits in the initial regime can
allow for creation of an epigenetic landscape that satisfies the
three postulates of hierarchical branching, homeorhesis, and
robustness in the cell-number ratio.

In this nonmonotonic case, the basin volume of each
attractor, i.e., the fraction of initial conditions from which
each attractor is reached, also changes with v. In particular,
dominant attractors successively change with v as shown in
Fig. 2(b). This scenario is in stark contrast with the case of
a monotonic increase in attractor number, where each basin
of attraction is simply partitioned to 2N successively with the
increase in v (Fig. S2).

V. TRAJECTORY SEPARATION BY EPIGENETIC
MODIFICATION: SIMPLEST EXAMPLE

To understand how mutual feedback between gene expres-
sion and epigenetic modification can lead to the generation
and pruning of attractors, we first consider the minimal case

023083-4



HOMEORHESIS IN WADDINGTON’S LANDSCAPE BY … PHYSICAL REVIEW RESEARCH 2, 023083 (2020)

FIG. 3. (a) Two-gene system with activation (red arrow) and inhibition (blue arrow): x2 activates x1 and x1 inhibits x2. The parameter values
are chosen as J12 = 0.44, J21 = −0.33, J11 = J22 = 0, c1 = 0.16, c2 = −0.15. (b) Trajectories in x1, x2 for v = 10−4. Trajectory A reaches the
fixed point (−1, 1), whereas Trajectory B reaches (−1, −1). These two types of trajectories coexist (two fixed points as two black dots),
depending on the initial condition, for the intermediate value of v. Initial conditions are chosen at even intervals per 0.5 in the phase space
of (x1, x2). (c) Analyses of the two types of trajectories according to the motion of two nullclines: blue, corresponding to dx1/dt = 0; red,
dx2/dt = 0. (i) (x1, x2) approaches the cross point of the nullclines if θi is fixed, whereas the change in θi results in a shift of the nullclines. (ii)
For both trajectories, x1 nullcline (blue line) goes up and x2 nullcline (red line) goes left first, because (x1, x2) first approaches the fixed point
at θi = 0 starting from any initial condition. Top: As x2 exceeds 0, the motion of the x1 nullcline changes its direction, and (x1, x2) reaches the
fixed point (−1, 1). This gives Trajectory A. Bottom: Before x2 reaches 0, the x2 nullcline crosses the x1 nullcline vertically in Trajectory B so
that x2 remains negative and the motion of the nullclines do not change their direction; thus, (x1, x2) reaches (−1, −1).

with only two genes (N = 2). In addition, c1, c2 �= 0, which
may be also regarded as the inputs from genes other than
i = 1, 2. We consider the case J11 = J22 = 0, J12 > 0 > J21;
i.e., one gene activates the other, which then inhibits the first,
as shown in Fig. 3(a).

In this simple case, the number of attractors changes as
1 → 2 → 1 with the increase in v over a certain range of
parameters c1, c2 [Fig. S3(a)]. For v < 5.7 × 10−5, only tra-
jectories reaching (−1, 1) are realized (Trajectory A) [Fig.
S3(b)]. By increasing v further, trajectories reaching (−1,−1)
then appear (Trajectory B) where 5.7 × 10−5 < v < 7.0 ×
10−4, and two attractors (−1, 1), (−1,−1) coexist [Fig. 3(b)].
For larger v (7.0 × 10−4 < v < 9.1 × 10−3), the attractor
(−1, 1) disappears completely [Fig. S3(c)]. The time course
in the development of the two types of trajectories and the
change in the basin for each attractor are shown in Figs. S4
and Fig. S5, respectively.

The above v dependency of attractors is explained as
follows. When v is small, the dynamics are approximated by
the means of adiabatic elimination; i.e., xi reaches the fixed
point for a given θi, whereas θi changes slowly. For given θi,
the {xi} dynamics are analyzed by the two nullclines, given by

dx1/dt = 0 → x1 = tanh β

(
J12√

N
x2 + θ1 + c1

)
, (4)

dx2/dt = 0 → x2 = tanh β

(
J21√

N
x1 + θ2 + c2

)
. (5)

When v is small, while xi moves towards the cross point of
the two nullclines, as θi slowly changes according to (2), the
nullclines are slowly shifted.

When this adiabaticity condition is satisfied, only Trajec-
tory A is realized [Fig. S3(b)]: at θi = 0 (null epigenetic

modification), there is a stable fixed point as the cross point
of the two nullclines at x1 < 0 and x2 < 0 [Fig. 3(c i)]. Then,
according to (2), each nullcline is shifted as follows: the x1

nullcline (i.e., dx1/dt = 0 nullcline) goes up, whereas the x2

nullcline (i.e., dx2/dt = 0 nullcline) goes left. As a result,
the cross point of the two nullclines itself moves up and left,
thus reaching above x2 = 0. Consequently, the shift of the
x2 nullcline changes its direction (as the sign of dθ2/dt is
approximately given by the sign of x2). Accordingly, the cross
point of the nullclines continues to move up, reaches (−1, 1),
and then stops.

However, by increasing v, the faster move of the nullclines
generates another trajectory, Trajectory B. First, the cross
point of the two nullclines moves to the left and up, in the
same way as observed for Trajectory A. However, owing to
the faster change in θ , the x2 nullcline shifts to the left so
quickly that the two nullclines cross vertically [see Fig. 3(c ii)
Trajectory B], and the cross point does not go above x2 = 0.
As a result, the cross point moves to the left and down to
(−1,−1), where (x1, x2) is fixed for some initial conditions.
Here, (x1, x2) first approaches the fixed point at θi = 0 for both
Trajectories A and B, and then owing to slight difference in
the initial conditions, (x1, x2) is directed either to (−1, 1) or
(−1,−1).

By increasing v beyond 9.1 × 10−3, the shift in the null-
clines is accelerated, so that the two nullclines cross vertically
for all of the initial conditions. In this case, Trajectory A is
not realized for any initial condition, and all of the initial
conditions are instead attracted to (−1,−1) [Fig. S3(c)].

Hence, the attractor number increases due to the diver-
gence in the motion of the nullclines depending on the initial
conditions of {x(i)}. With a further increase in v, the attrac-
tor is pruned because nullclines move faster and no longer
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(a) (b)

FIG. 4. (a) Fraction of the regulatory matrices Ji j that exhibit
attractor pruning with the increase in v (here defined as a decrease
in attractor number of more than 4). The cases with the initial limit-
cycle attractors at θi = 0 (red) and those with fixed points (green) are
sampled separately. (b) Average number of pruned attractors, defined
as the difference between the local maximum and local minimum of
attractor number against the change in v. Case with a limit cycle (red)
and fixed points (green). See Fig. S6 for more details.

split into two directions of motions due to the faster change
of θi.

VI. GENERATION AND PRUNING OF ATTRACTORS
FROM AN OSCILLATORY STATE

The two-gene minimal model described above suggests
how the interplay between fast x dynamics and a slow null-
cline shift leads to divergence in trajectories, thereby resulting
in nonmonotonic change in the attractor number. By contrast,
for N = 10, the nonmonotonic behavior of attractor number
against v mostly adopts a limit-cycle attractor at θi = 0. The
frequency of networks showing such behavior is much larger
for the limit-cycle case, along with the number of generated
and pruned attractors in the intermediate range of v (see
Fig. 4).

This relevance of the limit cycle to the generation and
pruning of multiple attractors is explained as follows. First,
as the limit cycle travels over a larger portion in the phase
space of {xi}, the variation in the change in {θi} is enhanced so
that more attractors can be generated with the increase in v.
These attractors are generated hierarchically by branching tra-
jectories successively, stemming from the original limit-cycle
orbit. However, with the increase in v, the initial oscillation is
destroyed due to the faster change in θ (shift of nullclines),
so that the top of the hierarchy in branching trajectories
is destroyed, leading to a drastic decrease in the attractor
number.

This hierarchical attractor generation from limit-cycle
(HAGL) is illustrated in a simple three-gene system with a
limit-cycle attractor [Fig. 5(a)]. In this three-gene system,
only one attractor is reached for small v where the adiabatic
condition is satisfied [Fig. S7(a)]. With a further increase
in v, however, three attractors are reached (4 × 10−4 < v <

9 × 10−3). The trajectories reaching these attractors initially
show oscillation around the original limit cycle at θi = 0, and
then separate into two groups, as shown in Fig. 5(b): two
fixed-point attractors are generated from one group, whereas
one fixed-point attractor is generated from the other group.
Thus, the attractors are generated hierarchically.

In this v region, the branching in gene expression patterns
occur in accordance with that in θi as shown in Fig. 5(c),
where the first branching occurs in θ2 at t ∼ 25, then in θ1

at t ∼ 50 and finally at θ3 at t ∼ 100. The change in θi is trig-
gered by the change in xi, but it then supports and fixes each
of the branching of gene expression patterns. In this sense,
the deepening of valleys is guided by θi, as is metaphorically
represented by strings underlying the Waddington’s diagram
in Fig. 1(b). With the increase in v, the initial limit-cycle
orbit is destroyed before the separation into two groups, so
that the number of attractors is reduced from three to one
(v ∼ 9 × 10−3) (see Fig. S7 for more details).

Most of the generation and pruning of multiple attractors
can be understood as HAGL. Note that for much larger N ,
limit-cycle attractors (or sometimes chaotic attractors) exist
more often in the model (1) with θi = 0, as previously in-
vestigated in neural network models [53,54]. Therefore, the
generation and pruning of multiple attractors are expected
to be ubiquitous. For confirmation, we simulated the model
with N = 100. Although sampling all 2N initial conditions
{xi = ±1; i = 1, . . . , N} is numerically difficult, simulations
with partial sampling showed that nonmonotonic change in
the attractor number occurred for most of the randomly
chosen Ji j matrices (Fig. S8) where HAGL is commonly
observed.

VII. EPIGENETIC LANDSCAPE AND HOMEORHESIS

Thus, HAGL satisfies the first postulate of Waddington’s
landscape: hierarchical branching. Now, we consider the other
two postulates of homeorhesis and robustness in the cell-
number ratio. For this purpose, we first need to determine the
axes X and Z in the landscape.

As discussed above, the X axis represents the cellular
state, which can be extracted from {xi} using PCA. Here,
we adopt the first PCA mode of {xi} as X . Each valley
corresponds to an attractor stabilized by the slow epigenetic
change. To explore robustness in the developmental course
and generated epigenetic landscape, we introduce noise in (1)
and (2). We adopt the Langevin equation by adding Gaussian
white noise ηi(t ) with 〈ηi(t )η j (t ′)〉 = σδi jδ(t − t ′), with δi j as
Kronecker δ and δ(x) as a δ function. In general, the specific
attractor that is reached depends on the initial condition and
perturbation by internal noise. By taking the number of cells
under noise, each cell reaches one of the attractors (and stays
in its vicinity even under noise). Then, one can compute the
number distribution of P(X ). As Z is lower, the state with X
is more frequently reached. By analogy with the relationship
between free energy and probability in thermodynamics, one
can adopt Z = log[1/P(X )]. Then, the epigenetic landscape
can be depicted using the height Z as a function of X .

To compute P(X ), we first choose an initial condition of
cells (or distribution around a given initial pattern of X ). For
each initial value, X is computed as a result of time evolution.
By starting with a sufficient number of cells, the distribution
P(X ) is obtained, which may depend on the initial condition
of cells. Then, to examine the robustness of the landscape, we
explore whether the time evolution of the distribution P(X ) is
robust against the change in the initial condition of cells.

First, when v is large, any of the 2N states is approached
from the vicinity of each of the initial expression pattern {xi =
±1}. In this case, the specific state that is attracted as well as
the number distribution of cells for each state crucially depend
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FIG. 5. (a) Three-gene system with J11 = 0.26, J12 = J13 = 0.35, J21 = −0.4, J31 = −0.36, c1 = 0.26, c2 = c3 = 0.17. (b) Hierarchical
attractor generation from limit cycle (HAGL). v = 10−3. (i) Trajectories from different initial conditions, plotted by different colors, approach
a limit-cycle attractor at θi = 0. 0 < t < 10. (ii) Trajectories are separated into two groups (green line shows one group, and orange and purple
lines show another group), depending on the initial initial condition. 40 < t < 50. (iii) Further separation of the group of trajectories shown in
orange and purple. 80 < t < 90. (iv) Three trajectories reaching distinct fixed points. 120 < t < 150. (c) Time development of θ1(i), θ2(ii), and
θ3(iii). Each line color corresponding to trajectory in (b). HAGL in x space is supported by θi, similarity as the strings beyond the epigenetic
landscape.

on the choice of initial conditions. Hence, P(X ) is not robust
to the change in the initial conditions.

Next, we consider the case with monotonic dependence of
attractor number upon v. In this case, if v is not so large, the
number of attractors nA is much smaller. Nevertheless, the
specific attractor the cell state reaches is still predetermined
by how close the expression state at θi = 0 is to the final ex-
pression state. The initial xi state is partitioned into nA basins,
from each of which only one attractor (valley) is generated.
Hence, P(X ) crucially depends on the initial distribution of
xi’s (see Fig. S9, S10).

In contrast, for HAGL, the postulated robustness is
achieved if v is in the intermediate region in which multiple
attractors are generated, as shown in Fig. S9, S10. The ob-
tained P(X ) is almost completely independent of the initial
conditions of cells (see Fig. S10). For most initial conditions,
all of the attractors are reached, and the fraction of cells
reaching each attractor under noise is quite stable against the
change in the initial distribution of {xi} (Fig. S9, S10). In this
case, from any initial conditions, the limit-cycle attractor (at

θi = 0) is first reached. With the epigenetic feedback, the cells
are then distributed to each attractor depending on the phase
of oscillation. Hence, the time course of differentiation to each
attractor (cell type), as well as the fraction of each attractor
(the number ratio of each cell type) are both independent of
the initial distribution of cells.

We can then depict the epigenetic landscape according to
the time evolution of P(X ). Here, X (in Fig. 1) is given by the
first PCA mode from {xi} obtained from a distribution of initial
conditions. The landscape is depicted by Z = − log P(X ), so
that the bottom of the lower valley has a higher population
density. The landscape thus depicted is given in Fig. 6, which
shows both the hierarchical branching and robustness to the
initial expression or noise. This landscape, as in the case of
Fig. 5, is shaped with the change in θi. Time development
of distribution � (corresponding to θi in the PCA 1 space)
is shown in Fig. S11(a), whereas the landscape thus depicted
is given in Fig. S11(b), S11(c). The figures represent how
� supports the branching trajectories as in the strings in the
epigenetic landscape in Fig. 1(b).
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FIG. 6. Epigenetic landscape generated from the temporal evo-
lution of cellular states for given Ji j that exhibits HAGL. N = 40
and ci is set to a random value sampled from the normal distribution
with average 0, variance 0.1. We adopt one-mode PCA to represent
a one-dimensional scalar variable X and Z = − log[P(X )] indicating
the depth of valley, where P(X ) is the distribution of X over cells
developed under noise, and is plotted against time given by log(t ).
Red indicates large (i.e., low frequency) and blue indicates small
values. The amplitude of Gaussian white noise σ = 0.1. The right
figure shows a one-dimensional representation with the horizontal
axis as X and vertical axis as scaled time (from top to bottom),
whereas the color represent Z .

Finally, we quantitatively characterize the robustness of
the final distributions of cellular states reached from different
initial distributions. Let us define Pμ(X ) as the distribution
of X reached from a given initial condition of xi, indexed
by μ [e.g., xi(t = 0) = η

μ
i , where η

μ
i (i = 1, . . . , N ) is one

random sequence in [−1, 1], whereas ν �= μ denotes a dif-
ferent random sequence]. As the measure for the distance
between two distributions Pμ(X ), Pν (X ) generated from dif-
ferent initial distributions, we adopt the KL divergence DKL =∑

X Pμ(X ) ln{Pμ(X )/Pν (X )} for a pair of two distributions
Pμ(X ), Pν (X ) obtained from two samples μ and ν starting
from different initial conditions. If DKL is small, a similar
distribution P(X ) (i.e., a similar landscape) is obtained, inde-
pendent of the initial condition, thereby implying robustness
at the distribution level. DKL is computed by averaging over
the samples μ and ν, which is plotted in Fig. 7 for the
case of monotonic attractor number dependency on v and
the nonmonotonic HAGL case. As shown in Fig. 7, the DKL

value is kept small up to a large value in v (e.g., v � 10−2)
for the HAGL case. This quantitatively demonstrates that
differentiation from the oscillatory state through epigenetic
fixation shows higher robustness in the distribution of cellular
states.

VIII. DISCUSSION

We have introduced a model involving mutual interactions
between the expression dynamics controlled by a GRN and
epigenetic modification. With more efficient execution of the
epigenetic feedback regulation, more attractors with different
expression patterns, i.e., more cell types, are generated. In
some networks, the initial expression levels are simply embed-
ded into epigenetic modifications, whereas for other networks,
mutual feedback between expression levels and modifica-
tions bring about hierarchically ordered attractors from an
oscillatory state. In such a case, the attractor number shows

FIG. 7. DKL representing the averaged Kullback-Leibler diver-
gence between two distributions of cellular states developed under
noise (σ = 0.1). First, P(X ) is computed from 500 cells developed
from a given initial condition and Ji j . The distribution Pμ(X ) is com-
puted over μ = 1, 2, . . . , 10 starting from different initial conditions.
The Kullback-Leibler divergences are then computed over all pairs of
90 distributions and averaged to get DKL (see also Fig. S11 for each
distribution form). For HAGL, DKL remains low up to large v ∼ 10−3

(red lines), whereas in the monotonic case (green lines), it takes on a
large value over the full range of v.

nonmonotonic change against the rate of epigenetic feedback
regulation v. The mechanism of nonmonotonic dependency
on v, i.e., the attractor generation and pruning, is explained in
terms of dynamical systems theory.

By using the change in expression dynamics under the
slow epigenetic modification process, Waddington’s epige-
netic landscape is explicitly depicted, in which the landscape
axis (X axis in Fig. 1) is given by the principal component of
the expression pattern; the depth, Y axis, is given by the de-
velopmental time with slow epigenetic modification; and the
height is given by − log[P(X )] with P(X ) as the cell-number
distribution of X . In particular, when the original attractor in
the absence of epigenetic modification is a limit cycle, the
timing of branching to different cell types, number of differ-
entiated cell types, and number fraction of each cell type are
all robust to perturbations during the course of development
and to the variation of initial conditions. Hence, the generated
landscape satisfies the three postulates implicitly assumed in
Waddington’s landscape: (i) hierarchical branching is sup-
ported by the hierarchical attractor generation from the limit
cycle; (ii) homeorhesis is supported since this branching pro-
cess is independent of initial conditions and robust to noise;
and (iii) the cell-number robustness is demonstrated since
P(X ) is also independent of initial conditions and robust to
noise. This robustness in the path and in the cell-number
distribution to perturbation is an essential requirement for the
development of multicellular organisms [15].

Our theoretical model assumes epigenetic feedback reg-
ulation. Although the transient modification in epigenetic
factors has been experimentally confirmed [55,56], the extent
to which this modification depends on gene expression is
not yet clearly elucidated. Considering that epigenetic change
stabilizes the cellular states, it is rather natural to assume
positive feedback from the expression level to modification,
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i.e., if expressed (repressed), it is easier (harder) to be ex-
pressed, whereas some molecular mechanisms for such pos-
itive feedback have been suggested [32,33]. However, direct
evidence as well as quantitative estimates for the time scale of
epigenetic change require further experimental elucidation in
the future.

The significance of oscillation in the cellular state for the
differentiation process was previously discussed [18]. Indeed,
the cell state is not fixed but rather involves several oscillatory
modes, including circadian and cell-division cycles. Further-
more, oscillatory expression has recently been uncovered for
embryonic stem cells [57–60], which is ultimately lost in
cells committed to differentiation. Note that the relevance of
an oscillatory state to pluripotency was previously discussed
in the context of an alternative approach to the epigenetic
landscape with respect to inclusion of cell-cell interactions
[46]. In this case, the initial oscillation in expression levels
is lost with an increase in the cell number and resulting
amplification of cell-cell interactions accordingly. Hence, the
two approaches, i.e., cell-cell interactions and epigenetic mod-
ification, are compatible. Indeed, a model that includes both
approaches was previously investigated, in which epigenetic
modification of several genes such as Oct4 and Nanog leads to
the commitment of cells from an undifferentiated state, which
is consistent with experimental observations [61–63].

The canalization in Waddington’s landscape is valid for
the normal developmental process. However, through certain
external operations, the path of committed cells can be re-
versed to an undifferentiated state in a process known as
reprogramming [64–67]. In the present model, by externally
overexpressing some genes for a given time span, the thresh-
old −θi that was initially increased can be decreased so that
the expression level recovers, which matches the experimental
procedure used to create induced pluripotent stem cells. In the
future, it will be important to elucidate the condition required
for such reprogramming by identifying the specific genes in
the network that need to be overexpressed so as to climb up to
the most upstream location in the landscape under the present
theoretical framework.

The generation and pruning of attractors that depend on the
epigenetic feedback rate is itself an interesting phenomenon
in terms of dynamical systems of both fast and slow elements,
which requires an analysis beyond the breadth of adiabatic
elimination [54]. That is, if the time scales are clearly sep-
arated, the change in fast expression would be represented
as an attractor change against the slow epigenetic state as a
control parameter. In contrast, mutual feedback between the
two is important, as shown in the present study with regard
to the interaction between the nullclines and the variables.
Therefore, an appropriate analytical method that is capable of
capturing such feedback dynamics needs to be developed.

Homeostasis, robustness of a steady state in biological
systems has gathered much attention over decades. This, for
instance, has been discussed as the stability of the final state
(attractor) against perturbations. On the other hand, home-
orhesis is concerned with the stability of the time course of a
state, against the change in the initial conditions or perturba-
tions. So far, studies on homeorhesis are rather limited: a few
examples include relaxation dynamics in signal transduction
process independent of the initial condition [68], robust devel-
opmental process with cell-cell interaction [16,18], and robust
ecological dynamics in an experiment consisting of algae and
ciliates [69]. For homeorhesis to work, existence of slower
time scale and buffering of initial variation will be needed.
The hierarchial attractor generation by slower epigenetic feed-
back after attraction to a limit cycle will provide one general
mechanism for the homeorhesis.
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